中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ACAT1和MTNR1B基因多态性与非酒精性脂肪性肝病易感性的关系

马磊 胡欣欣 赵波 万强 周林 赵真真 辛永宁

李志国, 马浔, 叶永安, 等. 基于mTOR/HIF-1α/VEGF信号通路探讨抗纤抑癌方对肝癌前病变大鼠模型的调控作用[J]. 临床肝胆病杂志, 2024, 40(10): 2049-2054. DOI: 10.12449/JCH241019.
引用本文: 李志国, 马浔, 叶永安, 等. 基于mTOR/HIF-1α/VEGF信号通路探讨抗纤抑癌方对肝癌前病变大鼠模型的调控作用[J]. 临床肝胆病杂志, 2024, 40(10): 2049-2054. DOI: 10.12449/JCH241019.
LI ZG, MA X, YE YA, et al. Regulatory effect of Kangxian Yiai Prescription in a rat model of precancerous lesions of liver cancer: A study based on the mTOR/HIF-1α/VEGF signaling pathway[J]. J Clin Hepatol, 2024, 40(10): 2049-2054. DOI: 10.12449/JCH241019.
Citation: LI ZG, MA X, YE YA, et al. Regulatory effect of Kangxian Yiai Prescription in a rat model of precancerous lesions of liver cancer: A study based on the mTOR/HIF-1α/VEGF signaling pathway[J]. J Clin Hepatol, 2024, 40(10): 2049-2054. DOI: 10.12449/JCH241019.

ACAT1和MTNR1B基因多态性与非酒精性脂肪性肝病易感性的关系

DOI: 10.12449/JCH240410
基金项目: 

国家自然科学基金 (32171277)

伦理学声明:本研究遵守国家所有相关法规、机构政策和赫尔辛基宣言,并于2017年10月11日经由青岛市市立医院伦理委员会审批,批号:2017临审字第20号(快)。所纳入患者均签署知情同意书。
利益冲突声明:本研究不存在任何利益冲突。
作者贡献声明:马磊、胡欣欣、辛永宁等负责课题设计,资料分析,撰写论文;赵波、万强、周林、赵真真等参与收集数据,修改论文;马磊负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    辛永宁, xinyongning@163.com (ORCID: 0000-0002-3692-7655)

Association of polymorphisms of the acetyl-coA acetyltransferase 1 gene and the melatonin receptor 1B gene with the susceptibility to nonalcoholic fatty liver disease

Research funding: 

National Natural Science Foundation of China (32171277)

More Information
  • 摘要:   目的  本研究拟探讨乙酰辅酶A乙酰转移酶1(ACAT1)和褪黑激素受体1B(MTNR1B)基因多态性与非酒精性脂肪性肝病(NAFLD)疾病易感性的关系。  方法  本研究共纳入2020年12月—2022年6月就诊于青岛市市立医院的健康体检者164例、NAFLD患者228例。采用PCR及测序的方法对ACAT1 rs1044925、rs1157651和MTNR1B rs10830963基因多态性进行基因分型,并采集空腹静脉血进行生化检测。符合正态分布的计量资料两组间比较采用成组t检验;非正态分布的计量资料两组间比较采用Mann-Whitney U非参数检验;计数资料两组间比较采用χ2检验。  结果  ACAT1 rs1044925、rs1157651和MTNR1B rs10830963基因型分布在NAFLD及健康对照组间无统计学差异(P值均>0.05),ACAT1 rs1044925 AA基因型携带者的LDL水平明显高于C等位基因携带者(Z=-2.08,P=0.04),MTNR1B rs10830963 G等位基因携带者空腹血糖水平明显高于CC基因型携带者(Z=-3.01,P<0.01)。  结论  ACAT1 rs1044925、rs1157651和MTNR1B rs10830963多态性与NAFLD易感性无明显相关,ACAT1 rs1044925和MTNR1B rs10830963位点分别与LDL和空腹血糖水平有关。

     

  • 肝癌作为全球范围内发病率和死亡率较高的恶性肿瘤,其发病机制涉及病毒感染、酒精滥用、肥胖以及不洁饮食等1-2。肝癌前病变与肝癌的发生密切关联3。肝癌前病变缺氧微环境的形成与能量代谢异常密切相关。糖酵解在缺氧条件下发挥着关键作用,与肿瘤的发生和发展密切相关4-5。哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)/缺氧诱导因子1α(hypoxia inducible factor1α,HIF-1α)/血管内皮生长因子(vascular endothelial growth factor,VEGF)信号通路作为细胞适应缺氧环境的重要调控网络,近年引起广泛关注。

    mTOR参与细胞生长、增殖和代谢的调控6。在低氧环境中,mTOR与HIF-1α协同作用,共同参与调控细胞对缺氧的适应性反应7-8。HIF-1α通过调控多个基因的表达,包括VEGF,参与调节血管生成、细胞存活和炎症反应等生物学过程9-10。VEGF作为一个重要的促血管生成因子,在包括肝癌在内的多种肿瘤的血管生成中发挥关键作用11-12

    抗纤抑癌方是叶永安教授治疗肝癌及其癌前病变的经验方,临床疗效显著13-14。然而,其在分子水平上对肝癌前病变的调控机制仍然不清楚。因此,本研究探讨抗纤抑癌方对mTOR/HIF-1α/VEGF信号通路的调控作用,深入研究其对肝癌前病变的影响,以期为肝癌前病变的预防和治疗提供新的理论与实验基础。

    40只健康雄性Wistar大鼠(SPF级),体质量(175±20)g,由北京维通利华公司购得[实验动物生产许可证:SCXK(京)2016-0006]。在东直门医院动物房(SPF级)进行常规饲养(恒温、恒湿、自由饮食饮水),实验动物使用许可证:SYXK(京)2015-0001。

    抗纤抑癌方颗粒剂成分包括柴胡、山药、白芥子、黄芪等,由南宁培力药业供应,通过质控鉴定确保为同一批次。复方鳖甲软肝片(批准文号:Z19991011,中国内蒙古福瑞中蒙药科技公司生产);二乙基亚硝胺(N0756,美国Sigma公司)。

    Anti-HIF1α (ab1,英国abcam公司),Anti-PKM2 (3198S,美国CST公司),Anti-mTOR (2972S,美国CST公司),Anti-VEGF (ab53465,英国abcam公司),Anti-GLUT1 (1293S,美国CST公司),Anti-GSTPi (ab53943,英国abcam公司),GAPDH(ab8245,英国abcam公司),Trizol(R401-1,南京诺唯赞生物科技有限公司),M-MLV反转录试剂盒(A2791,美国Promega公司),Real-time PCR扩增试剂盒(Q121-02,南京诺唯赞限公司),DAB显色试剂盒(DA1010,北京索莱宝公司)。Western Blot电泳系统(美国Bio-rad公司),CFX96 Q-PCR仪(美国Bio-rad公司),NanoDrop分光光度计(美国Malcom公司),PCR引物由美国life technology公司代工合成。

    1.4.1   分组与模型制备

    采用随机数字表法,分为正常组、模型组、抗纤抑癌方组和鳖甲软肝组,每组10只。制备基于肝硬化基础上的肝癌前病变动物模型15。正常组大鼠腹腔注射生理盐水,剂量为0.4 mL/100 g,其他3组大鼠以50 mg/kg剂量腹腔注射二乙基亚硝胺,每周1次,连续14周后成功制备模型。

    1.4.2   给药

    造模后第9周,抗纤抑癌方组和鳖甲软肝组大鼠开始药物灌胃,剂量分别相当于抗纤抑癌方、复方鳖甲软肝片临床剂量的7倍。每次用药体积均按1 mL/100 g的剂量给药,每天1次,连续给药,共6周。正常组和模型组大鼠灌胃对应量的蒸馏水,每天1次,连续给药,共6周。

    1.4.3   标本采集

    在实验的第14周末,停止给药24 h后,以0.33 mL/100 g的剂量给予10%水合氯醛腹腔注射麻醉,从腹主动脉采集大鼠血液。在距离最大叶肝脏约1 cm处,取得约1 cm×1 cm×0.3 cm的组织样本,随后浸泡于4%多聚甲醛溶液中固定。同时,迅速将部分肝组织存放于液氮中,以备进行实时荧光定量PCR和Western Blot分析。

    1.4.4   免疫组化法检测大鼠肝组织中胎盘型谷胱甘肽转移酶(GST-Pi)表达

    将切片置于二甲苯中浸泡脱蜡,浸入乙醇溶液中水化;置于抗原修复液中煮沸修复;滴加3% H2O2溶液以及一抗(稀释度1∶150),放入湿盒4 ℃过夜;加二抗以及DAB显色,显微镜下观察,苏木素复染,细胞核变蓝终止;按常规进行脱水、透明、封片。

    1.4.5   实时荧光定量PCR法检测大鼠肝组织中GLUT1、PKM2、mTOR、HIF-1α和VEGF的mRNA表达

    使用Trizol提取组织中总RNA,用二步法进行mRNA表达的检测;按试剂盒说明书进行反转录,合成cDNA,以cDNA为模板进行实时荧光定量PCR反应。反应条件:预变性95 ℃ 4 min、95 ℃ 10 s、60 ℃ 10 s、72 ℃ 20 s,39个循环。以GAPDH作为内参照,采用2-ΔΔCT法计算mRNA相对表达量。引物序列见表1

    表  1  实时荧光定量PCR引物序列
    Table  1.  Real time fluorescence quantitative PCR primer sequence
    引物名称 引物序列(5'-3') 扩增产物长度(bp)
    Rat-mTOR F:TGTCAGCCTGTCAGAATCCA 74
    R:CCATGTTGACCAGCATTTCA
    Rat-HIF-1α F:TGGAAGCACTAGACAAAGCTCA 78
    R:TTGACCATATCGCTGTCCAC
    Rat-VEGF F:GAGTTAAACGAACGTACTTGCAGA 90
    R:TCTAGTTCCCGAAACCCTGA
    Rat-PKM2 F:GGAGAAGTGCGATGAGAACAT 141
    R:TCTGTCACCAGGTAGTCAGCAC
    Rat-GLUT1 F:GTATCCTGTTGCCCTTCTGC 95
    R:TCGAAGCTTTTTCAGCACAC
    GAPDH F:TCATTGACCTCAACTACATGG 131
    R:TCGCTCCTGGAAGATGGTG
    下载: 导出CSV 
    | 显示表格
    1.4.6   Western Blot法检测大鼠肝组织GLUT1、PKM2、mTOR、HIF-1α和VEGF的蛋白表达

    用蛋白裂解液于冰上裂解组织,按BCA蛋白浓度测定试剂盒测定蛋白浓度;将蛋白样品分装到离心管中,加上样缓冲液,煮沸5 min;制备12% SDS-PAGE分离胶和5%浓缩胶,上样,电泳4~5 h,转膜,用5%脱脂奶粉室温封闭,加入一抗4 ℃封闭过夜,孵育二抗1 h;ECL发光显影,用Image J软件对各条带的灰度值进行分析。

    采用SPSS 25.0统计软件进行数据分析。计量资料多组间比较采用单因素方差分析或Kruskal-Wallis H秩和检验,进一步两两比较采用LSD-t检验。P<0.05为差异有统计学意义。

    2.1.1   GST-Pi免疫组化

    GST-Pi阳性灶为胞浆中棕黄色不规则形团块。正常组未见明显阳性表达,模型组则见较多阳性灶,肝小叶内及汇管区周围均可见,染色深;抗纤抑癌及鳖甲软肝组的阳性灶较模型组减少,染色较浅(图1)。

    注: a,正常组;b,模型组;c,鳖甲软肝组;d,抗纤抑癌组。
    图  1  大鼠肝组织GST-Pi免疫组化(×400)
    Figure  1.  Rat liver tissue GST-Pi immunohistochemistry (×400)
    2.1.2   GST-Pi蛋白表达

    与正常组比较,大鼠肝组织GST-Pi蛋白在模型组的表达显著升高(P<0.01);与模型组比较,抗纤抑癌组GST-Pi蛋白的表达水平显著降低(P<0.05)(图2)。结果表明抗纤抑癌方的应用显著降低了大鼠GST-Pi的表达。

    图  2  各组大鼠肝组织GST-Pi蛋白表达情况
    Figure  2.  Expression of GST-Pi Protein in rat liver tissues
    2.2.1   GLUT1和PKM2 mRNA表达

    与正常组比较,模型组大鼠肝组织GLUT1及PKM2 mRNA的表达均显著升高(P值均<0.01);与模型组比较,鳖甲软肝组及抗纤抑癌组GLUT1 mRNA的表达均显著降低(P值均<0.05)(图3)。

    图  3  大鼠肝组织GLUT1和PKM2的mRNA表达
    Figure  3.  mRNA expression of GLUT1 and PKM2 in rat liver tissues
    2.2.2   GLUT1和PKM2蛋白表达

    与正常组比较,模型组大鼠肝组织GLUT1及PKM2的蛋白表达均显著升高(P值均<0.01);与模型组比较,鳖甲软肝组和抗纤抑癌组GLUT1及PKM2的蛋白表达无统计学差异(P值均>0.05);鳖甲软肝组与抗纤抑癌组GLUT1和PKM2的蛋白表达无显著差异(P值均>0.05)(图4)。

    图  4  大鼠肝组织GLUT1和PKM2的蛋白表达
    Figure  4.  Protein expression of GLUT1 and PKM2 in rat liver tissues
    2.3.1   mTOR、HIF-1α、VEGF mRNA的表达

    与正常组比较,模型组大鼠肝组织mTOR、HIF-1α及VEGF的mRNA表达均显著升高(P值均<0.01);与模型组比较,鳖甲软肝组mTOR及VEGF的mRNA的表达均显著降低(P值均<0.05),抗纤抑癌组mTOR及VEGF mRNA的表达亦显著降低(P值均<0.01)。鳖甲软肝组与抗纤抑癌组mTOR、HIF-1α、VEGF的mRNA的表达无显著差异(P值均>0.05)(图5)。

    图  5  大鼠肝组织mTOR、HIF-1α、VEGF的 mRNA表达
    Figure  5.  mRNA expression of mTOR, HIF-1α, and VEGF in rat liver tissues
    2.3.2   mTOR、HIF-1α、VEGF蛋白的表达

    与正常组比较,模型组大鼠肝组织mTOR、HIF-1α、VEGF的蛋白表达均显著升高(P值均<0.01);与模型组相比,鳖甲软肝组只有mTOR的蛋白表达显著降低(P<0.01),抗纤抑癌组mTOR、 HIF-1α、VEGF的蛋白表达均显著降低(P值均<0.05);与鳖甲软肝组相比,抗纤抑癌组mTOR的蛋白表达较高(P<0.01),HIF-1α、VEGF的蛋白表达无明显差异(图6)。

    图  6  大鼠肝组织mTOR、HIF-1α、VEGF蛋白表达
    Figure  6.  Protein expression of mTOR, HIF-1α, and VEGF in rat liver tissues

    中医药在肝癌前病变的防治中发挥积极作用。临床研究16-18表明,中药单体及其组分发挥抗炎和抗氧化、调节免疫、抑制肿瘤血管生成、抑制细胞增殖等作用。中药复方通过抑制上皮间质转化、抑制血管生成,抑制细胞增殖、调节自噬、诱导细胞凋亡、阻滞细胞周期和调节免疫功能等作用有效预防肝细胞癌变16。课题组前期研究13-1419表明抗纤抑癌方可抑制肝细胞异常增生。

    研究20-22表明,靶向mTOR/HIF-1α/VEGF是治疗横纹肌肉瘤、卵巢透明细胞腺癌和乳腺癌的有效策略。在肝癌方面,索拉非尼通过抑制mTOR相关信号通路,进而抑制HIF-1α的转录和蛋白表达,下调VEGF的表达15。本研究评估了抗纤抑癌方对mTOR/HIF-1α/VEGF途径的影响,实时荧光定量PCR及Western Blot均证实抗纤抑癌方可抑制mTOR、HIF-1α和VEGF的表达。

    mTOR/HIF-1α/VEGF通路在肝癌前病变的血管生成中发挥关键作用。肝癌前病变大鼠肝组织中mTOR的高表达与HIF-1α和VEGF上调提示该信号通路的活化。这一结果强调了mTOR/HIF-1α/VEGF通路在肝癌前病变血管生成中的潜在作用,为相关治疗策略的制订提供了新的见解。

    此外,本研究观察到抗纤抑癌方可明显降低PKM2和GLUT-1及其上游mTOR/HIF-1α的蛋白表达水平,提示在缺氧环境的刺激下,mTOR/HIF-1α信号通路异常活化,上调糖酵解相关的基因,促进PKM2、GLUT-1的表达。本研究表明糖酵解是大鼠肝癌前病变缺氧微环境的代谢特征,参与肝癌前病变的进展,因此抑制糖酵解,改善局部微环境,可阻断具有恶变潜能的癌前病变组织。

    本研究的局限性:首先,抗纤抑癌方的主要生物活性成分有待进一步研究确定。其次,仅在体内实验对抗纤抑癌方治疗肝癌前病变的作用机制进行了探讨,尚未进行细胞实验对其机制进行进一步评估验证。

    综上所述,通过探讨抗纤抑癌方在肝癌前病变中的作用,揭示了其对mTOR/HIF-1α/VEGF信号通路的抑制效应,进一步确认了其在阻止肝癌前病变进展方面的潜在作用。为深入研究提供了有力支持,同时也为开发更为精准的肝癌前病变干预策略奠定了基础。有望通过深化对抗纤抑癌方机制的解析,推动更具前瞻性的治疗策略的发展,为肝癌前病变的有效干预提供新的方向和可能性。

  • 表  1  FTO基因引物序列

    Table  1.   Primer sequence of FTO gene

    位点 引物 引物序列(5′-3′)
    rs1044925 primer 1 ACGTTGGATGTGAGCAAATGCAGAAGCCAG
    primer 2 ACGTTGGATGTATTTTGCAGACTAGTGAG
    rs9992651 primer 1 ACGTTGGATGCTCGCAAGAAATAATTCGGG
    primer 2 ACGTTGGATGGAGTAGCTGTTCTCTACTCC
    rs10830963 primer 1 ACGTTGGATGTCCCAGGCAGTTACTGGTTC
    primer 2 ACGTTGGATGTGTCTATGCTGGCAAAGCTG
    下载: 导出CSV

    表  2  两组一般临床资料及相关指标比较

    Table  2.   Comparison of general clinical data and related indicators between NAFLD and control group

    指标 NAFLD组(n=228) 对照组(n=164) 统计值 P
    男/女(例) 120/108 90/74 χ2=0.66 0.68
    年龄(岁) 52(41~63) 39(30~52) Z=-6.50 <0.01
    BMI(kg/m2 27.57±4.67 24.75±3.89 t=-5.25 <0.01
    TBil(μmol/L) 12.50(10.30~16.78) 13.20(10.38~16.50) Z=-0.34 0.73
    ALT(U/L) 28.22(18.00~42.00) 17.59(12.96~26.96) Z=-5.55 <0.01
    AST(U/L) 24.25(19.58~32.89) 20.00(16.07~24.23) Z=-5.20 <0.01
    ALP(U/L) 86.47(72.32~105.99) 74.66(59.60~87.06) Z=-3.60 <0.01
    GGT(U/L) 30.75(22.00~48.92) 18.00(12.00~26.25) Z=-7.16 <0.01
    FPG(mmol/L) 5.12(4.59~6.03) 4.92(4.49~5.22) Z=-2.67 <0.01
    TC(mmol/L) 5.09(4.34~5.81) 4.88(4.27~5.49) Z=-1.57 0.12
    TG(mmol/L) 1.79(1.19~2.49) 1.04(0.79~1.45) Z=-7.33 <0.01
    LDL(mmol/L) 3.15(2.62~3.61) 3.00(2.47~3.45) Z=-1.57 0.12
    HDL(mmol/L) 1.15(1.02~1.32) 1.30(1.13~1.49) Z=-4.08 <0.01
    下载: 导出CSV

    表  3  rs1044925、rs1157651、rs10830963基因型分布

    Table  3.   Distribution of rs1044925, rs1157651, rs10830963 genotypes

    基因型 NAFLD组(n=228) 对照组(n=164) χ2 P
    rs1044925[例(%)] 0.285 0.593
    AA 183(80.26) 128(78.05)
    CC 4(1.75) 2(1.22)
    AC 41(17.98) 34(20.73)
    rs1157651[例(%)] 0.967 0.326
    GG 177(77.63) 134(81.71)
    CC 3(1.32) 0(0)
    GC 48(21.05) 30(18.29)
    rs10830963[例(%)] 0.531 0.767
    GG 47(20.80) 30(18.40)
    CC 75(33.19) 59(36.20)
    GC 104(46.02) 74(45.40)
    注:rs1044925和rs1157651的CC基因型比例低,不适用于χ2检验,因此将其与杂合子合并后进行χ2检验。不同位点因检出率差异,检测数略小于总例数。
    下载: 导出CSV

    表  4  ACAT1 rs1044925不同等位基因携带生化指标比较

    Table  4.   Comparison of biochemical indices of different alleles of ACAT1 rs1044925

    指标 AA基因型携带者 C等位基因携带者 统计值 P
    BMI(kg/m2 26.70±4.85 26.69±3.64 t=0.02 0.99
    TBil(μmol/L) 12.75(10.33~16.68) 13.00(9.98~16.75) Z=-0.07 0.94
    ALT(U/L) 22.97(14.56~35.16) 26.10(17.09~43.52) Z=-1.23 0.22
    AST(U/L) 22.02(18.08~28.67) 22.09(18.64~32.13) Z=-0.71 0.48
    ALP(U/L) 84.91(69.04~100.89) 84.07(69.29~99.70) Z=-0.14 0.89
    GGT(U/L) 25.82(17.07~42.94) 30.00(17.71~48.02) Z=-0.53 0.60
    FPG(mmol/L) 5.04(4.52~5.76) 5.19(4.62~5.87) Z=-1.14 0.25
    TC(mmol/L) 5.09(4.31~5.76) 4.92(4.27~5.56) Z=-1.07 0.29
    TG(mmol/L) 1.42(0.94~2.1) 1.47(1.04~2.2) Z=-0.78 0.44
    LDL(mmol/L) 3.13(2.63~3.57) 2.81(2.32~3.45) Z=-2.08 0.04
    HDL(mmol/L) 1.21(1.05~1.40) 1.16(1.03~1.34) Z=-0.38 0.38
    下载: 导出CSV

    表  5  ACAT1 rs1157651不同等位基因携带生化指标比较

    Table  5.   Comparison of biochemical indices of different alleles of ACAT1 rs1157651

    指标 GG携带者 C等位基因携带者 统计值 P
    BMI(kg/m2 26.47±4.46 27.51±5.14 t=-1.65 0.10
    TBil(μmol/L) 13.05(10.30~16.80) 12.20(10.45~15.90) Z=-0.90 0.37
    ALT(U/L) 23.00(14.65~37.05) 23.17(16.46~35.35) Z=-0.40 0.69
    AST(U/L) 22.06(18.62~29.85) 22.07(18.02~28.25) Z=-0.31 0.76
    ALP(U/L) 84.75(68.98~101.77) 84.70(73.16~100.35) Z=-0.15 0.88
    GGT(U/L) 24.91(16.86~43.23) 28.00(19.05~47.76) Z=-1.44 0.15
    FPG(mmol/L) 5.06(4.55~5.74) 5.12(4.50~6.59) Z=-1.19 0.23
    TC(mmol/L) 5.00(4.34~5.77) 5.10(4.21~5.66) Z=-0.74 0.46
    TG(mmol/L) 1.38(0.94~2.12) 1.67(1.05~2.20) Z=-0.96 0.34
    LDL(mmol/L) 3.10(2.56~3.56) 3.12(2.54~3.51) Z=-0.44 0.66
    HDL(mmol/L) 1.22(1.06~1.40) 1.12(0.99~1.33) Z=-1.94 0.05
    下载: 导出CSV

    表  6  MTNR1B rs10830963不同等位基因携带生化指标比较

    Table  6.   Comparison of biochemical indices of different alleles of MTNR1B rs10830963

    指标 G等位基因携带者 CC携带者 统计值 P
    BMI(kg/m2 26.50±4.05 26.90±5.25 t=-0.75 0.45
    TBil(μmol/L) 13.20(10.60~16.80) 12.15(10.13~16.58) Z=-0.89 0.37
    ALT(U/L) 23.00(15.19~37.43) 23.30(14.47~36.34) Z=-0.17 0.87
    AST(U/L) 22.28(18.13~30.43) 21.77(18.64~28.13) Z=-0.45 0.65
    ALP(U/L) 84.58(70.61~102.29) 84.36(68.34~100.35) Z=-0.23 0.82
    GGT(U/L) 27.00(17.95~44.21) 24.22(16.22~44.17) Z=-0.98 0.33
    FPG(mmol/L) 5.14(4.65~5.88) 4.90(4.39~5.39) Z=-3.01 <0.01
    TC(mmol/L) 4.98(4.28~5.70) 5.09(4.64~5.77) Z=-0.96 0.49
    TG(mmol/L) 1.46(1.04~2.12) 1.42(0.89~2.21) Z=-0.56 0.58
    LDL(mmol/L) 3.08(2.53~3.51) 3.16(2.61~3.60) Z=-0.88 0.38
    HDL(mmol/L) 1.18(1.05~1.38) 1.22(1.03~1.38) Z=-0.08 0.94
    下载: 导出CSV
  • [1] DU DY, LIU C, QIN MY, et al. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma[J]. Acta Pharm Sin B, 2022, 12( 2): 558- 580. DOI: 10.1016/j.apsb.2021.09.019.
    [2] CHAO HW, CHAO SW, LIN H, et al. Homeostasis of glucose and lipid in non-alcoholic fatty liver disease[J]. Int J Mol Sci, 2019, 20( 2): 298. DOI: 10.3390/ijms20020298.
    [3] LU QR, TIAN XY, WU H, et al. Metabolic changes of hepatocytes in NAFLD[J]. Front Physiol, 2021, 12: 710420. DOI: 10.3389/fphys.2021.710420.
    [4] KOLIAKI C, SZENDROEDI J, KAUL K, et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis[J]. Cell Metab, 2015, 21( 5): 739- 746. DOI: 10.1016/j.cmet.2015.04.004.
    [5] SUNNY NE, PARKS EJ, BROWNING JD, et al. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease[J]. Cell Metab, 2011, 14( 6): 804- 810. DOI: 10.1016/j.cmet.2011.11.004.
    [6] TILG H, MOSCHEN AR, RODEN M. NAFLD and diabetes mellitus[J]. Nat Rev Gastroenterol Hepatol, 2017, 14( 1): 32- 42. DOI: 10.1038/nrgastro.2016.147.
    [7] HAAS JT, FRANCQUE S, STAELS B. Pathophysiology and mechanisms of nonalcoholic fatty liver disease[J]. Annu Rev Physiol, 2016, 78: 181- 205. DOI: 10.1146/annurev-physiol-021115-105331.
    [8] JONAS W, SCHÜRMANN A. Genetic and epigenetic factors determining NAFLD risk[J]. Mol Metab, 2021, 50: 101111. DOI: 10.1016/j.molmet.2020.101111.
    [9] WU CM, ZHANG CY, XU HL, et al. Epidemiological research and diagnosis of nonalcoholic fatty liver disease in China[J]. China Med Herald, 2023, 20( 11): 158- 161. DOI: 10.20047/j.issn1673-7210.2023.11.36.

    吴车敏, 张从玉, 徐慧丽, 等. 我国非酒精性脂肪性肝病的流行病学研究和诊断现状分析[J]. 中国医药导报, 2023, 20( 11): 158- 161. DOI: 10.20047/j.issn1673-7210.2023.11.36.
    [10] HAI QM, SMITH JD. Acyl-coenzyme A: Cholesterol acyltransferase(ACAT) in cholesterol metabolism: From its discovery to clinical trials and the genomics era[J]. Metabolites, 2021, 11( 8): 543. DOI: 10.3390/metabo11080543.
    [11] OHTA T, TAKATA K, KATSUREN K, et al. The influence of the acyl-CoA: Cholesterol acyltransferase-1 gene(-77G→A) polymorphisms on plasma lipid and apolipoprotein levels in normolipidemic and hyperlipidemic subjects[J]. Biochim Biophys Acta BBA Mol Cell Biol Lipds, 2004, 1682( 1-3): 56- 62. DOI: 10.1016/j.bbalip.2004.01.008.
    [12] WANG YT, WANG YH, MA YT, et al. ACAT-1 gene polymorphism is associated with increased susceptibility to coronary artery disease in Chinese Han population: A case-control study[J]. Oncotarget, 2017, 8( 51): 89055- 89063. DOI: 10.18632/oncotarget.21649.
    [13] YIN RX, WU DF, AUNG LHH, et al. Several lipid-related gene polymorphisms interact with overweight/obesity to modulate blood pressure levels[J]. Int J Mol Sci, 2012, 13( 9): 12062- 12081. DOI: 10.3390/ijms130912062.
    [14] WU YH, FISCHER DF, KALSBEEK A, et al. Pineal clock gene oscillation is disturbed in Alzheimer’s disease, due to functional disconnection from the“master clock”[J]. FASEB J, 2006, 20( 11): 1874- 1876. DOI: 10.1096/fj.05-4446fje.
    [15] SATO K, MENG FY, FRANCIS H, et al. Melatonin and circadian rhythms in liver diseases: Functional roles and potential therapies[J]. J Pineal Res, 2020, 68( 3): e12639. DOI: 10.1111/jpi.12639.
    [16] LYSSENKO V, NAGORNY CLF, ERDOS MR, et al. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion[J]. Nat Genet, 2009, 41( 1): 82- 88. DOI: 10.1038/ng.288.
    [17] XIA Q, CHEN ZX, WANG YC, et al. Association between the melatonin receptor 1B gene polymorphism on the risk of type 2 diabetes, impaired glucose regulation: A meta-analysis[J]. PLoS One, 2012, 7( 11): e50107. DOI: 10.1371/journal.pone.0050107.
    [18] MAHAJAN A, TALIUN D, THURNER M, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps[J]. Nat Genet, 2018, 50( 11): 1505- 1513. DOI: 10.1038/s41588-018-0241-6.
    [19] QI YY, FAN LR, RAN DC, et al. Main risk factors of type 2 diabetes mellitus with nonalcoholic fatty liver disease and hepatocellular carcinoma[J]. J Oncol, 2021, 2021: 7764817. DOI: 10.1155/2021/7764817.
    [20] National Workshop on Fatty Liver and Alcoholic Liver Disease, Chinese Society of Hepatology, Chinese Medical Association: Fatty Liver Expert Committee, Chinese Medical Doctor Association. Guidelines of prevention and treatment for nonalcoholic fatty liver disease: a 2018 update[J]. J Clin Hepatol, 2018, 34( 5): 947- 957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.

    中华医学会肝病学分会脂肪肝和酒精性肝病学组, 中国医师协会脂肪性肝病专家委员会. 非酒精性脂肪性肝病防治指南(2018年更新版)[J]. 临床肝胆病杂志, 2018, 34( 5): 947- 957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.
    [21] LIU Q, LIU SS, ZHAO ZZ, et al. TRIB1 rs17321515 gene polymorphism increases the risk of coronary heart disease in general population and non-alcoholic fatty liver disease patients in Chinese Han population[J]. Lipids Health Dis, 2019, 18( 1): 165. DOI: 10.1186/s12944-019-1108-2.
    [22] GHOSH S, ZHAO B, BIE JH, et al. Macrophage cholesteryl ester mobilization and atherosclerosis[J]. Vascul Pharmacol, 2010, 52( 1-2): 1- 10. DOI: 10.1016/j.vph.2009.10.002.
    [23] MIN HK, KAPOOR A, FUCHS M, et al. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease[J]. Cell Metab, 2012, 15( 5): 665- 674. DOI: 10.1016/j.cmet.2012.04.004.
    [24] KIM CH, YOUNOSSI ZM. Nonalcoholic fatty liver disease: a manifestation of the metabolic syndrome[J]. Cleve Clin J Med, 2008, 75( 10): 721- 728. DOI: 10.3949/ccjm.75.10.721.
    [25] LUDWIG J, MCGILL DB, LINDOR KD. Review: nonalcoholic steatohepatitis[J]. J Gastroenterol Hepatol, 1997, 12( 5): 398- 403. DOI: 10.1111/j.1440-1746.1997.tb00450.x.
    [26] LI Q, BAI H, FAN P, et al. Analysis of acyl-coenzyme A: cholesterol acyltransferase 1 polymorphism in patients with endogenous hypertriglyceridemia in Chinese population[J]. Chin J Med Genetics, 2008, 25( 2): 206- 210.

    李琴, 白怀, 范平, 等. 正常中国人及内源性高甘油三酯血症患者酰基辅酶A: 胆固醇酰基转移酶基因多态性的研究[J]. 中华医学遗传学杂志, 2008, 25( 2): 206- 210.
    [27] WU DF, YIN RX, CAO XL, CHEN WX. Association between single nucleotide polymorphism rs1044925 and the risk of coronary artery disease and ischemic stroke[J]. Int J Mol Sci, 2014, 15( 3): 3546- 3559. DOI: 10.3390/ijms15033546.
    [28] JI HEO, YOON DW, YU JH, et al. Melatonin improves insulin resistance and hepatic steatosis through attenuation of alpha-2-HS-glycoprotein[J]. J Pineal Res, 2018, 65( 2): e12493. DOI: 10.1111/jpi.12493
    [29] GASTALDELLI A. Insulin resistance and reduced metabolic flexibility: cause or consequence of NAFLD?[J]. Clin Sci(Lond), 2017, 131( 22): 2701- 2704. DOI: 10.1042/CS20170987.
    [30] TUOMI T, NAGORNY CLF, SINGH P, et al. Increased melatonin signaling is a risk factor for type 2 diabetes[J]. Cell Metab, 2016, 23( 6): 1067- 1077. DOI: 10.1016/j.cmet.2016.04.009.
  • 期刊类型引用(1)

    1. 王凤娇,顾超,胡沙,冯琴,郑儒娟,朱增燕,王文娟. 低剂量甲氨蝶呤联合索拉非尼对小鼠骨肉瘤移植瘤的影响及其机制. 吉林大学学报(医学版). 2025(01): 9-16 . 百度学术

    其他类型引用(0)

  • 加载中
表(6)
计量
  • 文章访问数:  497
  • HTML全文浏览量:  187
  • PDF下载量:  36
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-08-05
  • 录用日期:  2023-09-04
  • 出版日期:  2024-04-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

/

返回文章
返回