双重血浆分子吸附系统序贯血浆置换联合连续性肾脏替代疗法治疗慢加急性肝衰竭合并急性肾损伤的效果分析
DOI: 10.12449/JCH240319
Clinical efficacy of double plasma molecular absorption system and sequential plasma exchange combined with continuous renal replacement therapy in treatment of acute-on-chronic liver failure with acute kidney injury
-
摘要:
目的 观察双重血浆分子吸附系统(DPMAS)序贯血浆置换(PE)联合连续性肾脏替代疗法(CRRT)治疗慢加急性肝衰竭(ACLF)合并急性肾损伤(AKI)患者的临床效果。 方法 回顾性纳入2019年1月—2022年12月于贵州医科大学附属医院住院治疗的ACLF合并AKI的90例患者临床资料,依据不同的血液净化方式,分为DPMAS序贯PE联合CRRT组(观察组,n=31),DPMAS序贯PE组(对照组,n=59)。收集所有患者入院一般资料、血液净化治疗前后实验室指标,包括肝肾功能、凝血功能、炎症指标等,计算eGFR、MELD-Na评分。正态分布的计量资料两组间比较采用成组t检验;非正态分布的计量资料组内前后比较采用Wilcoxon符号秩和检验,两组间比较采用Mann-Whitney U检验。计数资料两组比较采用χ2检验或Fisher精确检验。 结果 观察组治疗有效率为48.4%(15/31),高于对照组治疗的有效率27.1%(16/59)(χ2=4.071,P=0.044)。两组血液净化方式均可有效改善TBil、ALT、AST、PTA、Scr、PCT、CRP、eGFR及MELD-Na评分(P值均<0.05);两组治疗后PLT及Hb均显著降低(P值均<0.05);而BUN、Alb、INR治疗前后差异均无统计学意义(P值均>0.05)。对照组与观察组的AST、Scr、PCT、eGFR、MELD-Na评分、Hb、PLT治疗前后差值比较,差异均有统计学意义(P值均<0.05)。 结论 DPMAS序贯PE联合CRRT模式可有效清除炎症介质,改善肾功能,稳定机体内环境,获得较好的临床疗效。 -
关键词:
- 慢加急性肝功能衰竭 /
- 急性肾损伤 /
- 血浆置换 /
- 双重血浆分子吸附系统 /
- 连续性肾脏替代疗法
Abstract:Objective To investigate the clinical efficacy of double plasma molecular adsorption system (DPMAS) and sequential plasma exchange (PE) combined with continuous renal replacement therapy (CRRT) in the treatment of patients with acute-on-chronic liver failure (ACLF) and acute kidney injury (AKI). Methods A retrospective analysis was performed for the clinical data of 90 patients with ACLF and AKI who were hospitalized in The Affiliated Hospital of Guizhou Medical University from January 2019 to December 2022, and according to the method for blood purification, they were divided into DPMAS sequential PE+CRRT group (observation group with 31 patients) and DPMAS sequential PE group (control group with 59 patients). General data on admission and laboratory markers before and after blood purification were collected from all patients, including hepatic and renal function, coagulation function, and inflammation markers, and estimated glomerular filtration rate (eGFR) and MELD combined with serum sodium concentration (MELD-Na) score were calculated. The independent-samples t test was used for comparison of normally distributed continuous data between two groups; the Wilcoxon rank sum test was used for comparison of non-normally distributed continuous data within each group before and after treatment, and the Mann-Whitney U test was used for comparison between two groups; the chi-square test or the Fisher’s exact test was used for comparison of categorical data between two groups. Results The observation group had a significantly higher response rate than the control group [48.4% (15/31) vs 27.1% (16/59), χ2=4.071, P=0.044]. The methods for blood purification in both groups could effectively improve total bilirubin, alanine aminotransferase, aspartate aminotransferase (AST), prothrombin time activity, serum creatinine (Scr), procalcitonin (PCT), C-reactive protein, eGFR, and MELD-Na score (all P<0.05), and both groups had significant reductions in platelet count (PLT) and hemoglobin (Hb) after treatment (all P<0.05), while there were no significant changes in blood urea nitrogen, albumin, and international normalized ratio after treatment (all P>0.05). There were significant differences between the two groups in the changes in AST, Scr, PCT, eGFR, MELD-Na score, Hb, and PLT after treatment (all P<0.05). Conclusion DPMAS sequential PE combined with CRRT can effectively remove inflammatory mediators, improve renal function, stabilize the internal environment of human body, and achieve a relatively good clinical efficacy. -
表 1 两组治疗前后生化指标比较
Table 1. Comparison of biochemical indicators between the two groups before and after treatment
指标 观察组(n=31) 对照组(n=59) 治疗前 治疗后 P值 治疗前 治疗后 P值 TBil(µmol/L) 329.5(165.1~457.6) 151.1(75.4~233.0) <0.001 312.7(218.4~457.8) 217.6(76.8~337.5) <0.001 ALT(U/L) 160.0(83.0~355.2) 42.2(28.7~73.8) 0.001 92.1(42.8~345.5) 43.1(24.7~89.8) <0.001 AST(U/L) 321.2(217.7~512.0) 78.0(48.1~335.4) <0.001 166.7(113.8~430.4) 83.7(49.8~141.2) <0.001 Alb(g/L) 27.6(25.5~31.1) 27.9(25.6~33.1) 0.829 29.8(26.1~32.5) 27.8(24.3~32.4) 0.098 PTA(%) 34.3(28.2~41.0) 41.7(29.3~53.2) 0.009 36.0(29.7~45.6) 38.7(27.3~56.6) 0.008 INR 2.3(1.7~2.7) 1.8(1.6~2.6) 0.189 2.2(1.8~2.6) 2.0(1.5~2.8) 0.069 BUN(mmol/L) 16.4(9.8~25.5) 9.2(6.6~19.6) 0.060 14.0(11.0~16.0) 12.2(7.1~17.3) 0.357 Scr(µmol/L) 190.0(167.7~214.5) 104.0(67.0~92.0) <0.001 178.0(145.8~191.8) 101.0(59.0~157.0) <0.001 WBC(×109/L) 14.1(10.9~15.9) 9.0(7.0~13.1) 0.040 10.1(6.2~13.7) 7.7(5.0~10.6) 0.126 PCT(ng/mL) 4.6(2.3~10.4) 1.6(0.9~3.1) 0.001 1.6(1.2~2.5) 1.1(0.5~1.9) <0.001 CRP(mg/L) 35.4(12.9~61.3) 20.6(9.7~35.0) 0.011 17.5(9.7~37.1) 6.5(3.2~14.5) <0.001 NLR 13.8(5.6~21.4) 6.8(3.7~13.6) 0.006 10.1(4.2~16.2) 6.5(2.9~12.2) 0.329 Hb(g/L) 110(92~122) 78(72~92) <0.001 114(88~129) 89(77~110) <0.001 PLT(×109/L) 82(52~133) 40(28~80) 0.002 83(49~122) 56(37~83) 0.001 eGFR(mL-1·min-1·1.73m-2) 31.5(29.1~49.7) 79.0(59.7~106.6) <0.001 38.0(31.0~46.8) 43.5(27.9~84.3) 0.001 MELD-Na评分 38.6(29.1~49.7) 22.5(15.5~31.7) <0.001 33.2(28.3~40.8) 28.6(18.1~35.2) <0.001 表 2 两组生化指标差值组间比较
Table 2. Inter-group comparison of the difference in biochemical parameters between the two groups
指标 观察组(n=31) 对照组(n=59) Z值 P值 TBil(µmol/L) 162.7(53.7~225.1) 121.8(63.6~193.4) -0.548 0.584 ALT(U/L) 63.8(11.0~139.8) 34.8(4.7~253.5) -0.195 0.845 AST(U/L) 189.7(54.9~317.4) 73.3(21.1~256.1) -2.085 0.037 PTA(%) -7.8(-15.8~0.9) -3.0(-11.9~3.7) -1.057 0.290 Scr(µmol/L) 82.1(66.5~128.8) 27.0(-21.0~70.0) -4.479 <0.001 PCT(ng/mL) 1.34(0.5~9.5) 0.3(-0.2~1.7) -2.866 0.004 CRP(mg/L) 11.9(-2.1~36.4) 8.7(3.1~20.8) -0.785 0.432 Hb(g/L) 26(13~38) 15(2~28) -2.072 0.038 PLT(×109/L) 58(3~90) 14(-2~47) -2.085 0.037 eGFR(mL-1·min-1·1.73m-2) -42.5(-69.8~-26.2) -7.7(-49.5~5.9) -3.571 <0.001 MELD-Na评分 16.5(4.1~20.5) 6.3(1.1~16.2) -2.662 0.008 -
[1] MEZZANO G, JUANOLA A, CARDENAS A, et al. Global burden of disease: acute-on-chronic liver failure, a systematic review and meta-analysis[J]. Gut, 2022, 71( 1): 148- 155. DOI: 10.1136/gutjnl-2020-322161. [2] ALLEGRETTI AS. Acute kidney injury treatment in decompensated cirrhosis: a focus on kidney replacement therapy[J]. Kidney Med, 2021, 3( 1): 12- 14. DOI: 10.1016/j.xkme.2020.09.015. [3] XU W, LI Y, WANG L, et al. Efficacy and safety of combination treatment of double plasma molecular adsorption system and low volume plasma exchange for patients with hepatitis B virus related acute-on-chronic liver failure: a multicentre randomised controlled clinical trial[J]. BMJ Open, 2021, 11( 12): e047690. DOI: 10.1136/bmjopen-2020-047690. [4] Severe Liver Disease and Artificial Liver Group, Chinese Society of Hepatology, Chinese Medical Association. Expert consensus on clinical application of artificial liver and blood purification(2022 edition)[J]. J Clin Hepatol, 2022, 38( 4): 767- 775. DOI: 10.3969/j.issn.1001-5256.2022.04.007.中华医学会肝病学分会重型肝病与人工肝学组. 人工肝血液净化技术临床应用专家共识(2022年版)[J]. 临床肝胆病杂志, 2022, 38( 4): 767- 775. DOI: 10.3969/j.issn.1001-5256.2022.04.007. [5] Liver Failure and Artificial Liver Group, Chinese Society of Infectious Diseases, Chinese Medical Association; Severe Liver Disease and Artificial Liver Group, Chinese Society of Hepatology, Chinese Medical Association. Guideline for diagnosis and treatment of liver failure(2018)[J]. J Clin Hepatol, 2019, 35( 1): 38- 44. DOI: 10.3969/j.issn.1001-5256.2019.01.007.中华医学会感染病学分会肝衰竭与人工肝学组, 中华医学会肝病学分会重型肝病与人工肝学组. 肝衰竭诊治指南(2018年版)[J]. 临床肝胆病杂志, 2019, 35( 1): 38- 44. DOI: 10.3969/j.issn.1001-5256.2019.01.007. [6] ANGELI P, GINÈS P, WONG F, et al. Diagnosis and management of acute kidney injury in patients with cirrhosis: revised consensus recommendations of the International Club of Ascites[J]. J Hepatol, 2015, 62( 4): 968- 974. DOI: 10.1016/j.jhep.2014.12.029. [7] ZACCHERINI G, WEISS E, MOREAU R. Acute-on-chronic liver failure: Definitions, pathophysiology and principles of treatment[J]. JHEP Rep, 2020, 3( 1): 100176. DOI: 10.1016/j.jhepr.2020.100176. [8] BAI W, YAO C, MAO D, et al. The clinical efficacy of double plasma molecular absorption system combined with plasma exchange in the treatment of acute-on-chronic liver failure: a systematic review and meta-analysis[J]. J Healthc Eng, 2022, 2022: 3139929. DOI: 10.1155/2022/3139929 [9] ZHANG YC, MA XX. Application of heterogeneous blood purification technology in the treatment of critically ill patients[J]. Chin J Nephrol Dialysis Transplantation, 2022, 31( 5): 442- 443. DOI: 10.3969/j.issn.1006-298X.2022.05.009.张育才, 马晓璇. 杂合式血液净化技术在危重症患者救治中的应用[J]. 肾脏病与透析肾移植杂志, 2022, 31( 5): 442- 443. DOI: 10.3969/j.issn.1006-298X.2022.05.009. [10] YAO YH, GAN JH, ZHAO WF. Effect of plasma exchange combined with continuous renal replacement therapy on the prognosis of patients with HBV-related acute-on-chronic liver failure and acute kidney injury[J]. J Clin Hepatol, 2019, 35( 5): 1065- 1069. DOI: 10.3969/j.issn.1001-5256.2019.05.026.姚运海, 甘建和, 赵卫峰. 血浆置换联合持续性肾脏替代治疗对HBV相关慢加急性肝衰竭合并急性肾损伤患者预后的影响[J]. 临床肝胆病杂志, 2019, 35( 5): 1065- 1069. DOI: 10.3969/j.issn.1001-5256.2019.05.026. [11] WU C, PENG W, CHENG D, et al. Efficacy and economic evaluation of nonbiological artificial liver therapy in acute-on-chronic hepatitis B liver failure[J]. J Clin Transl Hepatol, 2023, 11( 2): 433- 440. DOI: 10.14218/JCTH.2022.00106 [12] LU J, LI DC, LIU Y, et al. Clinical efficacy of low-dose plasma exchange combined with double plasma molecular absorption system/hemoper-fusion in treatment of acute-on-chronic liver failure[J]. J Clin Hepatol, 2022, 38( 11): 2526- 2531. DOI: 10.3969/j.issn.1001-5256.2022.11.017.鲁杰, 李顶春, 刘叶, 等. 小剂量血浆置换联合双重血浆分子吸附系统/血液灌流治疗慢加急性肝衰竭的效果分析[J]. 临床肝胆病杂志, 2022, 38( 11): 2526- 2531. DOI: 10.3969/j.issn.1001-5256.2022.11.017. [13] PORTE RJ, LISMAN T, TRIPODI A, et al. The International Normalized Ratio(INR) in the MELD score: problems and solutions[J]. Am J Transplant, 2010, 10( 6): 1349- 1353. DOI: 10.1111/j.1600-6143.2010.03064.x. [14] TAO Z, CHEN T, PAN Z, et al. Effect of high dose tigecycline on coagulation function in critically ill patients infected with multidrug-resistant bacteria[J]. Chin J Health Lab Technol, 2023, 33( 7): 831- 833.陶真, 陈通, 潘珍, 等. 高剂量替加环素对多重耐药菌感染危重患者凝血功能的影响[J]. 中国卫生检验杂志, 2023, 33( 7): 831- 833. [15] GUAN WT, KANG FX, LINW, et al. Decreased 90-day mortality in patients with hepatitis B-induced acute-on-chronic liver failure and acute kidney injury by continuous renal replacement therapy and plasma exchange treatment[J]. J Prac Hepatol, 2020, 23( 6): 833- 836. DOI: 10.3969/j.issn.1672-5069.2020.06.019.关万涛, 康福新, 林维, 等. CRRT联合PE治疗慢加急性乙型肝炎肝衰竭并发急性肾损伤患者疗效研究[J]. 实用肝脏病杂志, 2020, 23( 6): 833- 836. DOI: 10.3969/j.issn.1672-5069.2020.06.019. [16] WANG L, XU WX, ZHU Z, et al. Influence of artificial liver support system therapy on platelet in treatment of hepatitis B virus-related acute-on-chronic liver failure[J]. J Clin Hepatol, 2022, 38( 5): 1053- 1058. DOI: 10.3969/j.issn.1001-5256.2022.05.015.王璐, 许文雄, 朱姝, 等. 人工肝治疗HBV相关慢加急性肝衰竭的血小板计数变化及其影响因素[J]. 临床肝胆病杂志, 2022, 38( 5): 1053- 1058. DOI: 10.3969/j.issn.1001-5256.2022.05.015. [17] JIA JF, LIANG F, HUANG JW, et al. Effect of artificial liver with double plasma molecular absorb system model on patients’platelets and corresponding treatment strategy[J]. J Peking Univ: Health Sci, 2022, 54( 3): 548- 551. DOI: 10.19723/j.issn.1671-167X.2022.03.贾金凤, 梁菲, 黄建伟, 等. 双重血浆分子吸附系统模式人工肝治疗对血小板的影响[J]. 北京大学学报(医学版), 2022, 54( 3): 548- 551. DOI: 10.19723/j.issn.1671-167X.2022.03. [18] ARROYO V, ANGELI P, MOREAU R, et al. The systemic inflammation hypothesis: Towards a new paradigm of acute decompensation and multiorgan failure in cirrhosis[J]. J Hepatol, 2021, 74( 3): 670- 685. DOI: 10.1016/j.jhep.2020.11.048. [19] BORGONOVO A, BALDIN C, MAGGI DC, et al. Systemic inflammatory response syndrome in patients hospitalized for acute decompensation of cirrhosis[J]. Can J Gastroenterol Hepatol, 2021, 2021: 5581587. DOI: 10.1155/2021/5581587 [20] ZHENG W, LIANG X, SHUI L, et al. Serum procalcitonin correlates with renal function in hepatitis b virus-related acute-on-chronic liver failure[J]. Cell Physiol Biochem, 2018, 50( 5): 1794- 1803. DOI: 10.1159/000494820. [21] KAN WC, HUANG YT, WU VC, et al. Predictive ability of procalcitonin for acute kidney injury: a narrative review focusing on the interference of infection[J]. Int J Mol Sci, 2021, 22( 13): 6903. DOI: 10.3390/ijms22136903. [22] LIU J, LI H, XIA J, et al. Baseline neutrophil-to-lymphocyte ratio is independently associated with 90-day transplant-free mortality in patients with cirrhosis[J]. Front Med(Lausanne), 2021, 8: 726950. DOI: 10.3389/fmed.2021.726950. [23] SUN J, GUO H, YU X, et al. A neutrophil-to-lymphocyte ratio-based prognostic model to predict mortality in patients with HBV-related acute-on-chronic liver failure[J]. BMC Gastroenterol, 2021, 21( 1): 422. DOI: 10.1186/s12876-021-02007-w. [24] WEI W, HUANG X, YANG L, et al. Neutrophil-to-Lymphocyte ratio as a prognostic marker of mortality and disease severity in septic Acute kidney injury Patients: A retrospective study[J]. Int Immunopharmacol, 2023, 116: 109778. DOI: 10.1016/j.intimp.2023.109778. [25] WU ZB, ZHENG YB, WANG K, et al. Plasma interleukin-6 level: A potential prognostic indicator of emergent HBV-associated ACLF[J]. Can J Gastroenterol Hepatol, 2021, 2021: 5545181. DOI: 10.1155/2021/5545181. [26] NAPOLEONE L, SOLÉ C, JUANOLA A, et al. Patterns of kidney dysfunction in acute-on-chronic liver failure: Relationship with kidney and patients’ outcome[J]. Hepatol Commun, 2022, 6( 8): 2121- 2131. DOI: 10.1002/hep4.1963. [27] NAND N, VERMA P, JAIN D. Comparative evaluation of continuous veno-venous hemodiafiltration and continuous arterio-venous hemodiafiltration in patients of hepatic failure and/or hepatorenal syndrome[J]. J Assoc Physicians India, 2019, 67( 8): 39- 42. [28] ZHANG J, TIAN J, SUN H, et al. How does continuous renal replacement therapy affect septic acute kidney injury?[J]. Blood Purif, 2018, 46( 4): 326- 331. DOI: 10.1159/000492026. [29] SARAIVA IE, ORTIZ-SORIANO VM, MEI X, et al. Continuous renal replacement therapy in critically ill patients with acute on chronic liver failure and acute kidney injury: A retrospective cohort study[J]. Clin Nephrol, 2020, 93( 4): 187- 194. DOI: 10.5414/CN109983.
计量
- 文章访问数: 379
- HTML全文浏览量: 92
- PDF下载量: 58
- 被引次数: 0