中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

去乙酰化酶Sirtuins家族与放射性肝病的关系

宗也凯 刘江凯

李志国, 马浔, 叶永安, 等. 基于mTOR/HIF-1α/VEGF信号通路探讨抗纤抑癌方对肝癌前病变大鼠模型的调控作用[J]. 临床肝胆病杂志, 2024, 40(10): 2049-2054. DOI: 10.12449/JCH241019.
引用本文: 李志国, 马浔, 叶永安, 等. 基于mTOR/HIF-1α/VEGF信号通路探讨抗纤抑癌方对肝癌前病变大鼠模型的调控作用[J]. 临床肝胆病杂志, 2024, 40(10): 2049-2054. DOI: 10.12449/JCH241019.
LI ZG, MA X, YE YA, et al. Regulatory effect of Kangxian Yiai Prescription in a rat model of precancerous lesions of liver cancer: A study based on the mTOR/HIF-1α/VEGF signaling pathway[J]. J Clin Hepatol, 2024, 40(10): 2049-2054. DOI: 10.12449/JCH241019.
Citation: LI ZG, MA X, YE YA, et al. Regulatory effect of Kangxian Yiai Prescription in a rat model of precancerous lesions of liver cancer: A study based on the mTOR/HIF-1α/VEGF signaling pathway[J]. J Clin Hepatol, 2024, 40(10): 2049-2054. DOI: 10.12449/JCH241019.

去乙酰化酶Sirtuins家族与放射性肝病的关系

DOI: 10.12449/JCH240233
基金项目: 

国家自然科学基金 (U1504825);

河南省中医药拔尖人才项目 (CZ20262-19);

河南省特色骨干学科中医学学科建设项目 (STG-ZYX04-202133)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:宗也凯负责论文设计,撰写论文;刘江凯参与论文指导。
详细信息
    通信作者:

    刘江凯, 13592553982@126.com (ORCID: 0000-0002-1529-5089)

Association between deacetylase Sirtuins and radiation-induced liver disease

Research funding: 

National Natural Science Foundation of China (U1504825);

Henan TCM Top-Notch Talent Program (CZ20262-19);

Construction Project of Traditional Chinese Medicine in Henan Province (STG-ZYX04-202133)

More Information
  • 摘要: 放射性肝病(RILD)或称放射性肝炎,是一种由辐射引起的亚急性肝损伤。去乙酰化酶家族Sirtuins(SIRTs)作为衰老相关研究的焦点具有DNA修复和染色质调节等分子功能,是基因组和表观基因组稳定性的枢纽。辐射诱导的肝脏DNA损伤和反应是RILD主要的生理病理过程,这与SIRTs表征的功能相似。本文简述了SIRTs蛋白家族的结构和功能,回顾了放射治疗的物理生理学基本概念及进展,主要从放射生物学角度分析了SIRTs与RILD二者的内在关系,指出SIRTs作为RILD防治靶点的可能性。

     

  • 肝癌作为全球范围内发病率和死亡率较高的恶性肿瘤,其发病机制涉及病毒感染、酒精滥用、肥胖以及不洁饮食等1-2。肝癌前病变与肝癌的发生密切关联3。肝癌前病变缺氧微环境的形成与能量代谢异常密切相关。糖酵解在缺氧条件下发挥着关键作用,与肿瘤的发生和发展密切相关4-5。哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)/缺氧诱导因子1α(hypoxia inducible factor1α,HIF-1α)/血管内皮生长因子(vascular endothelial growth factor,VEGF)信号通路作为细胞适应缺氧环境的重要调控网络,近年引起广泛关注。

    mTOR参与细胞生长、增殖和代谢的调控6。在低氧环境中,mTOR与HIF-1α协同作用,共同参与调控细胞对缺氧的适应性反应7-8。HIF-1α通过调控多个基因的表达,包括VEGF,参与调节血管生成、细胞存活和炎症反应等生物学过程9-10。VEGF作为一个重要的促血管生成因子,在包括肝癌在内的多种肿瘤的血管生成中发挥关键作用11-12

    抗纤抑癌方是叶永安教授治疗肝癌及其癌前病变的经验方,临床疗效显著13-14。然而,其在分子水平上对肝癌前病变的调控机制仍然不清楚。因此,本研究探讨抗纤抑癌方对mTOR/HIF-1α/VEGF信号通路的调控作用,深入研究其对肝癌前病变的影响,以期为肝癌前病变的预防和治疗提供新的理论与实验基础。

    40只健康雄性Wistar大鼠(SPF级),体质量(175±20)g,由北京维通利华公司购得[实验动物生产许可证:SCXK(京)2016-0006]。在东直门医院动物房(SPF级)进行常规饲养(恒温、恒湿、自由饮食饮水),实验动物使用许可证:SYXK(京)2015-0001。

    抗纤抑癌方颗粒剂成分包括柴胡、山药、白芥子、黄芪等,由南宁培力药业供应,通过质控鉴定确保为同一批次。复方鳖甲软肝片(批准文号:Z19991011,中国内蒙古福瑞中蒙药科技公司生产);二乙基亚硝胺(N0756,美国Sigma公司)。

    Anti-HIF1α (ab1,英国abcam公司),Anti-PKM2 (3198S,美国CST公司),Anti-mTOR (2972S,美国CST公司),Anti-VEGF (ab53465,英国abcam公司),Anti-GLUT1 (1293S,美国CST公司),Anti-GSTPi (ab53943,英国abcam公司),GAPDH(ab8245,英国abcam公司),Trizol(R401-1,南京诺唯赞生物科技有限公司),M-MLV反转录试剂盒(A2791,美国Promega公司),Real-time PCR扩增试剂盒(Q121-02,南京诺唯赞限公司),DAB显色试剂盒(DA1010,北京索莱宝公司)。Western Blot电泳系统(美国Bio-rad公司),CFX96 Q-PCR仪(美国Bio-rad公司),NanoDrop分光光度计(美国Malcom公司),PCR引物由美国life technology公司代工合成。

    1.4.1   分组与模型制备

    采用随机数字表法,分为正常组、模型组、抗纤抑癌方组和鳖甲软肝组,每组10只。制备基于肝硬化基础上的肝癌前病变动物模型15。正常组大鼠腹腔注射生理盐水,剂量为0.4 mL/100 g,其他3组大鼠以50 mg/kg剂量腹腔注射二乙基亚硝胺,每周1次,连续14周后成功制备模型。

    1.4.2   给药

    造模后第9周,抗纤抑癌方组和鳖甲软肝组大鼠开始药物灌胃,剂量分别相当于抗纤抑癌方、复方鳖甲软肝片临床剂量的7倍。每次用药体积均按1 mL/100 g的剂量给药,每天1次,连续给药,共6周。正常组和模型组大鼠灌胃对应量的蒸馏水,每天1次,连续给药,共6周。

    1.4.3   标本采集

    在实验的第14周末,停止给药24 h后,以0.33 mL/100 g的剂量给予10%水合氯醛腹腔注射麻醉,从腹主动脉采集大鼠血液。在距离最大叶肝脏约1 cm处,取得约1 cm×1 cm×0.3 cm的组织样本,随后浸泡于4%多聚甲醛溶液中固定。同时,迅速将部分肝组织存放于液氮中,以备进行实时荧光定量PCR和Western Blot分析。

    1.4.4   免疫组化法检测大鼠肝组织中胎盘型谷胱甘肽转移酶(GST-Pi)表达

    将切片置于二甲苯中浸泡脱蜡,浸入乙醇溶液中水化;置于抗原修复液中煮沸修复;滴加3% H2O2溶液以及一抗(稀释度1∶150),放入湿盒4 ℃过夜;加二抗以及DAB显色,显微镜下观察,苏木素复染,细胞核变蓝终止;按常规进行脱水、透明、封片。

    1.4.5   实时荧光定量PCR法检测大鼠肝组织中GLUT1、PKM2、mTOR、HIF-1α和VEGF的mRNA表达

    使用Trizol提取组织中总RNA,用二步法进行mRNA表达的检测;按试剂盒说明书进行反转录,合成cDNA,以cDNA为模板进行实时荧光定量PCR反应。反应条件:预变性95 ℃ 4 min、95 ℃ 10 s、60 ℃ 10 s、72 ℃ 20 s,39个循环。以GAPDH作为内参照,采用2-ΔΔCT法计算mRNA相对表达量。引物序列见表1

    表  1  实时荧光定量PCR引物序列
    Table  1.  Real time fluorescence quantitative PCR primer sequence
    引物名称 引物序列(5'-3') 扩增产物长度(bp)
    Rat-mTOR F:TGTCAGCCTGTCAGAATCCA 74
    R:CCATGTTGACCAGCATTTCA
    Rat-HIF-1α F:TGGAAGCACTAGACAAAGCTCA 78
    R:TTGACCATATCGCTGTCCAC
    Rat-VEGF F:GAGTTAAACGAACGTACTTGCAGA 90
    R:TCTAGTTCCCGAAACCCTGA
    Rat-PKM2 F:GGAGAAGTGCGATGAGAACAT 141
    R:TCTGTCACCAGGTAGTCAGCAC
    Rat-GLUT1 F:GTATCCTGTTGCCCTTCTGC 95
    R:TCGAAGCTTTTTCAGCACAC
    GAPDH F:TCATTGACCTCAACTACATGG 131
    R:TCGCTCCTGGAAGATGGTG
    下载: 导出CSV 
    | 显示表格
    1.4.6   Western Blot法检测大鼠肝组织GLUT1、PKM2、mTOR、HIF-1α和VEGF的蛋白表达

    用蛋白裂解液于冰上裂解组织,按BCA蛋白浓度测定试剂盒测定蛋白浓度;将蛋白样品分装到离心管中,加上样缓冲液,煮沸5 min;制备12% SDS-PAGE分离胶和5%浓缩胶,上样,电泳4~5 h,转膜,用5%脱脂奶粉室温封闭,加入一抗4 ℃封闭过夜,孵育二抗1 h;ECL发光显影,用Image J软件对各条带的灰度值进行分析。

    采用SPSS 25.0统计软件进行数据分析。计量资料多组间比较采用单因素方差分析或Kruskal-Wallis H秩和检验,进一步两两比较采用LSD-t检验。P<0.05为差异有统计学意义。

    2.1.1   GST-Pi免疫组化

    GST-Pi阳性灶为胞浆中棕黄色不规则形团块。正常组未见明显阳性表达,模型组则见较多阳性灶,肝小叶内及汇管区周围均可见,染色深;抗纤抑癌及鳖甲软肝组的阳性灶较模型组减少,染色较浅(图1)。

    注: a,正常组;b,模型组;c,鳖甲软肝组;d,抗纤抑癌组。
    图  1  大鼠肝组织GST-Pi免疫组化(×400)
    Figure  1.  Rat liver tissue GST-Pi immunohistochemistry (×400)
    2.1.2   GST-Pi蛋白表达

    与正常组比较,大鼠肝组织GST-Pi蛋白在模型组的表达显著升高(P<0.01);与模型组比较,抗纤抑癌组GST-Pi蛋白的表达水平显著降低(P<0.05)(图2)。结果表明抗纤抑癌方的应用显著降低了大鼠GST-Pi的表达。

    图  2  各组大鼠肝组织GST-Pi蛋白表达情况
    Figure  2.  Expression of GST-Pi Protein in rat liver tissues
    2.2.1   GLUT1和PKM2 mRNA表达

    与正常组比较,模型组大鼠肝组织GLUT1及PKM2 mRNA的表达均显著升高(P值均<0.01);与模型组比较,鳖甲软肝组及抗纤抑癌组GLUT1 mRNA的表达均显著降低(P值均<0.05)(图3)。

    图  3  大鼠肝组织GLUT1和PKM2的mRNA表达
    Figure  3.  mRNA expression of GLUT1 and PKM2 in rat liver tissues
    2.2.2   GLUT1和PKM2蛋白表达

    与正常组比较,模型组大鼠肝组织GLUT1及PKM2的蛋白表达均显著升高(P值均<0.01);与模型组比较,鳖甲软肝组和抗纤抑癌组GLUT1及PKM2的蛋白表达无统计学差异(P值均>0.05);鳖甲软肝组与抗纤抑癌组GLUT1和PKM2的蛋白表达无显著差异(P值均>0.05)(图4)。

    图  4  大鼠肝组织GLUT1和PKM2的蛋白表达
    Figure  4.  Protein expression of GLUT1 and PKM2 in rat liver tissues
    2.3.1   mTOR、HIF-1α、VEGF mRNA的表达

    与正常组比较,模型组大鼠肝组织mTOR、HIF-1α及VEGF的mRNA表达均显著升高(P值均<0.01);与模型组比较,鳖甲软肝组mTOR及VEGF的mRNA的表达均显著降低(P值均<0.05),抗纤抑癌组mTOR及VEGF mRNA的表达亦显著降低(P值均<0.01)。鳖甲软肝组与抗纤抑癌组mTOR、HIF-1α、VEGF的mRNA的表达无显著差异(P值均>0.05)(图5)。

    图  5  大鼠肝组织mTOR、HIF-1α、VEGF的 mRNA表达
    Figure  5.  mRNA expression of mTOR, HIF-1α, and VEGF in rat liver tissues
    2.3.2   mTOR、HIF-1α、VEGF蛋白的表达

    与正常组比较,模型组大鼠肝组织mTOR、HIF-1α、VEGF的蛋白表达均显著升高(P值均<0.01);与模型组相比,鳖甲软肝组只有mTOR的蛋白表达显著降低(P<0.01),抗纤抑癌组mTOR、 HIF-1α、VEGF的蛋白表达均显著降低(P值均<0.05);与鳖甲软肝组相比,抗纤抑癌组mTOR的蛋白表达较高(P<0.01),HIF-1α、VEGF的蛋白表达无明显差异(图6)。

    图  6  大鼠肝组织mTOR、HIF-1α、VEGF蛋白表达
    Figure  6.  Protein expression of mTOR, HIF-1α, and VEGF in rat liver tissues

    中医药在肝癌前病变的防治中发挥积极作用。临床研究16-18表明,中药单体及其组分发挥抗炎和抗氧化、调节免疫、抑制肿瘤血管生成、抑制细胞增殖等作用。中药复方通过抑制上皮间质转化、抑制血管生成,抑制细胞增殖、调节自噬、诱导细胞凋亡、阻滞细胞周期和调节免疫功能等作用有效预防肝细胞癌变16。课题组前期研究13-1419表明抗纤抑癌方可抑制肝细胞异常增生。

    研究20-22表明,靶向mTOR/HIF-1α/VEGF是治疗横纹肌肉瘤、卵巢透明细胞腺癌和乳腺癌的有效策略。在肝癌方面,索拉非尼通过抑制mTOR相关信号通路,进而抑制HIF-1α的转录和蛋白表达,下调VEGF的表达15。本研究评估了抗纤抑癌方对mTOR/HIF-1α/VEGF途径的影响,实时荧光定量PCR及Western Blot均证实抗纤抑癌方可抑制mTOR、HIF-1α和VEGF的表达。

    mTOR/HIF-1α/VEGF通路在肝癌前病变的血管生成中发挥关键作用。肝癌前病变大鼠肝组织中mTOR的高表达与HIF-1α和VEGF上调提示该信号通路的活化。这一结果强调了mTOR/HIF-1α/VEGF通路在肝癌前病变血管生成中的潜在作用,为相关治疗策略的制订提供了新的见解。

    此外,本研究观察到抗纤抑癌方可明显降低PKM2和GLUT-1及其上游mTOR/HIF-1α的蛋白表达水平,提示在缺氧环境的刺激下,mTOR/HIF-1α信号通路异常活化,上调糖酵解相关的基因,促进PKM2、GLUT-1的表达。本研究表明糖酵解是大鼠肝癌前病变缺氧微环境的代谢特征,参与肝癌前病变的进展,因此抑制糖酵解,改善局部微环境,可阻断具有恶变潜能的癌前病变组织。

    本研究的局限性:首先,抗纤抑癌方的主要生物活性成分有待进一步研究确定。其次,仅在体内实验对抗纤抑癌方治疗肝癌前病变的作用机制进行了探讨,尚未进行细胞实验对其机制进行进一步评估验证。

    综上所述,通过探讨抗纤抑癌方在肝癌前病变中的作用,揭示了其对mTOR/HIF-1α/VEGF信号通路的抑制效应,进一步确认了其在阻止肝癌前病变进展方面的潜在作用。为深入研究提供了有力支持,同时也为开发更为精准的肝癌前病变干预策略奠定了基础。有望通过深化对抗纤抑癌方机制的解析,推动更具前瞻性的治疗策略的发展,为肝癌前病变的有效干预提供新的方向和可能性。

  • 图  1  不同射线的组织深度-剂量分布

    Figure  1.  Tissue depth-dose profiles of different rays

  • [1] RUMGAY H, ARNOLD M, FERLAY J, et al. Global burden of primary liver cancer in 2020 and predictions to 2040[J]. J Hepatol, 2022, 77( 6): 1598- 1606. DOI: 10.1016/j.jhep.2022.08.021.
    [2] TOH MR, WONG EYT, WONG SH, et al. Global epidemiology and genetics of hepatocellular carcinoma[J]. Gastroenterology, 2023, 164( 5): 766- 782. DOI: 10.1053/j.gastro.2023.01.033.
    [3] LIEVENS Y, DEFOURNY N, CORRAL J, et al. How public health services pay for radiotherapy in Europe: An ESTRO-HERO analysis of reimbursement[J]. Lancet Oncol, 2020, 21( 1): e42- e54. DOI: 10.1016/S1470-2045(19)30794-6.
    [4] BASKAR R, ITAHANA K. Radiation therapy and cancer control in developing countries: Can we save more lives?[J]. Int J Med Sci, 2017, 14( 1): 13- 17. DOI: 10.7150/ijms.17288.
    [5] KOAY EJ, OWEN D, DAS P. Radiation-induced liver disease and modern radiotherapy[J]. Semin Radiat Oncol, 2018, 28( 4): 321- 331. DOI: 10.1016/j.semradonc.2018.06.007.
    [6] ZHOU YJ, TANG Y, LIU SJ, et al. Radiation-induced liver disease: Beyond DNA damage[J]. Cell Cycle, 2023, 22( 5): 506- 526. DOI: 10.1080/15384101.2022.2131163.
    [7] NAGARAJU GP, DARIYA B, KASA P, et al. Epigenetics in hepatocellular carcinoma[J]. Semin Cancer Biol, 2022, 86( Pt 3): 622- 632. DOI: 10.1016/j.semcancer.2021.07.017.
    [8] CANTÓ C, MENZIES KJ, AUWERX J. NAD(+) metabolism and the control of energy homeostasis: A balancing act between mitochondria and the nucleus[J]. Cell Metab, 2015, 22( 1): 31- 53. DOI: 10.1016/j.cmet.2015.05.023.
    [9] AVALOS JL, BOEKE JD, WOLBERGER C. Structural basis for the mechanism and regulation of Sir2 enzymes[J]. Mol Cell, 2004, 13( 5): 639- 648. DOI: 10.1016/s1097-2765(04)00082-6.
    [10] WANG M, LIN HN. Understanding the function of mammalian sirtuins and protein lysine acylation[J]. Annu Rev Biochem, 2021, 90: 245- 285. DOI: 10.1146/annurev-biochem-082520-125411.
    [11] MORENO-YRUELA C, BÆK M, MONDA F, et al. Chiral posttranslational modification to lysine ε-amino groups[J]. Acc Chem Res, 2022, 55( 10): 1456- 1466. DOI: 10.1021/acs.accounts.2c00115.
    [12] BHEDA P, JING H, WOLBERGER C, et al. The substrate specificity of sirtuins[J]. Annu Rev Biochem, 2016, 85: 405- 429. DOI: 10.1146/annurev-biochem-060815-014537.
    [13] PAN CC, KAVANAGH BD, DAWSON LA, et al. Radiation-associated liver injury[J]. Int J Radiat Oncol Biol Phys, 2010, 76( 3 Suppl): S94- S100. DOI: 10.1016/j.ijrobp.2009.06.092.
    [14] MUNOZ-SCHUFFENEGGER P, NG S, DAWSON LA. Radiation-induced liver toxicity[J]. Semin Radiat Oncol, 2017, 27( 4): 350- 357. DOI: 10.1016/j.semradonc.2017.04.002.
    [15] GUHA CD, KAVANAGH BD. Hepatic radiation toxicity: Avoidance and amelioration[J]. Semin Radiat Oncol, 2011, 21( 4): 256- 263. DOI: 10.1016/j.semradonc.2011.05.003.
    [16] General Office of National Health Commission. Standard for diagnosis and treatment of primary liver cancer(2022 edition)[J]. J Clin Hepatol, 2022, 38( 2): 288- 303. DOI: 10.3969/j.issn.1001-5256.2022.02.009.

    国家卫生健康委办公厅. 原发性肝癌诊疗指南(2022年版)[J]. 临床肝胆病杂志, 2022, 38( 2): 288- 303. DOI: 10.3969/j.issn.1001-5256.2022.02.009.
    [17] KIM J, JUNG Y. Radiation-induced liver disease: Current understanding and future perspectives[J]. Exp Mol Med, 2017, 49( 7): e359. DOI: 10.1038/emm.2017.85.
    [18] WEIGEL C, SCHMEZER P, PLASS C, et al. Epigenetics in radiation-induced fibrosis[J]. Oncogene, 2015, 34( 17): 2145- 2155. DOI: 10.1038/onc.2014.145.
    [19] DE LA PINTA ALONSO C. Radiation-induced liver disease in the era of SBRT: A review[J]. Expert Rev Gastroenterol Hepatol, 2020, 14( 12): 1195- 1201. DOI: 10.1080/17474124.2020.1814744.
    [20] DURANTE M, ORECCHIA R, LOEFFLER JS. Charged-particle therapy in cancer: Clinical uses and future perspectives[J]. Nat Rev Clin Oncol, 2017, 14( 8): 483- 495. DOI: 10.1038/nrclinonc.2017.30.
    [21] DURANTE M, FLANZ J. Charged particle beams to cure cancer: Strengths and challenges[J]. Semin Oncol, 2019, 46( 3): 219- 225. DOI: 10.1053/j.seminoncol.2019.07.007.
    [22] FOKAS E, KRAFT G, AN HX, et al. Ion beam radiobiology and cancer: Time to update ourselves[J]. Biochim Biophys Acta, 2009, 1796( 2): 216- 229. DOI: 10.1016/j.bbcan.2009.07.005.
    [23] WEI JL, WANG B, WANG HH, et al. Radiation-induced normal tissue damage: Oxidative stress and epigenetic mechanisms[J]. Oxid Med Cell Longev, 2019, 2019: 3010342. DOI: 10.1155/2019/3010342.
    [24] LOMAX ME, FOLKES LK, O’NEILL P. Biological consequences of radiation-induced DNA damage: Relevance to radiotherapy[J]. Clin Oncol, 2013, 25( 10): 578- 585. DOI: 10.1016/j.clon.2013.06.007.
    [25] MANGONI M, BORGHESI S, ARISTEI C, et al. Radiobiology of stereotactic radiotherapy[J]. Rep Pract Oncol Radiother, 2022, 27( 1): 57- 62. DOI: 10.5603/rpor.a2022.0005.
    [26] WEI YL, WANG Y, JIA YM, et al. Liver homeostasis is maintained by midlobular zone 2 hepatocytes[J]. Science, 2021, 371( 6532): eabb1625. DOI: 10.1126/science.abb1625.
    [27] LI TM, CAO YL, LI B, et al. The biological effects of radiation-induced liver damage and its natural protective medicine[J]. Prog Biophys Mol Biol, 2021, 167: 87- 95. DOI: 10.1016/j.pbiomolbio.2021.06.012.
    [28] HUANG RX, ZHOU PK. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer[J]. Signal Transduct Target Ther, 2020, 5( 1): 60. DOI: 10.1038/s41392-020-0150-x.
    [29] GONG LY, ZHANG YJ, LIU CC, et al. Application of radiosensitizers in cancer radiotherapy[J]. Int J Nanomedicine, 2021, 16: 1083- 1102. DOI: 10.2147/IJN.S290438.
    [30] XIE YX, ZHANG JH, YE S, et al. SirT1 regulates radiosensitivity of hepatoma cells differently under normoxic and hypoxic conditions[J]. Cancer Sci, 2012, 103( 7): 1238- 1244. DOI: 10.1111/j.1349-7006.2012.02285.x.
    [31] LAEMMLE A, LECHLEITER A, ROH V, et al. Inhibition of SIRT1 impairs the accumulation and transcriptional activity of HIF-1α protein under hypoxic conditions[J]. PLoS One, 2012, 7( 3): e33433. DOI: 10.1371/journal.pone.0033433.
    [32] CHEN XJ, HUAN HB, LIU CG, et al. Deacetylation of β-catenin by SIRT1 regulates self-renewal and oncogenesis of liver cancer stem cells[J]. Cancer Lett, 2019, 463: 1- 10. DOI: 10.1016/j.canlet.2019.07.021.
    [33] CUNEO KC, MORGAN MA, DAVIS MA, et al. Wee1 kinase inhibitor AZD1775 radiosensitizes hepatocellular carcinoma regardless of TP53 mutational status through induction of replication stress[J]. Int J Radiat Oncol Biol Phys, 2016, 95( 2): 782- 790. DOI: 10.1016/j.ijrobp.2016.01.028.
    [34] de MATTEIS S, SCARPI E, GRANATO AM, et al. Role of SIRT-3, p-mTOR and HIF-1α in hepatocellular carcinoma patients affected by metabolic dysfunctions and in chronic treatment with metformin[J]. Int J Mol Sci, 2019, 20( 6): 1503. DOI: 10.3390/ijms20061503.
    [35] FANG Y, ZHAN YZ, XIE YW, et al. Integration of glucose and cardiolipin anabolism confers radiation resistance of HCC[J]. Hepatology, 2022, 75( 6): 1386- 1401. DOI: 10.1002/hep.32177.
    [36] LIU Y, QI M, LIU LC, et al. Blocking Adipor1 enhances radiation sensitivity in hepatoma carcinoma cells[J]. Arch Biochem Biophys, 2022, 718: 109152. DOI: 10.1016/j.abb.2022.109152.
    [37] BAMODU OA, CHANG HL, ONG JR, et al. Elevated PDK1 expression drives PI3K/AKT/MTOR signaling promotes radiation-resistant and dedifferentiated phenotype of hepatocellular carcinoma[J]. Cells, 2020, 9( 3): 746. DOI: 10.3390/cells9030746.
    [38] XU G, ZHU LH, WANG Y, et al. Stattic enhances radiosensitivity and reduces radio-induced migration and invasion in HCC cell lines through an apoptosis pathway[J]. Biomed Res Int, 2017, 2017: 1832494. DOI: 10.1155/2017/1832494.
    [39] TAO RD, COLEMAN MC, PENNINGTON JD, et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress[J]. Mol Cell, 2010, 40( 6): 893- 904. DOI: 10.1016/j.molcel.2010.12.013.
    [40] REN T, ZHANG H, WANG J, et al. MCU-dependent mitochondrial Ca(2+) inhibits NAD(+)/SIRT3/SOD2 pathway to promote ROS production and metastasis of HCC cells[J]. Oncogene, 2017, 36( 42): 5897- 5909. DOI: 10.1038/onc.2017.167.
    [41] LIU Y, LIU YL, CHENG W, et al. The expression of SIRT3 in primary hepatocellular carcinoma and the mechanism of its tumor suppressing effects[J]. Eur Rev Med Pharmacol Sci, 2017, 21( 5): 978- 998.
    [42] LIU XZ, REN SC, LI ZZ, et al. Sirt6 mediates antioxidative functions by increasing Nrf2 abundance[J]. Exp Cell Res, 2023, 422( 1): 113409. DOI: 10.1016/j.yexcr.2022.113409.
    [43] FURUKAWA A, TADA-OIKAWA S, KAWANISHI S, et al. H2O2 accelerates cellular senescence by accumulation of acetylated p53 via decrease in the function of SIRT1 by NAD+ depletion[J]. Cell Physiol Biochem, 2007, 20( 1-4): 45- 54. DOI: 10.1159/000104152.
    [44] YE TJ, LU YL, YAN XF, et al. High mobility group box-1 release from H2O2-injured hepatocytes due to sirt1 functional inhibition[J]. World J Gastroenterol, 2019, 25( 36): 5434- 5450. DOI: 10.3748/wjg.v25.i36.5434.
    [45] LIU JX, LI D, ZHANG T, et al. SIRT3 protects hepatocytes from oxidative injury by enhancing ROS scavenging and mitochondrial integrity[J]. Cell Death Dis, 2017, 8( 10): e3158. DOI: 10.1038/cddis.2017.564.
    [46] MELIN N, YARAHMADOV T, SANCHEZ-TALTAVULL D, et al. A new mouse model of radiation-induced liver disease reveals mitochondrial dysfunction as an underlying fibrotic stimulus[J]. JHEP Rep, 2022, 4( 7): 100508. DOI: 10.1016/j.jhepr.2022.100508.
    [47] REN JH, CHEN X, ZHOU L, et al. Protective role of Sirtuin3(SIRT3) in oxidative stress mediated by hepatitis B virus X protein expression[J]. PLoS One, 2016, 11( 3): e0150961. DOI: 10.1371/journal.pone.0150961.
    [48] HUANG RX, ZHOU PK. DNA damage repair: Historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy[J]. Signal Transduct Target Ther, 2021, 6( 1): 254. DOI: 10.1038/s41392-021-00648-7.
    [49] PALACIOS JA, HERRANZ D, DE BONIS ML, et al. SIRT1 contributes to telomere maintenance and augments global homologous recombination[J]. J Cell Biol, 2010, 191( 7): 1299- 1313. DOI: 10.1083/jcb.201005160.
    [50] GAO Y, TAN J, JIN JY, et al. SIRT6 facilitates directional telomere movement upon oxidative damage[J]. Sci Rep, 2018, 8( 1): 5407. DOI: 10.1038/s41598-018-23602-0.
    [51] JEONG SM, XIAO CY, FINLEY LWS, et al. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism[J]. Cancer Cell, 2013, 23( 4): 450- 463. DOI: 10.1016/j.ccr.2013.02.024.
    [52] MAO ZY, HINE C, TIAN X, et al. SIRT6 promotes DNA repair under stress by activating PARP1[J]. Science, 2011, 332( 6036): 1443- 1446. DOI: 10.1126/science.1202723.
    [53] VAN METER M, SIMON M, TOMBLINE G, et al. JNK phosphorylates SIRT6 to stimulate DNA double-strand break repair in response to oxidative stress by recruiting PARP1 to DNA breaks[J]. Cell Rep, 2016, 16( 10): 2641- 2650. DOI: 10.1016/j.celrep.2016.08.006.
    [54] VAZQUEZ BN, THACKRAY JK, SIMONET NG, et al. SIRT7 promotes genome integrity and modulates non-homologous end joining DNA repair[J]. EMBO J, 2016, 35( 14): 1488- 1503. DOI: 10.15252/embj.201593499.
    [55] REZAZADEH S, YANG D, BIASHAD S ALI, et al. SIRT6 mono-ADP ribosylates KDM2A to locally increase H3K36me2 at DNA damage sites to inhibit transcription and promote repair[J]. Aging, 2020, 12( 12): 11165- 11184. DOI: 10.18632/aging.103567.
    [56] CHEN Y, ZHANG HP, XU Z, et al. A PARP1-BRG1-SIRT1 axis promotes HR repair by reducing nucleosome density at DNA damage sites[J]. Nucleic Acids Res, 2019, 47( 16): 8563- 8580. DOI: 10.1093/nar/gkz592.
    [57] YAMAGATA K, KITABAYASHI I. Sirt1 physically interacts with Tip60 and negatively regulates Tip60-mediated acetylation of H2AX[J]. Biochem Biophys Res Commun, 2009, 390( 4): 1355- 1360. DOI: 10.1016/j.bbrc.2009.10.156.
    [58] LEE N, RYU HG, KWON JH, et al. SIRT6 depletion suppresses tumor growth by promoting cellular senescence induced by DNA damage in HCC[J]. PLoS One, 2016, 11( 11): e0165835. DOI: 10.1371/journal.pone.0165835.
    [59] SERRANO L, MARTÍNEZ-REDONDO P, MARAZUELA-DUQUE A, et al. The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation[J]. Genes Dev, 2013, 27( 6): 639- 653. DOI: 10.1101/gad.211342.112.
    [60] ZHANG WY, FENG YL, GUO QQ, et al. SIRT1 modulates cell cycle progression by regulating CHK2 acetylation-phosphorylation[J]. Cell Death Differ, 2020, 27( 2): 482- 496. DOI: 10.1038/s41418-019-0369-7.
    [61] LIU TZ, LIN YH, LENG WC, et al. A divergent role of the SIRT1-TopBP1 axis in regulating metabolic checkpoint and DNA damage checkpoint[J]. Mol Cell, 2014, 56( 5): 681- 695. DOI: 10.1016/j.molcel.2014.10.007.
  • 期刊类型引用(1)

    1. 王凤娇,顾超,胡沙,冯琴,郑儒娟,朱增燕,王文娟. 低剂量甲氨蝶呤联合索拉非尼对小鼠骨肉瘤移植瘤的影响及其机制. 吉林大学学报(医学版). 2025(01): 9-16 . 百度学术

    其他类型引用(0)

  • 加载中
图(1)
计量
  • 文章访问数:  483
  • HTML全文浏览量:  152
  • PDF下载量:  35
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-05-17
  • 录用日期:  2023-06-25
  • 出版日期:  2024-02-19
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

/

返回文章
返回