肝硬化凝血障碍机制的再认识
DOI: 10.12449/JCH240330
-
摘要: 肝脏在维持机体凝血和抗凝动态平衡中发挥重要调节作用。肝硬化患者抗凝与凝血的动态平衡很脆弱,会因凝血因子减少,血小板计数下降,纤溶亢进而增加出血风险,同时还会因血管性血友病因子、凝血因子Ⅷ升高,抗凝蛋白C、抗凝蛋白S降低,凝血酶生成潜力增加,抗纤溶成分的改变而形成血栓。本文对肝硬化凝血障碍的机制进行综述,以期对临床医生关于肝硬化患者的出血或血栓性疾病的预防和治疗提供帮助。Abstract: The liver plays an important regulatory role in maintaining the dynamic balance of coagulation and anticoagulation in the body. Such dynamic balance is fragile in patients with liver cirrhosis, and the risk of bleeding can be increased due to reductions in coagulation factors and platelet count and excessive fibrinolysis; meanwhile, thrombus can be formed due to the increases in von Willebrand factor and coagulation factor Ⅷ, the reductions in anticoagulant protein C and anticoagulant protein S, the increase in thrombin-generating potential, and alterations in antifibrinolytic components. This article reviews the mechanisms of coagulation disorder in liver cirrhosis, so as to help clinicians with the prevention and treatment of bleeding or thrombotic disorders in patients with liver cirrhosis.
-
Key words:
- Liver Cirrhosis /
- Blood Coagulation /
- Haemorrhage /
- Thrombosis
-
原发性肝癌是目前全球第六大常见癌症,也是导致癌症相关死亡的第三大常见原因[1],其中肝细胞癌(HCC)占75%~85%。由于HCC发病隐匿,进展迅速,高达80%的HCC患者在首次诊断时已处于中晚期,5年生存率不足15%[2]。因此,亟需探明HCC发生发展的分子机制,为HCC早期诊断和精准治疗提供靶点。AU富集元件结合因子1(AU-rich element RNA-binding factor 1,AUF1)是真核细胞中重要的转录后调节因子[3]。AUF1通过与mRNA的AU元件富集区结合,调控多种mRNA的稳定性及翻译,其异常表达与炎症、衰老、发育异常和心血管疾病等密切相关[4-6]。AUF1也是一种潜在的致癌因子,在多种肿瘤的发生发展中发挥重要作用[7-8],但AUF1在肿瘤发生发展中的作用机制尚未完全阐明。本研究利用UALCAN和TCGA-HCC数据库分析AUF1在包括HCC在内的多种肿瘤组织中的表达以及AUF1表达与HCC患者预后的相关性,并分析AUF1对肝癌细胞增殖、凋亡、迁移能力的影响及可能机制,以期为阐明AUF1在HCC进展中发挥的作用及分子机制提供依据。
1. 材料与方法
1.1 主要材料与试剂
siAUF1和对照siNC购自广州锐博生物;pCDH-AUF1及对照质粒(pCDH)为本实验室构建保存;细胞DMEM培养基、胎牛血清和胰蛋白酶购自美国Gibco公司;转染试剂Lipo fectamineTM RNAiMAX Transfection Reagent、Lipo fectamineTM 2000试剂购自美国Invitrogen公司;鼠抗E-cadherin购自美国BD transduction laboratories公司;鼠抗N-cadherin购自美国Santa Cruz公司;兔抗AUF1抗体和兔抗β-cateinin购自英国Abcam公司;鼠抗人β-tubulin抗体和蛋白定量试剂购自北京普利莱公司;兔抗β-actin购自美国CST公司;CCK-8试剂盒、Annexin V-FITC试剂盒购自日本Dojindo公司。
1.2 肝癌细胞系
HepG2细胞购自美国ATCC细胞库,Huh7和Huh1细胞购自中国科学院上海细胞库。使用含有10%胎牛血清、100 U/mL青霉素、链霉素的DMEM培养基于37 ℃,5% CO2的培养箱中培养,待细胞融合度达约80%时,用0.25%胰蛋白酶进行消化传代,取生长至对数期的细胞用于实验研究。
1.3 生物信息学分析
采用UALCAN数据库分析AUF1在泛癌中的表达[9-10];采用TCGA-HCC数据库分析AUF1表达与HCC患者临床病理特征及预后的相关性。
1.4 细胞转染实验
转染前24 h进行细胞传代并计数,按照3.5×105个/孔将细胞接种于6孔板中。按照Lipo fectamineTM RNAiMAX Transfection Reagent的说明书,将siAUF1或对照siNC转染至HepG2、Huh7或Huh1细胞中。pCDH-AUF1和对照质粒按照Lipo fectamineTM 2000说明书进行转染。转染4~6 h后,更换为新鲜的DMEM完全培养基继续培养,并于转染48 h后收集细胞,用于后续实验研究。
1.5 Western Blot检测
收集细胞沉淀,加入RIPA裂解液进行细胞裂解,使用BCA法测定蛋白浓度。SDS-PAGE电泳分离蛋白,转移至PVDF膜,5%脱脂牛奶室温封闭,4 ℃孵育一抗过夜。室温孵育二抗1 h。用美国LI-COR公司Odyssey双色红外激光成像系统采集图像,使用β-tubulin或β-actin作为内参。
1.6 CCK-8实验
在96孔板上以8×103细胞/孔的密度接种细胞。每组设置6个复孔。分别在接种后的0、1、2、3、4、5天在每孔加入含有10 μL CCK-8的100 μL培养基,37 ℃孵育1 h。在450 nm波长下测量吸光度,根据吸光度绘制生长曲线。
1.7 Transwell迁移实验
取得转染24 h后的细胞悬液,PBS清洗去除血清,再用无血清DMEM培养基重悬细胞,将其均匀加入小室中(5×103/200 μL)。在24孔板中加入600 μL含10% FBS的DMEM培养基,镊子夹取小室平稳放入其中,培养36 h。PBS清洗小室及24孔板,经固定、染色后,去除小室中残留的水分及未穿过小室聚碳酸酯膜的细胞。风干,显微镜下拍照。
1.8 细胞凋亡实验
将4×105个细胞/孔置于6孔板中培养48 h,消化离心后弃上清,使用PBS冲洗细胞沉淀2遍,加入300 μL结合缓冲液重悬细胞。加入5 μL Annexin V-FITC和5 μL PI,室温避光孵育15 min,并使用流式细胞仪检测。
1.9 RNA测序(RNA-seq)数据分析
本文数据下载自GEO数据库GSE162706数据集[11]。Hisat2[12]和featureCounts[13]用于读图和基因计数计算。edgeR软件[14]用于基因差异表达分析。
1.10 统计学方法
采用FPKM(fragmenls per kilobasemillion)法对TCCA转录组测序数据进行标准化,最终纳入预后分析的HCC样本来自于370例不同病因的HCC患者。使用R语言进行统计学分析及绘图。计量资料两组间比较采用t检验。采用Kaplan-Meier绘图仪数据库(http://www.kmplot.com)评估肝癌患者AUF1表达与无复发生存率之间的关系,并使用Log-rank检验进行生存率比较。P<0.05为差异有统计学意义。
2. 结果
2.1 AUF1在多种肿瘤组织中异常表达
利用UALCAN数据库分析AUF1在24种肿瘤和相对应正常组织中的mRNA表达情况(图1a)。与正常组织相比,AUF1 mRNA水平在膀胱尿路上皮癌(BLCA)、乳腺癌(BRCA)、胆管癌(CHOL)、结肠癌(COAD)、食管癌(ESCA)、多形性胶质母细胞细胞瘤(GBM)、头颈鳞状细胞癌(HNSC)、肾透明细胞癌(KIRC)、HCC、肺腺癌(LUAD)、肺鳞癌(LUSC)、前列腺癌(PRAD)、胃癌(STAD)中高表达(P值均<0.05),但在肾嫌色细胞癌(KICH)和甲状腺癌(THCA)中则呈低表达(P值均<0.05)。除此之外,本研究利用UALCAN数据库分析AUF1蛋白在10种肿瘤组织中的表达情况。结果显示,AUF1蛋白在9种肿瘤组织中表达升高(图1b),包括BRCA、COAD、卵巢癌(OV)、肾透明细胞癌(ccRCC)、子宫内膜样癌(UCEC)、肺癌(LUNG)、HNSC、GBM、HCC(P值均<0.05),而在胰腺癌(PAAD)中AUF1蛋白水平降低(P值均<0.05)。综上结果显示,AUF1的mRNA和蛋白水平在HCC、BRCA、COAD、GBM、HNSC中均显著上调,提示AUF1可能在包括HCC在内的多种肿瘤中发挥促癌作用。
2.2 AUF1高表达与HCC患者的不良预后相关
为进一步探究AUF1与肝癌的关系,本研究分析TCGA-HCC数据库中AUF1表达水平与HCC患者临床病理特征的关系。结果显示,AUF1与肿瘤恶性标志物MKI67的表达水平呈正相关(r=0.552 2,P<0.000 1)(图2a)。在不同肝癌Edmondson-Steiner分级中,AUF1 mRNA水平在3级肿瘤中的表达高于1级和2级(P值均<0.000 1)(图2b)。在临床不同TNM分期患者中,AUF1在TNM-Ⅲ期肿瘤组织中的表达水平高于TNM-Ⅰ(P<0.000 1)(图2c)。但无论是Edmondson-Steiner分级还是TNM分期中,4级或TNM-Ⅳ期肝癌组织中AUF1的表达均未见升高。本研究进一步根据TNM分期分别对AUF1表达水平在HCC中的预后能力进行评估。Kaplan-Meier生存分析显示,在早期(Ⅰ~Ⅱ期)肝癌中,AUF1高表达患者的半数生存期仅为30.1个月,显著低于AUF1低表达患者的半数生存期55.87个月(P=0.048)(图2d)。AUF1表达水平与中晚期肝癌(Ⅲ~Ⅳ期)的半数生存期无相关性(P>0.05)。上述结果提示,AUF1的异常表达可能参与HCC的发生和发展,是早期肝癌诊断和预后的潜在标志物。
2.3 AUF1促进肝癌细胞增殖
为探究AUF1对肝癌细胞增殖能力的影响,本研究在肝癌细胞系中分别敲减或过表达AUF1,并通过CCK-8实验检测细胞的增殖能力。结果显示,与siNC对照组相比,转染AUF1 siRNA后,HepG2和Huh1细胞中AUF1蛋白水平明显降低(图3a),且敲减AUF1后HepG2和Huh1细胞增殖能力明显低于对照组(图3b)。与敲减结果一致,过表达AUF1的HepG2和Huh7(图3c)细胞增殖能力明显高于pCDH对照组(图3d)。
2.4 AUF1抑制肝癌细胞的凋亡
本研究进一步使用Annexin V/PI双染色法评价AUF1对肝癌细胞凋亡的影响。结果显示,与对照siNC组相比,敲减AUF1后HepG2细胞和Huh1细胞中Annexin V单阳性和Annexin V/PI双阳性细胞比例明显上调,表明细胞的早期和晚期凋亡率增加(图4a)。而在过表达AUF1的HepG2和Huh7细胞中,细胞的早期和晚期凋亡率较pCDH对照组则显著降低(图4b)。
2.5 AUF1抑制肝癌细胞的迁移能力
本研究随后检测AUF1对肝癌细胞迁移能力的影响。Transwell迁移实验结果显示,与对照siNC组相比,AUF1敲减可增强HepG2和Huh1细胞的迁移能力(图5a)。Western Blot检测结果显示,AUF1敲减后E-cadherin水平降低、N-cadherin水平升高(图5b)。与此结果一致,过表达AUF1后Huh7细胞的迁移能力较对照质粒pCDH组降低(图5c),细胞内的E-cadherin蛋白水平升高、N-cadherin蛋白水平降低(图5d)。
注: a,Transwell实验检测AUF1敲减对细胞迁移能力的影响(结晶紫染色,×20);b,Western Blot检测AUF1敲减对E-cadherin和N-cadherin水平的影响;c,Transwell实验检测AUF1过表达对细胞迁移能力的影响(结晶紫染色,×20);d,Western Blot检测AUF1过表达对E-cadherin和N-cadherin水平的影响。图 5 AUF1对肝癌细胞迁移能力的影响Figure 5. The effect of AUF1 on the migration ability of hepatocellular carcinoma cells2.6 AUF1通过激活Wnt信号通路发挥促癌作用
为探究AUF1促癌的潜在机制,本研究通过转录组测序(RNA-seq)分析AUF1敲减对HepG2细胞转录组的影响。利用cuffdiff分析模块进行基因差异表达分析,并根据差异倍数和P值进行筛选,共获得467个差异基因。其中162个基因在AUF1敲减后表达上调,305个基因表达显著下调(图6a)。进一步对这些AUF1相关差异基因进行KEGG pathway分析,如结果所示,主要富集在Wnt信号通路、细胞黏附因子、5-羟色氨酸突触、花生四烯酸代谢等多种通路上,其中Wnt信号通路富集到的差异基因数排在前列(图6b)。
β-catenin蛋白上调是Wnt通路活化的重要标志。本研究进一步通过Western Blot实验检测肝癌细胞内β-catenin蛋白水平。结果显示,敲减AUF1后HepG2中的β-catenin蛋白下调。而过表达AUF1后β-catenin蛋白上调(图6c)。上述结果提示AUF1可以通过上调β-catenin激活肝癌细胞中的Wnt信号通路。
3. 讨论
AUF1的异常表达与多种肿瘤的发生发展相关,但多数相关研究均基于RNA水平检测,缺少AUF1蛋白水平检测。本研究利用UALCAN数据库,系统分析了泛癌转录组学和蛋白质组学数据中AUF1 mRNA和蛋白在多种肿瘤中的表达情况。本研究发现,与AUF1 mRNA水平一致,AUF1蛋白水平在多种肿瘤组织中亦呈高表达,提示其在这些肿瘤中发挥促癌作用。但在PAAD中,AUF1的mRNA或蛋白水平均降低,提示AUF1的异常表达与不同肿瘤类型有关。
前期通过检测配对的HBV肝癌组织与癌旁组织发现,AUF1在肝癌组织中高表达,并与患者的预后不良有关[15]。本研究利用TCGA-HCC数据库,进一步证实AUF1在肝癌组织中高表达,且其表达水平与MKI67、Edmondson-Steiner分级、TNM分期等多项肿瘤恶性病理学指标正相关。更为重要的是,本研究发现AUF1表达水平随着肝癌分期逐步上调,但在晚期(Ⅳ期)不再继续升高。生存分析结果也显示AUF1对肝癌早期(Ⅰ~Ⅱ期)更有预后价值。体外实验证实AUF1能促进肝癌细胞增殖、抑制肝癌细胞凋亡和迁移。有报道[16]AKR1B10、c-Myc等癌基因在肝癌早期发挥促癌作用,且具有抑制细胞迁移的能力。因此,笔者推测AUF1异常表达可能与肝癌的早期进展有关,是肝癌早期诊断和预后的一个重要指标。
Wnt/β-catenin通路是一种高度保守且严格控制的信号通路,可调节胚胎发育、细胞增殖和分化。越来越多证据表明Wnt信号通路的异常激活促进肝癌增殖[17]。据报道[18],在约49%的HCC病例中可检测到β-catenin的活化。β-catenin已经被公认为原发性肝癌中最常见的突变基因之一。本研究在HepG2细胞系中敲减AUF1后进行转录组测序,将差异基因进行富集分析,发现差异基因功能富集最显著的是Wnt信号通路,并进一步通过细胞实验证明AUF1激活Wnt通路。本研究发现AUF1敲减后差异基因富集在Wnt通路,Western Blot检测也证实AUF1能够上调β-catenin蛋白水平,提示AUF1通过激活Wnt/β-catenin通路发挥促癌作用。但AUF1激活Wnt通路的具体机制目前尚未明确。笔者团队前期研究发现,AUF1也可以转录后调控AKR1B10、AFP表达。有文献[19]报道AKR1B10在乳腺癌中高表达,并通过激活Wnt/β-catenin通路促进乳腺癌细胞增殖。但在肝细胞癌中,AUF1是否也可通过转录后调控AKR1B10表达进而激活Wnt/β-catenin通路,尚需更多实验验证。
综上所述,本研究证实AUF1在多种肿瘤组织中呈异常表达;AUF1在肝癌组织中的表达水平与肝癌恶性程度以及早期肝癌的不良预后呈正相关;AUF1具有促进肝癌细胞增殖、抑制肝癌细胞凋亡和转移的作用,可能与其激活Wnt信号通路有关。
-
[1] JIANG H, LI Y, SHENG Q, et al. Relationship between hepatitis B virus infection and platelet production and dysfunction[J]. Platelets, 2022, 33( 2): 212- 218. DOI: 10.1080/09537104.2021.2002836. [2] DAHAL S, UPADHYAY S, BANJADE R, et al. Thrombocytopenia in patients with chronic hepatitis C virus infection[J]. Mediterr J Hematol Infect Dis, 2017, 9( 1): e2017019. DOI: 10.4084/MJHID.2017.019. [3] SILCZUK A, HABRAT B. Alcohol-induced thrombocytopenia: Current review[J]. Alcohol, 2020, 86: 9- 16. DOI: 10.1016/j.alcohol.2020.02.166. [4] BASILI S, RAPARELLI V, NAPOLEONE L, et al. Platelet count does not predict bleeding in cirrhotic patients: results from the PRO-LIVER study[J]. Am J Gastroenterol, 2018, 113( 3): 368- 375. DOI: 10.1038/ajg.2017.457. [5] ZANETTO A, CAMPELLO E, BULATO C, et al. Increased platelet aggregation in patients with decompensated cirrhosis indicates higher risk of further decompensation and death[J]. J Hepatol, 2022, 77( 3): 660- 669. DOI: 10.1016/j.jhep.2022.03.009. [6] BASILI S, RAPARELLI V, RIGGIO O, et al. NADPH oxidase-mediated platelet isoprostane over-production in cirrhotic patients: implication for platelet activation[J]. Liver Int, 2011, 31( 10): 1533- 1540. DOI: 10.1111/j.1478-3231.2011.02617.x. [7] EGAN K, DILLON A, DUNNE E, et al. Increased soluble GPVI levels in cirrhosis: evidence for early in vivo platelet activation[J]. J Thromb Thrombolysis, 2017, 43( 1): 54- 59. DOI: 10.1007/s11239-016-1401-0. [8] MATSUI T, USUI M, WADA H, et al. Platelet activation assessed by glycoprotein vi/platelet ratio is associated with portal vein thrombosis after hepatectomy and splenectomy in patients with liver cirrhosis[J]. Clin Appl Thromb Hemost, 2018, 24( 2): 254- 262. DOI: 10.1177/1076029617725600. [9] CHEN SH, TSAI SC, LU HC. Platelets as a gauge of liver disease kinetics?[J]. Int J Mol Sci, 2022, 23( 19). DOI: 10.3390/ijms231911460. [10] TRIPODI A, PRIMIGNANI M, CHANTARANGKUL V, et al. An imbalance of pro-vs anti-coagulation factors in plasma from patients with cirrhosis[J]. Gastroenterology, 2009, 137( 6): 2105- 2111. DOI: 10.1053/j.gastro.2009.08.045. [11] POOTHONG J, POTTEKAT A, SIIRIN M, et al. Factor Ⅷ exhibits chaperone-dependent and glucose-regulated reversible amyloid formation in the endoplasmic reticulum[J]. Blood, 2020, 135( 21): 1899- 1911. DOI: 10.1182/blood.2019002867. [12] ZHANG K, WANG S, MALHOTRA J, et al. The unfolded protein response transducer IRE1α prevents ER stress-induced hepatic steatosis[J]. EMBO J, 2011, 30( 7): 1357- 1375. DOI: 10.1038/emboj.2011.52. [13] SINEGRE T, DURON C, LECOMPTE T, et al. Increased factor VIII plays a significant role in plasma hypercoagulability phenotype of patients with cirrhosis[J]. J Thromb Haemost, 2018, 16( 6): 1132- 1140. DOI: 10.1111/jth.14011. [14] TRIPODI A, PRIMIGNANI M, LEMMA L, et al. Evidence that low protein C contributes to the procoagulant imbalance in cirrhosis[J]. J Hepatol, 2013, 59( 2): 265- 270. DOI: 10.1016/j.jhep.2013.03.036. [15] SCHEINER B, BALCAR L, NUSSBAUMER RJ, et al. Factor VIII/protein C ratio independently predicts liver-related events but does not indicate a hypercoagulable state in ACLD[J]. J Hepatol, 2022, 76( 5): 1090- 1099. DOI: 10.1016/j.jhep.2021.12.038. [16] BOS S, van den BOOM B, KAMPHUISEN PW, et al. Haemostatic profiles are similar across all aetiologies of cirrhosis[J]. Thromb Haemost, 2019, 119( 2): 246- 253. DOI: 10.1055/s-0038-1676954. [17] TRIPODI A, PRIMIGNANI M, LEMMA L, et al. Detection of the imbalance of procoagulant versus anticoagulant factors in cirrhosis by a simple laboratory method[J]. Hepatology, 2010, 52( 1): 249- 255. DOI: 10.1002/hep.23653. [18] TAKAYA H, NAMISAKI T, ASADA S, et al. ADAMTS13, VWF, and endotoxin are interrelated and associated with the severity of liver cirrhosis via hypercoagulability[J]. J Clin Med, 2022, 11( 7): 1835. DOI: 10.3390/jcm11071835. [19] PÉPIN M, KLEINJAN A, HAJAGE D, et al. ADAMTS-13 and von Willebrand factor predict venous thromboembolism in patients with cancer[J]. J Thromb Haemost, 2016, 14( 2): 306- 315. DOI: 10.1111/jth.13205. [20] ZERMATTEN MG, FRAGA M, MORADPOUR D, et al. Hemostatic alterations in patients with cirrhosis: from primary hemostasis to fibrinolysis[J]. Hepatology, 2020, 71( 6): 2135- 2148. DOI: 10.1002/hep.31201. [21] KUME Y, IKEDA H, INOUE M, et al. Hepatic stellate cell damage may lead to decreased plasma ADAMTS13 activity in rats[J]. FEBS Lett, 2007, 581( 8): 1631- 1634. DOI: 10.1016/j.febslet.2007.03.029. [22] NIIYA M, UEMURA M, ZHENG XW, et al. Increased ADAMTS-13 proteolytic activity in rat hepatic stellate cells upon activation in vitro and in vivo[J]. J Thromb Haemost, 2006, 4( 5): 1063- 1070. DOI: 10.1111/j.1538-7836.2006.01893.x. [23] MANNUCCI PM, CAPOFERRI C, CANCIANI MT. Plasma levels of von Willebrand factor regulate ADAMTS-13, its major cleaving protease[J]. Br J Haematol, 2004, 126( 2): 213- 218. DOI: 10.1111/j.1365-2141.2004.05009.x. [24] LISMAN T, BONGERS TN, ADELMEIJER J, et al. Elevated levels of von Willebrand Factor in cirrhosis support platelet adhesion despite reduced functional capacity[J]. Hepatology, 2006, 44( 1): 53- 61. DOI: 10.1002/hep.21231. [25] SENZOLO M, COPPELL J, CHOLONGITAS E, et al. The effects of glycosaminoglycans on coagulation: a thromboelastographic study[J]. Blood Coagul Fibrinolysis, 2007, 18( 3): 227- 236. DOI: 10.1097/MBC.0b013e328010bd3d. [26] TRIPODI A. Detection of procoagulant imbalance. Modified endogenous thrombin potential with results expressed as ratio of values with-to-without thrombomodulin[J]. Thromb Haemost, 2017, 117( 5): 830- 836. DOI: 10.1160/TH16-10-0806. [27] KREMERS R, KLEINEGRIS MC, NINIVAGGI M, et al. Decreased prothrombin conversion and reduced thrombin inactivation explain rebalanced thrombin generation in liver cirrhosis[J]. PLoS One, 2017, 12( 5): e0177020. DOI: 10.1371/journal.pone.0177020. [28] WAN J, ROBERTS LN, HENDRIX W, et al. Whole blood thrombin generation profiles of patients with cirrhosis explored with a near patient assay[J]. J Thromb Haemost, 2020, 18( 4): 834- 843. DOI: 10.1111/jth.14751. [29] von MEIJENFELDT FA, LISMAN T. Fibrinolysis in patients with liver disease[J]. Semin Thromb Hemost, 2021, 47( 5): 601- 609. DOI: 10.1055/s-0040-1718924. [30] RIJKEN DC, KOCK EL, GUIMARãES AH, et al. Evidence for an enhanced fibrinolytic capacity in cirrhosis as measured with two different global fibrinolysis tests[J]. J Thromb Haemost, 2012, 10( 10): 2116- 2122. DOI: 10.1111/j.1538-7836.2012.04901.x. [31] PUNTER M, VOS BE, MULDER BM, et al. Poroelasticity of(bio)polymer networks during compression: theory and experiment[J]. Soft Matter, 2020, 16( 5): 1298- 1305. DOI: 10.1039/c9sm01973a. [32] DRIEVER EG, LISMAN T. Fibrin clot properties and thrombus composition in cirrhosis[J]. Res Pract Thromb Haemost, 2023, 7( 1): 100055. DOI: 10.1016/j.rpth.2023.100055. [33] HUGENHOLTZ GC, MACRAE F, ADELMEIJER J, et al. Procoagulant changes in fibrin clot structure in patients with cirrhosis are associated with oxidative modifications of fibrinogen[J]. J Thromb Haemost, 2016, 14( 5): 1054- 1066. DOI: 10.1111/jth.13278. [34] MARTINEZ J, MACDONALD KA, PALASCAK JE. The role of sialic acid in the dysfibrinogenemia associated with liver disease: distribution of sialic acid on the constituent chains[J]. Blood, 1983, 61( 6): 1196- 1202. -