中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

清解化攻方调控NLRP3/TLR4/NF-κB信号通路对重症急性胰腺炎小鼠模型胰腺组织的保护作用

冯敏超 秦百君 罗芳 李凯 王宁 陈国忠 唐曦平

刘淑岩, 杨其昌, 沈屹, 等 . 基质金属蛋白酶7在肝癌细胞迁移及免疫细胞浸润中的作用与预后价值[J]. 临床肝胆病杂志, 2024, 40(7): 1420-1427. DOI: 10.12449/JCH240721.
引用本文: 刘淑岩, 杨其昌, 沈屹, 等 . 基质金属蛋白酶7在肝癌细胞迁移及免疫细胞浸润中的作用与预后价值[J]. 临床肝胆病杂志, 2024, 40(7): 1420-1427. DOI: 10.12449/JCH240721.
LIU SY, YANG QC, SHEN Y, et al. Role and prognostic value of matrix metalloproteinase-7 in the migration and immune cell infiltration of hepatocellular carcinoma[J]. J Clin Hepatol, 2024, 40(7): 1420-1427. DOI: 10.12449/JCH240721.
Citation: LIU SY, YANG QC, SHEN Y, et al. Role and prognostic value of matrix metalloproteinase-7 in the migration and immune cell infiltration of hepatocellular carcinoma[J]. J Clin Hepatol, 2024, 40(7): 1420-1427. DOI: 10.12449/JCH240721.

清解化攻方调控NLRP3/TLR4/NF-κB信号通路对重症急性胰腺炎小鼠模型胰腺组织的保护作用

DOI: 10.12449/JCH240219
基金项目: 

国家自然科学基金 (82160890);

广西自然科学基金面上项目 (2020GXNSFAA297062);

广西医疗卫生适宜技术开发与推广应用项目 (S2019021);

广西中医药大学研究生教育创新计划项目 (YCSW2023383)

伦理学声明:本研究方案于2022年1月23日经由广西中医药大学实验动物福利伦理委员会审批,批号:DW20220310-020,符合实验室动物管理与使用准则。
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:冯敏超、罗芳负责设计论文框架,起草论文;秦百君、王宁负责实验操作和研究过程的实施;李凯负责数据收集,统计学分析,绘制图表;唐曦平负责论文修改;陈国忠负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    陈国忠, cheninjp@163.com (ORCID: 0009-0008-8374-5628)

Protective effect of Qingjie Huagong decoction on pancreatic tissue of mice with severe acute pancreatitis by regulating the NOD-like receptor protein 3/Toll-like receptor 4/nuclear factor-kappa B signaling pathway

Research funding: 

National Natural Science Foundation of China Project (82160890);

General Project of Guangxi Natural Science Foundation (2020GXNSFAA297062);

Guangxi Medical and Healthcare Appropriate Technology Development and Popularization and Application Project (S2019021);

Guangxi University of TCM Graduate Education Innovation Program Project (YCSW2023383)

More Information
    Corresponding author: CHEN Guozhong, cheninjp@163.com (ORCID: 0009-0008-8374-5628)
  • 摘要:   目的  观察清解化攻方对重症急性胰腺炎(SAP)小鼠模型的治疗作用,探索清解化攻方抗炎症反应的作用机制。  方法  将36只C57BL/6J雄性小鼠随机分成空白组,模型组,清解化攻方低、中、高剂量组,西药组(乌司他丁),每组6只,除空白组小鼠,余各组小鼠采用逆行胰胆管注射5%牛黄胆酸钠建立SAP模型,清解化攻方低、中、高剂量组在造模后分别予以清解化攻方1、2、4 g/kg灌胃,西药组在造模后予以腹腔注射乌司他丁(5×104 U/kg),共干预7 d。采用苏木素-伊红染色观察胰腺组织病理改变;酶联免疫吸附测定法(ELISA)检测小鼠α-淀粉酶、脂肪酶、IL-1β、IL-6、IL-8、IL-18和TNF-α水平;RT-qPCR检测胰腺组织NOD样受体蛋白3(NLRP3)、Toll样受体4(TLR4)、核因子-κB(NF-κB)mRNA表达水平;免疫组化检测胰腺组织NLRP3、TLR4、NF-κB的阳性表达率;Western Blot技术检测NLRP3、TLR4、NF-κB、IL-1β、IL-6蛋白的表达水平。计量资料多组间比较采用方差分析,进一步两两比较采用LSD-t检验。  结果  与空白组相比,模型组小鼠胰腺组织结构弥漫性破坏、胰腺小叶间隔局灶性扩张、腺泡萎缩和大量炎症细胞浸润,α-淀粉酶、脂肪酶、IL-1β、IL-6、IL-8、IL-18和TNF-α含量明显升高(P值均<0.05),NLRP3、TLR4、NF-κB mRNA表达水平及阳性表达率均明显上升(P值均<0.05),NLRP3、TLR4、NF-κB、IL-1β、IL-6蛋白表达均明显上调(P值均<0.05)。与模型组相比,清解化攻方各剂量组和西药组可见小鼠胰腺组织结构稍紧密、完整,胰腺腺泡细胞排列有序,伴少量炎症细胞浸润和胰腺小叶出血灶,α-淀粉酶、脂肪酶、IL-1β、IL-6、IL-8、IL-18和TNF-α含量明显下降(P值均<0.05),NLRP3、TLR4、NF-κB mRNA表达水平及阳性表达率均明显降低(P值均<0.05),NLRP3、TLR4、NF-κB、IL-1β、IL-6蛋白表达水平均明显减弱(P值均<0.05)。  结论  清解化攻方可能通过抑制NLRP3/TLR4/NF-κB信号通路相关蛋白的激活,减少炎症介质的释放,防止炎症级联反应增强,进而对SAP小鼠胰腺组织发挥保护作用。

     

  • 非酒精性脂肪性肝病(NAFLD)病理谱包括单纯性脂肪肝(NAFL)、非酒精性脂肪性肝炎(NASH)及其相关肝硬化和肝细胞癌1。全球流行病学调查的荟萃分析2表明,NAFLD的发病率在22%~28%,并且呈逐年上升趋势。近年来,随着人民群众生活水平的逐渐提高和传统饮食结构的改变,NAFLD已成为我国第一大慢性肝病,发病率占肝脏疾病的近50%,严重威胁人民健康。NAFLD的治疗包括生活方式改变和药物治疗两种,减肥、地中海饮食和体育活动等生活方式成为治疗NAFLD的基础3,药物治疗主要包括胰岛素增敏剂、降脂药、保肝抗炎药物等。但由于NAFLD常伴随代谢异常,西药的单靶点治疗往往得不到很好的疗效,目前尚没有经美国食品药品监督管理局批准的NAFLD药物,NAFLD可持续进展为肝硬化及肝癌,进而对社会公共医疗资源造成重大负担。然而,最近已经发表了胰高血糖素样肽-1(GLP-1)激动剂、法尼醇X受体(FXR)和过氧化物酶体增殖物激活受体(PPAR)配体以及其他药物的随机对照试验,并可能会在不久的将来扩大NAFLD的治疗药物4

    金雀异黄素(4′,5,7-trihydroxyisoflavone,Genistein)富含于大豆和鹰嘴豆等豆科植物,是一种强效的植物雌激素。药理作用包括抗骨质疏松、抗癌、改善心血管功能和缓解更年期综合征5-6。研究7-8发现补充植物雌激素可在改善胰岛素抵抗、降低血脂、抗炎和抗氧化方面发挥显著作用,然而,胰岛素抵抗、血脂异常、炎症等诱因会促进NAFLD的形成。

    流行病学调查,绝经后妇女患有NAFLD风险更高且比例在全球范围内逐年增加9。本实验通过高脂饮食喂养建立卵巢摘除(ovariectomy,OVX)后雌激素缺乏的NAFLD小鼠模型10,研究Genistein对NAFLD小鼠体质量、肝质量、ALT、AST及血脂等指标的影响,考察Genistein对脂质代谢相关蛋白的调控,旨在探讨Genistein对OVX小鼠NAFLD的作用及分子机制。

    本研究所用主要仪器包括超纯水机(美国Millipore公司)、-80 ℃超低温冰箱和SIM-F140制冰机(日本三洋公司)、Forma311细胞培养箱(美国Thermo Fisher Scientific公司)、荧光倒置显微镜(日本Olympus公司)、Pannoramic切片扫描仪(匈牙利3DHISTECH公司)、Bioshine ChemiO4600电泳仪电源和Mini-PROTEAN Tetra垂直电泳槽(美国BIO-RAD公司)、MQX200型酶标仪(美国BioTek公司)、Allegra X-22R离心机和Allegrax-15R型高速离心机(美国贝克曼公司)、ChemiDoc™MP成像系统(美国BIO-RAD公司)。

    Genistein(CAS号:446-72-0,包装规格:5 g,纯度:≥98%)购买于阿拉丁。正常饮食(TP26312;TROPHIC,南通,中国)包括10%来自脂肪的卡路里,20%来自蛋白质的卡路里,70%来自碳水化合物的卡路里(3.5 kcal/g的饮食)组成。高脂饮食(TP26300;TROPHIC,南通,中国)包括42%来自脂肪的卡路里,15%来自蛋白质的卡路里,43%来自碳水化合物的卡路里(4.5 kcal/g的饮食)。总胆固醇(TC)试剂盒(中国,南京建成生物工程研究所,货号A111-1-1)、甘油三酯(TG)试剂盒(中国,南京建成生物工程研究所,货号A110-1-1);BCA蛋白检测试剂盒(中国,Solarbio生物科技有限公司,货号PC0020);SREBP-1c抗体(美国,Santa Cruz Bio Technology,货号bs1402R);PPARα(英国,Abcam公司,货号ab126285);β-actin(英国,Abcam公司,货号ab179467)和相应的二抗;ECL化学发光试剂盒(美国,Thermo Fisher Scientific公司,货号WBKLS0500)。

    80只SPF级雌性C57BL/6小鼠,6周龄,17~19 g,购于安徽医科大学实验动物中心,实验动物生产许可证号:SCXK(皖)2022-001,实验动物使用许可证号:SYXK(皖)2022-004。向动物提供不受限制的食物和水,将其饲养在温度(23±2)℃和(55±10)%相对湿度控制的房间内,并保持12 h光照/12 h黑暗周期。饲养1周熟悉环境后用于实验。

    1.4.1   OVX小鼠模型的建立

    将小鼠采用戊巴比妥钠(0.04 mg/g)麻醉并置于加热垫上。剃掉腹部皮肤,用75%酒精清洗暴露的皮肤,再用10%聚维酮碘擦洗。在无菌条件下进行小的背侧切口。结扎卵巢动脉,取出双侧卵巢。Sham组进行相同的OVX手术过程,但不结扎卵巢动脉和切除卵巢。术后使用4-0无菌缝线闭合伤口以修复切割的肌肉层,并且用青霉素-G普鲁卡因(0.2 mL,20 000 IU)肌肉注射,每只小鼠1次10。全部小鼠术后恢复1周。此时,小鼠为8周龄,其生殖发育完全可用于实验研究11

    1.4.2   OVX小鼠高脂饮食诱导NAFLD模型的建立

    取40只OVX小鼠完全随机分组分为5组,每组8只,分别为对照组、模型4周组、模型6周组、模型8周组、模型10周组。相同环境下,采用高脂饮食对5组OVX小鼠进行饮食造模,分别在高脂饮食0、4、6、8、10周后处死不同组小鼠,快速分离肝脏并称重,然后将其固定在4%多聚甲醛中进行组织HE染色病理学检查,观察NAFLD造模成功情况。

    1.4.3   分组与给药

    另取40只小鼠随机分为5组:空白组、假手术(Sham)组、OVX组、OVX+L-Genistein(4 mg/kg体质量)组、OVX+H-Genistein(8 mg/kg体质量)组,每组8只(空白组和OVX+L-Genistein组各有1只小鼠因操作不当死亡)。所有小鼠自由饮水,空白组小鼠正常饮食喂养,其余各组供给高脂饮食。将Genistein溶解在DMSO中,Sham组和OVX组的动物仅用溶媒溶液处理,所有小鼠每天上午8∶00灌胃给药,持续10周,每周测量体质量。

    1.4.4   血清生化指标检测

    每组随机挑选6只小鼠,将小鼠麻醉后腹主动脉抽取血液,分离血清用于检测TC、TG含量。

    1.4.5   肝指数的测定

    小鼠安乐处死后,打开腹腔,取出完整肝脏,去除肝脏周围的结缔组织,采用生理盐水清洗干净,吸水纸去除水分,电子天平称量肝质量,计算肝指数。肝指数=肝质量/体质量。

    1.4.6   组织病理学分析

    每组随机挑选6只小鼠,留取肝左叶同一部位肝组织,清洗后置于4%多聚甲醛,脱水后进行石蜡包埋,用切片机将其切成5 μm厚切片,常规HE染色。采用冰冻切片进行油红O染色;透明密封后在光学显微镜下观察各切片肝组织病理情况以及肝脂肪颗粒沉积情况。

    1.4.7   Western Blot检测小鼠肝脏中脂质代谢通路相关蛋白表达

    每组随机挑选6只小鼠,将肝脏组织加RIPA裂解液提取蛋白,BCA法测定总蛋白浓度。每个样品取等量蛋白20 μg电泳、转膜。室温下用5%脱脂奶粉封闭2 h后分别加入一抗SREBP-1c(1∶1 000)、PPARα(1∶1 000)、β-actin(1∶2 000),4 ℃孵育过夜。洗膜后加入二抗(1∶8 000),室温孵育2 h。TBST洗膜后加ECL试剂显影成像。使用Image J软件对条带灰度值进行量化分析。

    采用SPSS 17.0软件进行统计分析。计量资料以x¯±s表示,符合正态分布的计量资料多组间比较采用单因素方差分析,进一步两两比较采用Dunnett-t检验。P<0.05为差异有统计学意义。

    与对照组比较,高脂饮食4周后小鼠肝组织尚未出现脂肪变性;6~8周后细胞核周围出现明显的脂质物质堆积;持续到10周后肝细胞内出现明显的脂肪大泡。HE染色结果表现为随着高脂饮食时间的延长肝细胞脂质堆积逐渐增加(图1)。证明OVX小鼠经高脂饮食诱导NAFLD成功。

    注: 黑色框内表示肝脂肪液泡;a,对照组;b,模型4周组;c,模型6周组;d,模型8周组;e,模型10周组。
    图  1  OVX小鼠肝组织HE染色(×40)
    Figure  1.  HE staining of liver tissue in OVX mice(×40)

    与空白组小鼠相比,Sham组小鼠的体质量和肝指数分别比空白组增加了1.11倍和1.14倍(P值均<0.05)。在相同高脂饮食情况下,与Sham组相比,OVX组的体质量和肝指数分别增加了1.15倍和1.09倍(P值均<0.05);与OVX组相比,OVX+H-Genistein组的体质量和肝指数分别降低了1.13倍和1.07倍(P值均<0.05),OVX+L-Genistein组的体质量和肝指数分别降低了1.07倍和1.05倍(P值均<0.05)(表1)。综上,Genistein处理能显著降低卵巢摘除的NAFLD小鼠体质量及肝质量,并降低小鼠的肝脏系数。

    表  1  各组小鼠的肝脏系数
    Table  1.  Liver coefficients of mice in each group
    组别 动物数(只) 体质量(g) 肝质量(g) 肝指数(%)
    空白组 6 24.15±0.45 1.03±0.05 4.26±0.15
    Sham组 6 26.91±0.361) 1.31±0.041) 4.86±0.141)
    OVX组 6 30.92±0.892) 1.63±0.042) 5.28±0.142)
    OVX+L-Genistein组 6 28.91±0.353) 1.46±0.043) 5.05±0.133)
    OVX+H-Genistein组 6 27.36±0.523) 1.35±0.033) 4.92±0.103)
    F 18.225 15.919 8.529
    P <0.05 <0.05 <0.05
    注:与空白组比较,1)P<0.05;与Sham组比较,2)P<0.05;与OVX组比较,3)P<0.05。
    下载: 导出CSV 
    | 显示表格

    与Sham组相比,OVX组小鼠TC、TG水平明显升高(P值均<0.01);与OVX组相比,Genistein各剂量组均不同程度地降低了NAFLD小鼠血清TC、TG水平(P值均<0.05)(图2)。

    图  2  各组小鼠血清中TC、TG水平
    Figure  2.  Serum TC and TG levels in each group of mice

    与Sham组相比,OVX组小鼠血清中AST、ALT水平显著升高(P值均<0.05),表明高脂饮食下OVX组小鼠肝细胞受损严重。与OVX组比较,Genistein各剂量组小鼠血清 AST、ALT水平显著降低(P值均<0.05)(图3)。

    图  3  各组小鼠血清中ALT、AST水平
    Figure  3.  Serum ALT and AST levels in each group of mice

    HE染色结果显示,空白组小鼠肝组织细胞形态正常,边界清晰,排列整齐,细胞质未见溶解和空泡;与Sham组相比,OVX组小鼠肝脏组织排列混乱,细胞间隙含有脂肪空泡,可见较大的脂质液滴空泡,出现脂肪肝堆积病变;Genistein高、低剂量组小鼠肝组织脂肪空泡较OVX组明显减少,脂肪堆积明显改善,显著降低了小鼠肝脏的脂肪变性程度。油红O染色结果显示,与空白组比较,Sham组肝脏切片中观察到明显增多的红色脂滴,OVX组红色脂滴更明显呈扩散和颗粒状;与OVX组比较,Genistein低、高剂量组脂滴累积明显减少(图4)。

    注: 黑色箭头所指框内表示肝脂肪液泡和肝脂肪沉积。
    图  4  各组小鼠肝切片的HE染色和油红O染色(×40)
    Figure  4.  HE staining and oil red O staining of liver slices in each group of mice(×40)

    通过Western Blot分析对蛋白进行定量,发现OVX小鼠肝脏中SREBP-1c蛋白表达量高于Sham组小鼠(P<0.05),PPARα蛋白表达量低于Sham组小鼠(P<0.05);与OVX组比较,给予Genistein干预后,SREBP-1c的蛋白表达量明显下降(P值均<0.05),PPARα的蛋白表达量明显升高(P值均<0.05)(图5)。

    图  5  各组小鼠肝组织SREBP-1c和PPARα的蛋白表达
    Figure  5.  Protein expression of SREBP-1c and PPARα in liver tissue of mice in each group

    NAFLD是一种在世界范围内广泛流行的慢性肝病,是发达国家人群肝酶升高的主要原因12。目前NAFLD的病因机制尚未完全阐明,“二次打击理论”是目前最为广泛接受的理论。第一个“打击”是肝细胞中的脂肪积累,这标志着NASH发展的第一阶段。第二个“打击”是炎症细胞因子、氧化应激或内毒素等加重因素,这些因素会导致肝细胞损伤13。NASH治疗的一个主要问题是缺乏有效的药物,通常建议通过饮食和锻炼减肥进行调理,然而,这种方法的有效性尚存在争议14

    NAFLD常伴随体质量和血清TC、TG等生化指标改变,肝细胞可以葡萄糖为原料合成TG,也可利用食物及脂肪组织动员的脂肪酸合成TG,TG与TC、磷脂、蛋白等结合而形成极低密度脂蛋白(TG是其主要成分),极低密度脂蛋白进入血液或储存在脂滴中,当脂肪酸供应过量时可作为脂肪毒性物质产生的底物引起内质网应激和肝细胞损伤,导致游离脂肪酸氧化和极低密度脂蛋白减少,TG运出肝细胞减少,导致TG在肝细胞基质代谢过程中脂质沉积,加重肝脏的脂肪变性,诱发NAFLD的病理形成15。因此检测血脂TC、TG的水平,可作为评估NAFLD病理进程的重要指标。本研究显示,Genistein给药后,血清中TC、TG水平较OVX组显著下降,证明Genistein可通过改善高脂饮食OVX小鼠高血脂症,延缓NAFLD的病理进程。同时,能降低卵巢摘除的NAFLD小鼠体质量及肝质量,并降低小鼠的肝脏系数,缓解肝细胞中的脂肪积累。

    在本研究中,OVX小鼠NAFLD模型再现了人类NAFLD的几种典型病因和组织病理学特征,如转氨酶异常、组织学表现为脂肪变性。在临床上,肝脂肪变性是NAFLD的标志性特征,同时伴随血清中AST、ALT水平升高16。AST/ALT比值也能反映肝炎患者的病理进程,实验中高脂饮食诱导的OVX小鼠模型与Sham组比较,AST上升了243.7%,ALT上升了165.7%,AST/ALT=1.47,结果表明OVX小鼠成功诱导产生中度、重度慢性脂肪肝。经过给予OVX小鼠不同剂量的Genistein,均出现抑制血清中AST、ALT水平上升的现象,表明Genistein对OVX小鼠肝细胞有良好的保护作用,减缓了NASH的发展。

    SREBP-1c是具有调控肝脏脂质代谢作用的固醇合成相关基因,是调控肝细胞内脂质蓄积的重要因子,可调节下游脂肪酸合成酶、乙酰辅酶A羧化酶等靶基因的表达从而调控机体脂代谢。SREBP-1c过度表达可导致肝细胞脂肪酸合成增加,促使三酰甘油、脂肪酸在肝细胞蓄积,诱发脂肪肝10。下调SREBP-1c的表达,进而抑制参与脂肪生成相关转录因子的表达,可减少脂肪酸的合成和脂质积累,改善肝脂肪病变17。PPARα是调控脂质代谢的重要转录因子,其参与脂肪酸摄取、转运、β氧化、脂质合成、酮体生成和脂蛋白与胆固醇代谢等过程。激活PPARα可减少氧化应激以及IL-6、TNF-α等炎症因子释放,甚至增加脂质自噬以减少肝脏脂肪堆积,改善NAFLD10。本研究显示,Genistein可以降低SREBP-1c表达、升高PPARα表达,改善脂肪生产与脂质代谢。

    该方向的课题研究多以NAFLD模型为基础,本研究针对不同患者群体,采用OVX小鼠NAFLD模型模拟绝经后妇女NAFLD,证实Genstein可改善OVX小鼠NAFLD的肝功能,调节脂质合成与代谢,延缓高脂饮食引起的NAFLD症状,认为Genstein对绝经后妇女的NAFLD具有改善作用。

  • 图  1  各组小鼠胰腺组织的病理变化(HE染色,×200)

    Figure  1.  Pathological changes of the pancreatic tissue of mice in each group(HE,×200)

    图  2  各组小鼠NLRP3、TLR4、NF-κB蛋白表达水平 (免疫组化染色,×400)

    Figure  2.  NLRP3, TLR4, and NF-κB protein expression in each group of mice (immunohistochemistry, ×400)

    图  3  各组小鼠NLRP3/TLR4/NF-κB信号通路相关蛋白的表达

    Figure  3.  Expression of NLRP3/TLR4/NF-κB signaling pathway related proteins in each group of mice

    表  1  引物序列

    Table  1.   Primer sequence

    基因 引物序列(5′-3′) 产物长度(bp)
    NLRP3 F1: TGGACCAGGTTCAGTGTGTT 120
    R1: TCCGGTTGGTGCTTAGACT
    TLR4 F1: ACCTGGAATGGGAGGACAAT 130
    R1: GTCCAAGTTGCCGTTTCTTG
    NF-κB F1: GAACCAGGGTGTGTCCATGT 180
    R1: TCCGCAATGGAGGAGAAGTC
    GAPDH F1: GGCCTCCAAGGAGTAAGAAA 141
    R1: GCCCCTCCTGTTATTATGG
    下载: 导出CSV

    表  2  各组小鼠血清炎症因子表达水平比较

    Table  2.   Expression levels of serum inflammatory factors in different groups of mice

    组别 动物数(只) α-淀粉酶(mU/mL) 脂肪酶(mU/mL) IL-1β(pg/mL)
    空白组 6 188.42±82.13 49.41±17.09 22.83±7.40
    模型组 6 3 699.04±332.461) 717.42±74.551) 276.07±22.031)
    清解化攻方低剂量组 6 2 687.59±131.932)3)4) 536.00±39.562)3)4) 191.57±17.102)3)4)
    清解化攻方中剂量组 6 1 118.96±176.382) 217.18±51.752) 71.57±10.912)
    清解化攻方高剂量组 6 1 960.25±157.362)3)4) 356.62±32.402)3)4) 129.78±12.792)3)4)
    西药组 6 1 222.72±223.292) 219.45±42.922) 63.00±12.932)
    F 234.00 163.40 249.30
    P <0.01 <0.01 <0.01
    组别 动物数(只) IL-6(pg/mL) IL-8(pg/mL) IL-18(pg/mL) TNF-α(pg/mL)
    空白组 6 34.03±18.72 37.55±8.04 24.10±15.47 18.43±9.61
    模型组 6 392.98±31.331) 384.76±53.471) 415.29±50.401) 263.60±21.411)
    清解化攻方低剂量组 6 333.47±17.132)3)4) 262.17±26.202)3)4) 321.47±29.002)3)4) 193.72±18.662)3)4)
    清解化攻方中剂量组 6 135.49±29.012)3) 123.77±28.292) 146.80±22.072) 82.62±19.402)
    清解化攻方高剂量组 6 246.41±24.382)3)4) 193.70±10.592)3)4) 223.70±23.802)3)4) 139.07±13.932)3)4)
    西药组 6 188.41±23.262) 99.69±29.232) 117.87±21.582) 79.67±27.562)
    F 172.30 105.40 142.60 126.70
    P <0.01 <0.01 <0.01 <0.01
    注:与空白组比较,1)P<0.05; 与模型组比较,2)P<0.05;与西药组比较,3)P<0.05;与清解化攻方中剂量组比较,4)P<0.05。
    下载: 导出CSV

    表  3  各组小鼠胰腺组织中NLRP3、TLR4、NF-κB蛋白表达平均光密度

    Table  3.   Average optical density of NLRP3, TLR4, and NF-κB protein expression in the pancreatic tissue of mice in each group

    组别 动物数(只) NLRP3 TLR4 NF-κB
    空白组 6 0.11±0.01 0.12±0.01 0.13±0.01
    模型组 6 0.23±0.011) 0.26±0.011) 0.24±0.011)
    清解化攻方低剂量组 6 0.20±0.012)3)4) 0.23±0.012)3)4) 0.21±0.012)3)4)
    清解化攻方中剂量组 6 0.14±0.012) 0.16±0.012)3) 0.15±0.012)3)
    清解化攻方高剂量组 6 0.17±0.012)3)4) 0.21±0.012)4) 0.19±0.012)3)4)
    西药组 6 0.13±0.012) 0.21±0.012) 0.17±0.012)
    F 153.20 195.50 255.40
    P <0.01 <0.01 <0.01
    注:与空白组比较,1)P<0.05; 与模型组比较,2)P<0.05;与西药组比较,3)P<0.05;与清解化攻方中剂量组比较,4)P<0.05。
    下载: 导出CSV

    表  4  各组小鼠NLRP3、TLR4、NF-κB mRNA表达情况比较

    Table  4.   Expression of NLRP3, TLR4 and NF-κB mRNA in different groups of mice

    组别 动物数(只) NLRP3 mRNA TLR4 mRNA NF-κB mRNA
    空白组 6 1.00±0.09 1.00±0.20 1.00±0.29
    模型组 6 6.92±0.291) 11.50±0.891) 7.37±0.481)
    清解化攻方低剂量组 6 5.34±0.512)3)4) 8.77±0.802)3)4) 5.23±0.282)3)4)
    清解化攻方中剂量组 6 2.81±0.332) 4.39±0.222) 3.05±0.362)
    清解化攻方高剂量组 6 3.71±0.272)4) 5.82±0.362)3)4) 4.41±0.092)3)4)
    西药组 6 2.88±0.492) 4.21±0.592) 2.95±0.342)
    F 101.30 123.10 131.60
    P <0.01 <0.01 <0.01
    注:与空白组比较,1)P<0.05; 与模型组比较,2)P<0.05;与西药组比较,3)P<0.05;与清解化攻方中剂量组比较,4)P<0.05。
    下载: 导出CSV
  • [1] IANNUZZI JP, KING JA, LEONG JH, et al. Global incidence of acute pancreatitis is increasing over time: A systematic review and meta-analysis[J]. Gastroenterology, 2022, 162( 1): 122- 134. DOI: 10.1053/j.gastro.2021.09.043.
    [2] TRIKUDANATHAN G, WOLBRINK DRJ, van SANTVOORT HC, et al. Current concepts in severe acute and necrotizing pancreatitis: An evidence-based approach[J]. Gastroenterology, 2019, 156( 7): 1994- 2007. DOI: 10.1053/j.gastro.2019.01.269.
    [3] SZATMARY P, GRAMMATIKOPOULOS T, CAI WH, et al. Acute pancreatitis: Diagnosis and treatment[J]. Drugs, 2022, 82( 12): 1251- 1276. DOI: 10.1007/s40265-022-01766-4.
    [4] de-MADARIA E, BUXBAUM JL, MAISONNEUVE P, et al. Aggressive or moderate fluid resuscitation in acute pancreatitis[J]. N Engl J Med, 2022, 387( 11): 989- 1000. DOI: 10.1056/NEJMoa2202884.
    [5] PENG H, CHEN GZ, FANG LJ, et al. Clearing and resolving and purging method combined high strength training in early stage for severe acute pancreatitis[J]. Liaoning J Tradit Chin Med, 2019, 46( 5): 991- 994. DOI: 10.13192/j.issn.1000-1719.2019.05.032.

    彭鸿, 陈国忠, 方丽娇, 等. 清解化攻法合并高强度综合治疗在重症急性胰腺炎早期的作用[J]. 辽宁中医杂志, 2019, 46( 5): 991- 994. DOI: 10.13192/j.issn.1000-1719.2019.05.032.
    [6] YANG CN, LIU LJ, LIU KR, et al. Clinical observation on adjuvant therapy with Qing Jie Hua Gong Fang for hyperlipidemic acute pancreatitis with syndrome of intermingling blood stasis and toxin[J]. Guangxi Med J, 2021, 43( 24): 2928- 2932. DOI: 10.11675/j.issn.0253-4304.2021.24.08.

    杨成宁, 刘礼剑, 刘锟荣, 等. 清解化攻方辅助治疗瘀毒互结型高脂血症性急性胰腺炎的临床观察[J]. 广西医学, 2021, 43( 24): 2928- 2932. DOI: 10.11675/j.issn.0253-4304.2021.24.08.
    [7] QIN BJ, TANG XP, YANG X, et al. The biological information and experimental verification of studying on QingJie HuaGong decoction inhibiting inflammatory response of SAP model rats induced by cerulein based on TLR4/NF-‍κB/MYD88 pathway[J]. Chin Pharmacol Bull, 2022, 38( 6): 935- 944. DOI: 10.12360/CPB202109004.

    秦百君, 唐曦平, 杨昕, 等. 基于TLR4/NF-κB/MyD88通路探讨清解化攻方抑制雨蛙素诱导重症急性胰腺炎模型大鼠炎症反应的生信分析及实验验证[J]. 中国药理学通报, 2022, 38( 6): 935- 944. DOI: 10.12360/CPB202109004.
    [8] QIN BJ, YANG X, TANG XP, et al. Mechanism of Qingjie Huagong Decoction inhibiting inflammatory response in rats with severe acute pancreatitis based on transcriptome high-throughput sequencing[J]. China J Tradit Chin Med Pharm, 2022, 37( 5): 2941- 2946.

    秦百君, 杨昕, 唐曦平, 等. 基于转录组高通量测序探讨清解化攻方抑制重症急性胰腺炎大鼠炎症反应的机制[J]. 中华中医药杂志, 2022, 37( 5): 2941- 2946.
    [9] YANG X, QIN BJ, TANG XP, et al. Study on the protective effect of Qingjiehuajifang on intestinal mucosal barrier in rats with severe acute pancreatitis by regulating HMGB1/TLR9/NF-κB signaling pathway[J]. Lishizhen Med Mater Med Res, 2022, 33( 10): 2346- 2349.

    杨昕, 秦百君, 唐曦平, 等. 清解化攻方调控HMGB1/TLR9/NF-κB信号通路对重症急性胰腺炎大鼠肠黏膜屏障保护作用的研究[J]. 时珍国医国药, 2022, 33( 10): 2346- 2349.
    [10] ZAAFAR D, KHALIL HMA, RASHEED RA, et al. Hesperetin mitigates sorafenib-induced cardiotoxicity in mice through inhibition of the TLR4/NLRP3 signaling pathway[J]. PLoS One, 2022, 17( 8): e0271631. DOI: 10.1371/journal.pone.0271631.
    [11] ZHANG MJ, YAO WY, QIAO MM, et al. Establishing severe acute pancreatitis model on rats by retrograde injection of sodium taurocholate into biliopancreatic duct through duodenal wall[J]. J Shanghai Jiao Tong Univ Med Sci, 2006, 26( 5): 488- 490. DOI: 10.3969/j.issn.1674-8115.2006.05.014.

    张明钧, 姚玮艳, 乔敏敏, 等. 肠壁穿刺逆行胰胆管注射牛黄胆酸钠重症急性胰腺炎造模[J]. 上海交通大学学报(医学版), 2006, 26( 5): 488- 490. DOI: 10.3969/j.issn.1674-8115.2006.05.014.
    [12] LIU RX, QI HY, WANG J, et al. Ulinastatin activates the renin-angiotensin system to ameliorate the pathophysiology of severe acute pancreatitis[J]. J Gastroenterol Hepatol, 2014, 29( 6): 1328- 1337. DOI: 10.1111/jgh.12584.
    [13] SU YR, HONG YP, MEI FC, et al. High-fat diet aggravates the intestinal barrier injury via TLR4-RIP3 pathway in a rat model of severe acute pancreatitis[J]. Mediators Inflamm, 2019, 2019: 2512687. DOI: 10.1155/2019/2512687.
    [14] ZHENG Z, DING YX, QU YX, et al. A narrative review of acute pancreatitis and its diagnosis, pathogenetic mechanism, and management[J]. Ann Transl Med, 2021, 9( 1): 69. DOI: 10.21037/atm-20-4802.
    [15] HE J, YU S, ZHANG J. Value of serum interleukin-6 and tumor necrosis factor-α in early diagnosis of severe acute pancreatitis[J]. J Clin Hepatol, 2023, 39( 7): 1657- 1664. DOI: 10.3969/j.issn.1001-5256.2023.07.020.

    何健, 俞隼, 张静. 血清IL-6和TNF-α对重症急性胰腺炎的早期诊断价值分析[J]. 临床肝胆病杂志, 2023, 39( 7): 1657- 1664. DOI: 10.3969/j.issn.1001-5256.2023.07.020.
    [16] QIN BJ, TANG XP, YANG X, et al. Study on the effects of Qingjie huagong decoction on the regulation of intestinal flora and intestinal mucosal barrier in severe acute pancreatitis model rats[J]. China Pharm, 2022, 33( 15): 1825- 1832. DOI: 10.6039/j.issn.1001-0408.2022.15.07.

    秦百君, 唐曦平, 杨昕, 等. 清解化攻方调节重症急性胰腺炎模型大鼠肠道菌群及对肠黏膜屏障的影响[J]. 中国药房, 2022, 33( 15): 1825- 1832. DOI: 10.6039/j.issn.1001-0408.2022.15.07.
    [17] LI XY, HE C, LI NS, et al. The interplay between the gut microbiota and NLRP3 activation affects the severity of acute pancreatitis in mice[J]. Gut Microbes, 2020, 11( 6): 1774- 1789. DOI: 10.1080/19490976.2020.1770042.
    [18] SENDLER M, van den BRANDT C, GLAUBITZ J, et al. NLRP3 inflammasome regulates development of systemic inflammatory response and compensatory anti-inflammatory response syndromes in mice with acute pancreatitis[J]. Gastroenterology, 2020, 158( 1): 253- 269. DOI: 10.1053/j.gastro.2019.09.040.
    [19] YE YZ, JIN T, ZHANG X, et al. Meisoindigo protects against focal cerebral ischemia-reperfusion injury by inhibiting NLRP3 inflammasome activation and regulating microglia/macrophage polarization via TLR4/NF-κB signaling pathway[J]. Front Cell Neurosci, 2019, 13: 553. DOI: 10.3389/fncel.2019.00553.
    [20] LI G, WU XJ, YANG L, et al. TLR4-mediated NF-κB signaling pathway mediates HMGB1-induced pancreatic injury in mice with severe acute pancreatitis[J]. Int J Mol Med, 2016, 37( 1): 99- 107. DOI: 10.3892/ijmm.2015.2410.
    [21] HOU CQ, ZHU XL, SHI CY, et al. Iguratimod(T-614) attenuates severe acute pancreatitis by inhibiting the NLRP3 inflammasome and NF-κB pathway[J]. Biomed Pharmacother, 2019, 119: 109455. DOI: 10.1016/j.biopha.2019.109455.
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  488
  • HTML全文浏览量:  464
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-02
  • 录用日期:  2023-07-24
  • 出版日期:  2024-02-19
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

/

返回文章
返回