中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

植物雌激素鹰嘴豆芽素A(BCA)对肝纤维化去势小鼠模型的改善作用及机制

谭超容 李小飘 冉俊艳 熊英 廖尚高 张金娟 何迅

朱项羽, 金涌 . 金雀异黄素在去卵巢非酒精性脂肪性肝病小鼠模型中的保护作用及机制[J]. 临床肝胆病杂志, 2024, 40(4): 706-711. DOI: 10.12449/JCH240411.
引用本文: 朱项羽, 金涌 . 金雀异黄素在去卵巢非酒精性脂肪性肝病小鼠模型中的保护作用及机制[J]. 临床肝胆病杂志, 2024, 40(4): 706-711. DOI: 10.12449/JCH240411.
ZHU XY, JIN Y. Protective effect of Genistein against nonalcoholic fatty liver disease in ovariectomized mice and its mechanism[J]. J Clin Hepatol, 2024, 40(4): 706-711. DOI: 10.12449/JCH240411.
Citation: ZHU XY, JIN Y. Protective effect of Genistein against nonalcoholic fatty liver disease in ovariectomized mice and its mechanism[J]. J Clin Hepatol, 2024, 40(4): 706-711. DOI: 10.12449/JCH240411.

植物雌激素鹰嘴豆芽素A(BCA)对肝纤维化去势小鼠模型的改善作用及机制

DOI: 10.12449/JCH240114
基金项目: 

贵州省高层次创新型人才“百层次人才”项目 (Guizhou Kehe Platform Talents [2020] 6011)

伦理学声明:本课题实验方案于2021年7月9日获得贵州医科大学实验动物伦理委员会审批,批号:2100313,符合实验室动物管理与使用准则。
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:谭超容参与课题的设计,负责课题实施,数据分析,撰写论文;李小飘、冉俊艳、熊英、廖尚高参与课题实施,数据收集,修改论文;张金娟、何迅负责课题设计,指导实验实施及文章撰写并定稿。
详细信息
    通信作者:

    张金娟, 826609585@qq.com (ORCID: 0000-00002-9078-531X)

    何迅, 2812878586@qq.com (ORCID: 0000-0002-1867-069X)

Role and mechanism of action of phytoestrogen biochanin A in improving liver fibrosis in ovariectomized mice

Research funding: 

Guizhou Provincial High-Level Innovative Talents “Hundred Level Talents” Project (Guizhou Kehe Platform Talents [2020] 6011)

More Information
  • 摘要:   目的  探究植物雌激素鹰嘴豆芽素A(BCA)对CCl4诱导的雌性双侧卵巢切除(去势)小鼠肝纤维化的影响及其机制。  方法  取50只去势雌性昆明小鼠,腹腔注射CCl4建立肝纤维化模型,将建模小鼠按体质量随机分成模型组、阳性对照组、BCA低、中、高剂量组各10只,同时选取10只同批雌性小鼠切除双侧卵巢旁少量脂肪组织作为假手术组。假手术组和模型组灌胃等体积的0.5%羧甲基纤维素钠溶液,阳性对照组用雌二醇2 mg/kg灌胃,BCA低、中、高剂量组分别按25、50、100 mg/kg BCA灌胃,1次/d,连续7周。给药结束后麻醉处死小鼠取材,测定肝指数和子宫指数,HE及Masson染色观察肝组织病理改变,生化法检测AST、ALT活性,ELISA法检测肝组织中IL-6、TNF-α水平,Western Blot法测定肝组织中Ⅰ型胶原蛋白(Collagen Ⅰ)、转化生长因子-β1(TGF-β1)、α-平滑肌肌动蛋白(α-SMA)、雌激素受体β(ERβ)、p-NF-κBp65/NF-κBp65蛋白的相对表达量。计量资料两组间比较采用成组t检验,多组间比较采用单因素方差分析;进一步两两比较采用LSD-t检验。非正态分布的计量资料多组间比较及进一步两两比较均采用Kruskal-Wallis H检验。  结果  与假手术组相比,模型组肝指数升高,子宫指数降低,血清AST和ALT活性、肝组织中IL-6、TNF-α水平及Collagen Ⅰ、TGF-β1、α-SMA、p-NF-κBp65/NF-κBp65蛋白表达均升高(P值均<0.05),肝组织ERβ表达变化不明显(P>0.05),模型组肝组织明显纤维化病变,出现肝细胞水肿、脂肪样变、坏死并伴有炎细胞浸润,胶原纤维增生沉积、交错分布。与模型组比较,BCA各剂量组肝指数降低,血清ALT和AST活性、肝组织IL-6、TNF-α水平及Collagen Ⅰ、TGF-β1、α-SMA、p-NF-κBp65/NF-κBp65的蛋白表达均降低(P值均<0.05),子宫指数无明显变化(P>0.05),肝组织ERβ蛋白表达升高(P<0.05),肝组织的纤维化病变有不同程度改善。  结论  BCA可有效改善CCl4诱导的雌性去势小鼠肝纤维化,其作用机制可能是通过上调ERβ抑制NF-κB信号通路,减轻炎症反应而实现的。

     

  • 非酒精性脂肪性肝病(NAFLD)病理谱包括单纯性脂肪肝(NAFL)、非酒精性脂肪性肝炎(NASH)及其相关肝硬化和肝细胞癌1。全球流行病学调查的荟萃分析2表明,NAFLD的发病率在22%~28%,并且呈逐年上升趋势。近年来,随着人民群众生活水平的逐渐提高和传统饮食结构的改变,NAFLD已成为我国第一大慢性肝病,发病率占肝脏疾病的近50%,严重威胁人民健康。NAFLD的治疗包括生活方式改变和药物治疗两种,减肥、地中海饮食和体育活动等生活方式成为治疗NAFLD的基础3,药物治疗主要包括胰岛素增敏剂、降脂药、保肝抗炎药物等。但由于NAFLD常伴随代谢异常,西药的单靶点治疗往往得不到很好的疗效,目前尚没有经美国食品药品监督管理局批准的NAFLD药物,NAFLD可持续进展为肝硬化及肝癌,进而对社会公共医疗资源造成重大负担。然而,最近已经发表了胰高血糖素样肽-1(GLP-1)激动剂、法尼醇X受体(FXR)和过氧化物酶体增殖物激活受体(PPAR)配体以及其他药物的随机对照试验,并可能会在不久的将来扩大NAFLD的治疗药物4

    金雀异黄素(4′,5,7-trihydroxyisoflavone,Genistein)富含于大豆和鹰嘴豆等豆科植物,是一种强效的植物雌激素。药理作用包括抗骨质疏松、抗癌、改善心血管功能和缓解更年期综合征5-6。研究7-8发现补充植物雌激素可在改善胰岛素抵抗、降低血脂、抗炎和抗氧化方面发挥显著作用,然而,胰岛素抵抗、血脂异常、炎症等诱因会促进NAFLD的形成。

    流行病学调查,绝经后妇女患有NAFLD风险更高且比例在全球范围内逐年增加9。本实验通过高脂饮食喂养建立卵巢摘除(ovariectomy,OVX)后雌激素缺乏的NAFLD小鼠模型10,研究Genistein对NAFLD小鼠体质量、肝质量、ALT、AST及血脂等指标的影响,考察Genistein对脂质代谢相关蛋白的调控,旨在探讨Genistein对OVX小鼠NAFLD的作用及分子机制。

    本研究所用主要仪器包括超纯水机(美国Millipore公司)、-80 ℃超低温冰箱和SIM-F140制冰机(日本三洋公司)、Forma311细胞培养箱(美国Thermo Fisher Scientific公司)、荧光倒置显微镜(日本Olympus公司)、Pannoramic切片扫描仪(匈牙利3DHISTECH公司)、Bioshine ChemiO4600电泳仪电源和Mini-PROTEAN Tetra垂直电泳槽(美国BIO-RAD公司)、MQX200型酶标仪(美国BioTek公司)、Allegra X-22R离心机和Allegrax-15R型高速离心机(美国贝克曼公司)、ChemiDoc™MP成像系统(美国BIO-RAD公司)。

    Genistein(CAS号:446-72-0,包装规格:5 g,纯度:≥98%)购买于阿拉丁。正常饮食(TP26312;TROPHIC,南通,中国)包括10%来自脂肪的卡路里,20%来自蛋白质的卡路里,70%来自碳水化合物的卡路里(3.5 kcal/g的饮食)组成。高脂饮食(TP26300;TROPHIC,南通,中国)包括42%来自脂肪的卡路里,15%来自蛋白质的卡路里,43%来自碳水化合物的卡路里(4.5 kcal/g的饮食)。总胆固醇(TC)试剂盒(中国,南京建成生物工程研究所,货号A111-1-1)、甘油三酯(TG)试剂盒(中国,南京建成生物工程研究所,货号A110-1-1);BCA蛋白检测试剂盒(中国,Solarbio生物科技有限公司,货号PC0020);SREBP-1c抗体(美国,Santa Cruz Bio Technology,货号bs1402R);PPARα(英国,Abcam公司,货号ab126285);β-actin(英国,Abcam公司,货号ab179467)和相应的二抗;ECL化学发光试剂盒(美国,Thermo Fisher Scientific公司,货号WBKLS0500)。

    80只SPF级雌性C57BL/6小鼠,6周龄,17~19 g,购于安徽医科大学实验动物中心,实验动物生产许可证号:SCXK(皖)2022-001,实验动物使用许可证号:SYXK(皖)2022-004。向动物提供不受限制的食物和水,将其饲养在温度(23±2)℃和(55±10)%相对湿度控制的房间内,并保持12 h光照/12 h黑暗周期。饲养1周熟悉环境后用于实验。

    1.4.1   OVX小鼠模型的建立

    将小鼠采用戊巴比妥钠(0.04 mg/g)麻醉并置于加热垫上。剃掉腹部皮肤,用75%酒精清洗暴露的皮肤,再用10%聚维酮碘擦洗。在无菌条件下进行小的背侧切口。结扎卵巢动脉,取出双侧卵巢。Sham组进行相同的OVX手术过程,但不结扎卵巢动脉和切除卵巢。术后使用4-0无菌缝线闭合伤口以修复切割的肌肉层,并且用青霉素-G普鲁卡因(0.2 mL,20 000 IU)肌肉注射,每只小鼠1次10。全部小鼠术后恢复1周。此时,小鼠为8周龄,其生殖发育完全可用于实验研究11

    1.4.2   OVX小鼠高脂饮食诱导NAFLD模型的建立

    取40只OVX小鼠完全随机分组分为5组,每组8只,分别为对照组、模型4周组、模型6周组、模型8周组、模型10周组。相同环境下,采用高脂饮食对5组OVX小鼠进行饮食造模,分别在高脂饮食0、4、6、8、10周后处死不同组小鼠,快速分离肝脏并称重,然后将其固定在4%多聚甲醛中进行组织HE染色病理学检查,观察NAFLD造模成功情况。

    1.4.3   分组与给药

    另取40只小鼠随机分为5组:空白组、假手术(Sham)组、OVX组、OVX+L-Genistein(4 mg/kg体质量)组、OVX+H-Genistein(8 mg/kg体质量)组,每组8只(空白组和OVX+L-Genistein组各有1只小鼠因操作不当死亡)。所有小鼠自由饮水,空白组小鼠正常饮食喂养,其余各组供给高脂饮食。将Genistein溶解在DMSO中,Sham组和OVX组的动物仅用溶媒溶液处理,所有小鼠每天上午8∶00灌胃给药,持续10周,每周测量体质量。

    1.4.4   血清生化指标检测

    每组随机挑选6只小鼠,将小鼠麻醉后腹主动脉抽取血液,分离血清用于检测TC、TG含量。

    1.4.5   肝指数的测定

    小鼠安乐处死后,打开腹腔,取出完整肝脏,去除肝脏周围的结缔组织,采用生理盐水清洗干净,吸水纸去除水分,电子天平称量肝质量,计算肝指数。肝指数=肝质量/体质量。

    1.4.6   组织病理学分析

    每组随机挑选6只小鼠,留取肝左叶同一部位肝组织,清洗后置于4%多聚甲醛,脱水后进行石蜡包埋,用切片机将其切成5 μm厚切片,常规HE染色。采用冰冻切片进行油红O染色;透明密封后在光学显微镜下观察各切片肝组织病理情况以及肝脂肪颗粒沉积情况。

    1.4.7   Western Blot检测小鼠肝脏中脂质代谢通路相关蛋白表达

    每组随机挑选6只小鼠,将肝脏组织加RIPA裂解液提取蛋白,BCA法测定总蛋白浓度。每个样品取等量蛋白20 μg电泳、转膜。室温下用5%脱脂奶粉封闭2 h后分别加入一抗SREBP-1c(1∶1 000)、PPARα(1∶1 000)、β-actin(1∶2 000),4 ℃孵育过夜。洗膜后加入二抗(1∶8 000),室温孵育2 h。TBST洗膜后加ECL试剂显影成像。使用Image J软件对条带灰度值进行量化分析。

    采用SPSS 17.0软件进行统计分析。计量资料以x¯±s表示,符合正态分布的计量资料多组间比较采用单因素方差分析,进一步两两比较采用Dunnett-t检验。P<0.05为差异有统计学意义。

    与对照组比较,高脂饮食4周后小鼠肝组织尚未出现脂肪变性;6~8周后细胞核周围出现明显的脂质物质堆积;持续到10周后肝细胞内出现明显的脂肪大泡。HE染色结果表现为随着高脂饮食时间的延长肝细胞脂质堆积逐渐增加(图1)。证明OVX小鼠经高脂饮食诱导NAFLD成功。

    注: 黑色框内表示肝脂肪液泡;a,对照组;b,模型4周组;c,模型6周组;d,模型8周组;e,模型10周组。
    图  1  OVX小鼠肝组织HE染色(×40)
    Figure  1.  HE staining of liver tissue in OVX mice(×40)

    与空白组小鼠相比,Sham组小鼠的体质量和肝指数分别比空白组增加了1.11倍和1.14倍(P值均<0.05)。在相同高脂饮食情况下,与Sham组相比,OVX组的体质量和肝指数分别增加了1.15倍和1.09倍(P值均<0.05);与OVX组相比,OVX+H-Genistein组的体质量和肝指数分别降低了1.13倍和1.07倍(P值均<0.05),OVX+L-Genistein组的体质量和肝指数分别降低了1.07倍和1.05倍(P值均<0.05)(表1)。综上,Genistein处理能显著降低卵巢摘除的NAFLD小鼠体质量及肝质量,并降低小鼠的肝脏系数。

    表  1  各组小鼠的肝脏系数
    Table  1.  Liver coefficients of mice in each group
    组别 动物数(只) 体质量(g) 肝质量(g) 肝指数(%)
    空白组 6 24.15±0.45 1.03±0.05 4.26±0.15
    Sham组 6 26.91±0.361) 1.31±0.041) 4.86±0.141)
    OVX组 6 30.92±0.892) 1.63±0.042) 5.28±0.142)
    OVX+L-Genistein组 6 28.91±0.353) 1.46±0.043) 5.05±0.133)
    OVX+H-Genistein组 6 27.36±0.523) 1.35±0.033) 4.92±0.103)
    F 18.225 15.919 8.529
    P <0.05 <0.05 <0.05
    注:与空白组比较,1)P<0.05;与Sham组比较,2)P<0.05;与OVX组比较,3)P<0.05。
    下载: 导出CSV 
    | 显示表格

    与Sham组相比,OVX组小鼠TC、TG水平明显升高(P值均<0.01);与OVX组相比,Genistein各剂量组均不同程度地降低了NAFLD小鼠血清TC、TG水平(P值均<0.05)(图2)。

    图  2  各组小鼠血清中TC、TG水平
    Figure  2.  Serum TC and TG levels in each group of mice

    与Sham组相比,OVX组小鼠血清中AST、ALT水平显著升高(P值均<0.05),表明高脂饮食下OVX组小鼠肝细胞受损严重。与OVX组比较,Genistein各剂量组小鼠血清 AST、ALT水平显著降低(P值均<0.05)(图3)。

    图  3  各组小鼠血清中ALT、AST水平
    Figure  3.  Serum ALT and AST levels in each group of mice

    HE染色结果显示,空白组小鼠肝组织细胞形态正常,边界清晰,排列整齐,细胞质未见溶解和空泡;与Sham组相比,OVX组小鼠肝脏组织排列混乱,细胞间隙含有脂肪空泡,可见较大的脂质液滴空泡,出现脂肪肝堆积病变;Genistein高、低剂量组小鼠肝组织脂肪空泡较OVX组明显减少,脂肪堆积明显改善,显著降低了小鼠肝脏的脂肪变性程度。油红O染色结果显示,与空白组比较,Sham组肝脏切片中观察到明显增多的红色脂滴,OVX组红色脂滴更明显呈扩散和颗粒状;与OVX组比较,Genistein低、高剂量组脂滴累积明显减少(图4)。

    注: 黑色箭头所指框内表示肝脂肪液泡和肝脂肪沉积。
    图  4  各组小鼠肝切片的HE染色和油红O染色(×40)
    Figure  4.  HE staining and oil red O staining of liver slices in each group of mice(×40)

    通过Western Blot分析对蛋白进行定量,发现OVX小鼠肝脏中SREBP-1c蛋白表达量高于Sham组小鼠(P<0.05),PPARα蛋白表达量低于Sham组小鼠(P<0.05);与OVX组比较,给予Genistein干预后,SREBP-1c的蛋白表达量明显下降(P值均<0.05),PPARα的蛋白表达量明显升高(P值均<0.05)(图5)。

    图  5  各组小鼠肝组织SREBP-1c和PPARα的蛋白表达
    Figure  5.  Protein expression of SREBP-1c and PPARα in liver tissue of mice in each group

    NAFLD是一种在世界范围内广泛流行的慢性肝病,是发达国家人群肝酶升高的主要原因12。目前NAFLD的病因机制尚未完全阐明,“二次打击理论”是目前最为广泛接受的理论。第一个“打击”是肝细胞中的脂肪积累,这标志着NASH发展的第一阶段。第二个“打击”是炎症细胞因子、氧化应激或内毒素等加重因素,这些因素会导致肝细胞损伤13。NASH治疗的一个主要问题是缺乏有效的药物,通常建议通过饮食和锻炼减肥进行调理,然而,这种方法的有效性尚存在争议14

    NAFLD常伴随体质量和血清TC、TG等生化指标改变,肝细胞可以葡萄糖为原料合成TG,也可利用食物及脂肪组织动员的脂肪酸合成TG,TG与TC、磷脂、蛋白等结合而形成极低密度脂蛋白(TG是其主要成分),极低密度脂蛋白进入血液或储存在脂滴中,当脂肪酸供应过量时可作为脂肪毒性物质产生的底物引起内质网应激和肝细胞损伤,导致游离脂肪酸氧化和极低密度脂蛋白减少,TG运出肝细胞减少,导致TG在肝细胞基质代谢过程中脂质沉积,加重肝脏的脂肪变性,诱发NAFLD的病理形成15。因此检测血脂TC、TG的水平,可作为评估NAFLD病理进程的重要指标。本研究显示,Genistein给药后,血清中TC、TG水平较OVX组显著下降,证明Genistein可通过改善高脂饮食OVX小鼠高血脂症,延缓NAFLD的病理进程。同时,能降低卵巢摘除的NAFLD小鼠体质量及肝质量,并降低小鼠的肝脏系数,缓解肝细胞中的脂肪积累。

    在本研究中,OVX小鼠NAFLD模型再现了人类NAFLD的几种典型病因和组织病理学特征,如转氨酶异常、组织学表现为脂肪变性。在临床上,肝脂肪变性是NAFLD的标志性特征,同时伴随血清中AST、ALT水平升高16。AST/ALT比值也能反映肝炎患者的病理进程,实验中高脂饮食诱导的OVX小鼠模型与Sham组比较,AST上升了243.7%,ALT上升了165.7%,AST/ALT=1.47,结果表明OVX小鼠成功诱导产生中度、重度慢性脂肪肝。经过给予OVX小鼠不同剂量的Genistein,均出现抑制血清中AST、ALT水平上升的现象,表明Genistein对OVX小鼠肝细胞有良好的保护作用,减缓了NASH的发展。

    SREBP-1c是具有调控肝脏脂质代谢作用的固醇合成相关基因,是调控肝细胞内脂质蓄积的重要因子,可调节下游脂肪酸合成酶、乙酰辅酶A羧化酶等靶基因的表达从而调控机体脂代谢。SREBP-1c过度表达可导致肝细胞脂肪酸合成增加,促使三酰甘油、脂肪酸在肝细胞蓄积,诱发脂肪肝10。下调SREBP-1c的表达,进而抑制参与脂肪生成相关转录因子的表达,可减少脂肪酸的合成和脂质积累,改善肝脂肪病变17。PPARα是调控脂质代谢的重要转录因子,其参与脂肪酸摄取、转运、β氧化、脂质合成、酮体生成和脂蛋白与胆固醇代谢等过程。激活PPARα可减少氧化应激以及IL-6、TNF-α等炎症因子释放,甚至增加脂质自噬以减少肝脏脂肪堆积,改善NAFLD10。本研究显示,Genistein可以降低SREBP-1c表达、升高PPARα表达,改善脂肪生产与脂质代谢。

    该方向的课题研究多以NAFLD模型为基础,本研究针对不同患者群体,采用OVX小鼠NAFLD模型模拟绝经后妇女NAFLD,证实Genstein可改善OVX小鼠NAFLD的肝功能,调节脂质合成与代谢,延缓高脂饮食引起的NAFLD症状,认为Genstein对绝经后妇女的NAFLD具有改善作用。

  • 图  1  BCA对CCl4诱导肝纤维化小鼠子宫、肝脏形态学及肝脏病理的影响

    Figure  1.  Effects of BCA on the morphological and pathological changes of uterus and liver in CCl4-induced liver fibrosis mice

    图  2  BCA对CCl4诱导肝纤维化小鼠蛋白表达的影响

    Figure  2.  Effects of BCA on protein expressions in CCl4-induced liver fibrosis mice

    表  1  BCA对CCl4诱导肝纤维化小鼠肝、子宫指数的影响

    Table  1.   Effects of BCA on liver and uterus weight ratios in CCl4-induced liver fibrosis mice

    组别 动物数(只) 肝指数 子宫指数
    假手术组 6 3.63%±0.35% 0.34%(0.27%~0.58%)
    模型组 6 5.29%±0.47%1) 0.09%(0.05%~0.34%)1)
    阳性对照组 6 4.97%±0.25% 0.49%(0.45%~0.65%)2)
    BCA低剂量组 6 4.51%±0.43%2) 0.11%(0.06%~0.33%)
    BCA中剂量组 6 4.54%±0.44%2) 0.08%(0.05%~0.32%)
    BCA高剂量组 6 4.64%±0.20%2) 0.10%(0.09%~0.11%)
    统计值 F=19.942 H=24.059
    P <0.000 1 <0.000 1
    注:与假手术组比较,1)P<0.05;与模型组比较,2)P<0.05。
    下载: 导出CSV

    表  2  BCA对CCl4诱导肝纤维化小鼠AST、ALT活性的影响

    Table  2.   Effects of BCA on serum activities of AST and ALT in CCl4-induced liver fibrosis mice

    组别 动物数(只) AST(U/L) ALT(U/L)
    假手术组 10 14.92±2.21 7.81±0.61
    模型组 10 43.65±17.711) 32.44±9.141)
    阳性对照组 10 20.56±5.322) 14.96±6.232)
    BCA低剂量组 10 21.17±3.872) 17.22±4.032)
    BCA中剂量组 10 20.72±6.482) 16.70±5.882)
    BCA高剂量组 10 19.66±4.682) 14.97±2.962)
    F 13.703 19.488
    P <0.000 1 <0.000 1
    注:与假手术组比较,1)P<0.05;与模型组比较,2)P<0.05。
    下载: 导出CSV

    表  3  BCA对CCl4诱导肝纤维化小鼠IL-6、TNF-α水平的影响

    Table  3.   Effects of BCA on serum contents of IL-6 and TNF-α in CCl4-induced liver fibrosis mice

    组别 动物数(只) IL-6(pg/mg) TNF-α(pg/mg)
    假手术组 10 107.43±21.23 37.01±12.16
    模型组 10 368.39±76.411) 94.49±26.511)
    阳性对照组 10 123.40±43.222) 43.05±11.702)
    BCA低剂量组 10 208.26±37.812) 70.77±9.782)
    BCA中剂量组 10 172.18±55.652) 53.43±14.382)
    BCA高剂量组 10 113.15±17.512) 40.63±17.442)
    F 31.623 12.645
    P <0.000 1 <0.000 1
    注:与假手术组比较,1)P<0.05;与模型组比较,2)P<0.05。
    下载: 导出CSV

    表  4  BCA对CCl4诱导肝纤维化小鼠肝组织中蛋白表达的影响

    Table  4.   Effects of BCA on protein expressions in CCl4-induced liver fibrosis mice

    组别 动物数(只) α-SMA TGF-β1 Collagen Ⅰ ERβ p-NF-κBp65/NF-κBp65
    假手术组 3 0.15±0.02 0.28±0.06 0.31±0.14 0.63±0.12 0.45±0.13
    模型组 3 0.39±0.051) 0.72±0.071) 0.60±0.021) 0.59±0.13 0.90±0.211)
    阳性对照组 3 0.26±0.102) 0.45±0.062) 0.42±0.032) 0.94±0.272) 0.41±0.182)
    BCA低剂量组 3 0.26±0.082) 0.56±0.092) 0.47±0.022) 0.83±0.15 0.64±0.12
    BCA中剂量组 3 0.19±0.062) 0.49±0.082) 0.43±0.022) 0.95±0.152) 0.45±0.092)
    BCA高剂量组 3 0.18±0.032) 0.47±0.062) 0.42±0.032) 0.98±0.152) 0.53±0.082)
    F 5.850 12.057 6.895 3.207 5.018
    P <0.006 <0.0001 <0.003 <0.046 <0.01
    注:与假手术组比较,1)P<0.05;与模型组比较,2)P<0.05。
    下载: 导出CSV
  • [1] LI MB, LI JY, FENG DP. Research advances in the reversal of liver fibrosis[J]. J Clin Hepatol, 2023, 39( 1): 193- 198. DOI: 10.3969/j.issn.1001-5256.2023.01.030.

    李满彪, 李金玉, 冯对平. 肝纤维化逆转的研究进展[J]. 临床肝胆病杂志, 2023, 39( 1): 193- 198. DOI: 10.3969/j.issn.1001-5256.2023.01.030.
    [2] AYDIN MM, AKÇALI KC. Liver fibrosis[J]. Turk J Gastroenterol, 2018, 29( 1): 14- 21. DOI: 10.5152/tjg.2018.17330.
    [3] XU LM, LIU P, Guidelines for diagnosis and treatment of hepatic fibrosis with integrated traditional Chinese and Western medicine(2019 edition)[J]. J Integr Med, 2020, 18( 3): 203- 213. DOI: 10.1016/j.joim.2020.03.001.
    [4] YOON YJ, FRIEDMAN SL, LEE YA. Antifibrotic therapies: Where are we now?[J]. Semin Liver Dis, 2016, 36( 1): 87- 98. DOI: 10.1055/s-0036-1571295.
    [5] NASTA P. Immune activation, aging and gender and progression of liver disease[J]. Acta Biomed, 2011, 82( 2): 115- 123.
    [6] QIAO BK, MA XY, HAN LY, et al. Estrogen enhances liver repair by regulating hepatic cell regeneration[J]. J Southwest Univ Nat Sci Ed, 2020, 42( 8): 49- 58. DOI: 10.13718/j.cnki.xdzk.2020.08.007.

    乔冰珂, 马兴宇, 韩凌云, 等. 雌激素通过调控肝细胞更新促进CCl4诱导的肝损伤修复[J]. 西南大学学报(自然科学版), 2020, 42( 8): 49- 58. DOI: 10.13718/j.cnki.xdzk.2020.08.007.
    [7] CODES L, ASSELAH T, CAZALS-HATEM D, et al. Liver fibrosis in women with chronic hepatitis C: Evidence for the negative role of the menopause and steatosis and the potential benefit of hormone replacement therapy[J]. Gut, 2007, 56( 3): 390- 395. DOI: 10.1136/gut.2006.101931.
    [8] YANG WW, LU Y, XU YC, et al. Estrogen represses hepatocellular carcinoma(HCC) growth via inhibiting alternative activation of tumor-associated macrophages(TAMs)[J]. J Biol Chem, 2012, 287( 48): 40140- 40149. DOI: 10.1074/jbc.M112.348763.
    [9] XU JW, GONG J, FENG XL, et al. Effects of estrogen on the activation of hepatic stellate cells and collagen synthesis in liver fibrotic rats[J]. J Xi'an Jiaotong Univ Med Sci, 2003, 24( 6): 624- 626. DOI: 10.3969/j.issn.1671-8259.2003.06.032.

    许君望, 龚均, 冯新利, 等. 雌激素对肝纤维化大鼠肝星状细胞活化及胶原合成的影响[J]. 西安交通大学学报(医学版), 2003, 24( 6): 624- 626. DOI: 10.3969/j.issn.1671-8259.2003.06.032.
    [10] ROSSOUW JE, ANDERSON GL, Prentice RL, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial[J]. JAMA, 2002, 288( 3): 321- 33. DOI: 10.1001/jama.288.3.321
    [11] WANG H, ZHUANG W, XUE XO. Research progress and clinical application of phytoestrogen activity in traditional Chinese Medicine[J]. Jilin J Chin Med, 2018, 38( 3): 364- 368. DOI: 10.13463/j.cnki.jlzyy.2018.03.033.

    王浩, 庄威, 薛晓鸥. 中药植物雌激素活性研究及其临床应用研究进展[J]. 吉林中医药, 2018, 38( 3): 364- 368. DOI: 10.13463/j.cnki.jlzyy.2018.03.033.
    [12] WANG YX, WU CY, ZHOU JH, et al. Overexpression of estrogen receptor β inhibits cellular functions of human hepatic stellate cells and promotes the anti-fibrosis effect of calycosin via inhibiting STAT3 phosphorylation[J]. BMC Pharmacol Toxicol, 2022, 23( 1): 77. DOI: 10.1186/s40360-022-00617-y.
    [13] DENG T, LIU J, ZHANG MM, et al. Inhibition effect of phytoestrogen calycosin on TGF-β1-induced hepatic stellate cell activation, proliferation, and migration via estrogen receptor B[J]. Can J Physiol Pharmacol, 2018, 96( 12): 1268- 1275. DOI: 10.1139/cjpp-2018-0474.
    [14] LI CW, WEI YL. Advances in studies on the characteristics and application of phytoestrogens[J]. Genom Appl Biol, 2020, 39( 3): 1264- 1269. DOI: 10.13417/j.gab.039.001264.

    李从文, 魏云林. 植物雌激素的特性及其应用研究进展[J]. 基因组学与应用生物学, 2020, 39( 3): 1264- 1269. DOI: 10.13417/j.gab.039.001264.
    [15] ZHAO Y, ZHENG HX, XU Y, et al. Research progress in phytoestrogens of traditional Chinese medicine[J]. China J Chin Mater Med, 2017, 42( 18): 3474- 3487. DOI: 10.19540/j.cnki.cjcmm.2017.0135.

    赵元, 郑红霞, 徐颖, 等. 中药植物雌激素的研究进展[J]. 中国中药杂志, 2017, 42( 18): 3474- 3487. DOI: 10.19540/j.cnki.cjcmm.2017.0135.
    [16] CHENG HL, WANG L, LUO Q, et al. Advances in studies on pharmacological effects of biochanin A[J]. J Liaoning Univ Tradit Chin Med, 2014, 16( 12): 92- 95. DOI: 10.13194/j.issn.1673-842x.2014.12.034.

    程海林, 王雷, 罗晴, 等. 鹰嘴豆芽素A基础药理作用研究进展[J]. 辽宁中医药大学学报, 2014, 16( 12): 92- 95. DOI: 10.13194/j.issn.1673-842x.2014.12.034.
    [17] ZHOU YM, NING HX, ZHANG XM, et al. Effects of biochanin A for osteoporosis in ovariecto-mized rats[J]. Chinese Pharmacological Bulletin, 2014, 30( 12): 1775- 1776. DOI: 10.3969/j.issn.1001-1978.2014.12.032.

    周延萌, 宁慧娴, 张小敏, 等. 鹰嘴豆芽素A对雌激素缺乏诱发大鼠骨质疏松症的作用[J]. 中国药理学通报, 2014, 30( 12): 1775- 1776. DOI: 10.3969/j.issn.1001-1978.2014.12.032.
    [18] KŘÍŽOVÁ L, DADÁKOVÁ K, KAŠPAROVSKÁ J, et al. Isoflavones[J]. Molecules, 2019, 24( 6): 1076. DOI: 10.3390/molecules24061076.
    [19] FAN Y, YAN LT, YAO Z, et al. Biochanin A regulates cholesterol metabolism further delays the progression of nonalcoholic fatty liver disease[J]. Diabetes Metab Syndr Obes, 2021, 14: 3161- 3172. DOI: 10.2147/DMSO.S315471.
    [20] TANG AC, WEI YF, LIU XH, et al. Protective effect and mechanism of tadehaginoside on hepatic fibrosis model mice induced by carbon tetrachloride[J]. China Pharm, 2020, 31( 2): 190- 195. DOI: 10.6039/j.issn.1001-0408.2020.02.12.

    唐爱存, 韦燕飞, 刘喜华, 等. 葫芦茶苷对四氯化碳致肝纤维化模型小鼠的保护作用及机制研究[J]. 中国药房, 2020, 31( 2): 190- 195. DOI: 10.6039/j.issn.1001-0408.2020.02.12.
    [21] SUN HT, CHEN GX, WEN B, et al. Oligo-peptide I-C-F-6 inhibits hepatic stellate cell activation and ameliorates CCl4-induced liver fibrosis by suppressing NF-κB signaling and Wnt/β-catenin signaling[J]. J Pharmacol Sci, 2018, 136( 3): 133- 141. DOI: 10.1016/j.jphs.2018.01.003.
    [22] WANG ZR, TIAN FH, RAO MY, et al. Research progress of mice models for hepatic fibrosis[J]. China J Mod Med, 2021, 31( 12): 46- 50. DOI: 10.3969/j.issn.1005-8982.2021.12.009.

    王梓睿, 田飞鸿, 饶木艳, 等. 小鼠肝纤维化模型复制方法的研究进展[J]. 中国现代医学杂志, 2021, 31( 12): 46- 50. DOI: 10.3969/j.issn.1005-8982.2021.12.009.
    [23] HUANG FJ, ZHANG JJ, DONG L, et al. Preliminary study on improvement effect of Tiarella polyphylla ethanol extract on CCl4-induced hepatic fibrosis in mice and its mechanism[J]. China Pharm, 2021, 32( 14): 1685- 1691. DOI: 10.6039/j.issn.1001-0408.2021.14.04.

    黄甫静, 张金娟, 董莉, 等. 黄水枝醇提物对CCl4致小鼠肝纤维化的改善作用及其机制初探[J]. 中国药房, 2021, 32( 14): 1685- 1691. DOI: 10.6039/j.issn.1001-0408.2021.14.04.
    [24] JIANG Y, XIANG C, ZHONG F, et al. Histone H3K27 methyltransferase EZH2 and demethylase JMJD3 regulate hepatic stellate cells activation and liver fibrosis[J]. Theranostics, 2021, 11( 1): 361- 378. DOI: 10.7150/thno.46360.
    [25] XIE JF. Effect and mechanism of CircRNA97 on reversing hepatic fibrosis through miRNA-146b-5p/HIPK1 axis[D]. Nanchang: Nanchang University, 2022. DOI: 10.27232/d.cnki.gnchu.2022.000617.

    谢俊锋. CircRNA97通过miRNA-146b-5p/HIPK1轴逆转肝纤维化的作用及机制研究[D]. 南昌: 南昌大学, 2022. DOI: 10.27232/d.cnki.gnchu.2022.000617
    [26] SUN ZC, ZHAN XL. Myrrhone inhibits the progression of hepatic fibrosis by regulating the abnormal activation of hepatic stellate cells[J]. J Biochem Mol Toxicol, 2022, 36( 11): e23177. DOI: 10.1002/jbt.23177.
    [27] LIN IY, CHIOU YS, WU LC, et al. CCM111 prevents hepatic fibrosis via cooperative inhibition of TGF-β, Wnt and STAT3 signaling pathways[J]. J Food Drug Anal, 2019, 27( 1): 184- 194. DOI: 10.1016/j.jfda.2018.09.008.
    [28] YANG JH, JU BW, XIANG XY, et al. Mechanism of inhibition of hepatic stellate cell activation by TGF-β1/Smad pathway regulated by Gentianella turkestanorum[J]. China J Tradit Chin Med Pharm, 2022, 37( 12): 7392- 7396.

    杨建华, 居博伟, 向雪滢, 等. 新疆假龙胆调控TGF-β1/Smad通路抑制肝星状细胞活化的作用机制[J]. 中华中医药杂志, 2022, 37( 12): 7392- 7396.
    [29] GE SF, YANG LX. Progress in the role of inflammation during the development of liver fibrosis[J]. Chin Hepatol, 2018, 23( 6): 546- 548. DOI: 10.14000/j.cnki.issn.1008-1704.2018.06.029.

    葛善飞, 杨丽霞. 炎症在肝纤维化发生中的作用研究进展[J]. 肝脏, 2018, 23( 6): 546- 548. DOI: 10.14000/j.cnki.issn.1008-1704.2018.06.029.
    [30] CUBERO FJ. Shutting off inflammation: A novel switch on hepatic stellate cells[J]. Hepatology, 2016, 63( 4): 1086- 1089. DOI: 10.1002/hep.28442.
    [31] ZHU H, PING J, XU LM. Role of the nuclear factor-kappa B signaling pathway on the progress of hepatic fibrosis and the anti-fibrotic mechanism of traditional Chinese medicine[J]. J Clin Hepatol, 2018, 34( 4): 858- 861. DOI: 10.3969/j.issn.1001-5256.2018.04.035.

    朱慧, 平键, 徐列明. NF-κB通路在肝纤维化进展和中药抗肝纤维化机制中的作用[J]. 临床肝胆病杂志, 2018, 34( 4): 858- 861. DOI: 10.3969/j.issn.1001-5256.2018.04.035.
    [32] LONG TT, LIU ZJ, SHANG JC, et al. Polygonatum sibiricum polysaccharides play anti-cancer effect through TLR4-MAPK/NF-κB signaling pathways[J]. Int J Biol Macromol, 2018, 111: 813- 821. DOI: 10.1016/j.ijbiomac.2018.01.070.
    [33] TU KF, XU JY, YI ZZ. Relationship of the expression of estrogen receptor β and nuclear factor-kappa B of triple negative breast cancer[J]. J Mod Oncol, 2016, 24( 7): 1042- 1045. DOI: 10.3969/j.issn.1672-4992.2016.07.006.

    涂开峰, 徐久元, 易子桢. 三阴性乳腺癌中ERβ和NF-κB的表达及其相关性[J]. 现代肿瘤医学, 2016, 24( 7): 1042- 1045. DOI: 10.3969/j.issn.1672-4992.2016.07.006.
    [34] YAO Y. The role of ERβ in the occurrence and development of breast cancer through NF-κB/IL-8 signaling pathway[D]. Qingdao: Qingdao University, 2022. DOI: 10.27262/d.cnki.gqdau.2022.001348.

    姚瑶. ERβ通过NF-κB/IL-8信号通路在乳腺癌发生发展中作用探讨[D]. 青岛: 青岛大学, 2022. DOI: 10.27262/d.cnki.gqdau.2022.001348
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  371
  • HTML全文浏览量:  162
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-09
  • 录用日期:  2023-03-29
  • 出版日期:  2024-01-23
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

/

返回文章
返回