ACAT1和MTNR1B基因多态性与非酒精性脂肪性肝病易感性的关系
DOI: 10.12449/JCH240410
Association of polymorphisms of the acetyl-coA acetyltransferase 1 gene and the melatonin receptor 1B gene with the susceptibility to nonalcoholic fatty liver disease
-
摘要:
目的 本研究拟探讨乙酰辅酶A乙酰转移酶1(ACAT1)和褪黑激素受体1B(MTNR1B)基因多态性与非酒精性脂肪性肝病(NAFLD)疾病易感性的关系。 方法 本研究共纳入2020年12月—2022年6月就诊于青岛市市立医院的健康体检者164例、NAFLD患者228例。采用PCR及测序的方法对ACAT1 rs1044925、rs1157651和MTNR1B rs10830963基因多态性进行基因分型,并采集空腹静脉血进行生化检测。符合正态分布的计量资料两组间比较采用成组t检验;非正态分布的计量资料两组间比较采用Mann-Whitney U非参数检验;计数资料两组间比较采用χ2检验。 结果 ACAT1 rs1044925、rs1157651和MTNR1B rs10830963基因型分布在NAFLD及健康对照组间无统计学差异(P值均>0.05),ACAT1 rs1044925 AA基因型携带者的LDL水平明显高于C等位基因携带者(Z=-2.08,P=0.04),MTNR1B rs10830963 G等位基因携带者空腹血糖水平明显高于CC基因型携带者(Z=-3.01,P<0.01)。 结论 ACAT1 rs1044925、rs1157651和MTNR1B rs10830963多态性与NAFLD易感性无明显相关,ACAT1 rs1044925和MTNR1B rs10830963位点分别与LDL和空腹血糖水平有关。 -
关键词:
- 非酒精性脂肪性肝病 /
- 乙酰CoA C-乙酰转移酶 /
- 受体, 褪黑激素
Abstract:Objective To investigate the association of the polymorphisms of the acetyl-CoA acetyltransferase 1 (ACAT1) gene and the melatonin receptor 1B (MTNR1B) gene with the susceptibility to nonalcoholic fatty liver disease (NAFLD). Methods A total of 164 healthy controls and 228 NAFLD patients were enrolled in this study. PCR and sequencing methods were used to determine the genotypes of the polymorphisms of the ACAT1 gene at the rs1044925 and rs1157651 loci and the MTNR1B gene at the rs10830963 locus, and fasting venous blood samples were collected for biochemical analysis. The t-test was used for comparison of normally distributed continuous data between groups, and the non-parametric Mann-Whitney U test was used for comparison of non-normally distributed continuous data between groups; the chi-square test was used for comparison of categorical data between groups. Results There were no significant differences between the NAFLD group and the healthy control group in the genotype distribution of the ACAT1 gene at the rs1044925 and rs1157651 loci and the MTNR1B gene at the rs10830963 locus (all P>0.05). The carriers of AA genotype at the rs1044925 locus of the ACAT1 gene had a significantly higher level of low-density lipoprotein than the carriers of C allele (Z=-2.08, P=0.04), and the carriers of G allele at the rs10830963 locus of the MTNR1B gene had a significantly higher level of fasting blood glucose than the carriers of CC genotype (Z=-3.01, P<0.01). Conclusion The polymorphisms of the ACAT1 gene at the rs1044925 and rs1157651 loci and the MTNR1B gene at the rs10830963 locus were not associated with the susceptibility to NAFLD. The rs1044925 locus of the ACAT1 gene and the rs10830963 locus of the MTNR1B gene are associated with the levels of low-density lipoprotein and fasting blood glucose, respectively. -
表 1 FTO基因引物序列
Table 1. Primer sequence of FTO gene
位点 引物 引物序列(5′-3′) rs1044925 primer 1 ACGTTGGATGTGAGCAAATGCAGAAGCCAG primer 2 ACGTTGGATGTATTTTGCAGACTAGTGAG rs9992651 primer 1 ACGTTGGATGCTCGCAAGAAATAATTCGGG primer 2 ACGTTGGATGGAGTAGCTGTTCTCTACTCC rs10830963 primer 1 ACGTTGGATGTCCCAGGCAGTTACTGGTTC primer 2 ACGTTGGATGTGTCTATGCTGGCAAAGCTG 表 2 两组一般临床资料及相关指标比较
Table 2. Comparison of general clinical data and related indicators between NAFLD and control group
指标 NAFLD组(n=228) 对照组(n=164) 统计值 P值 男/女(例) 120/108 90/74 χ2=0.66 0.68 年龄(岁) 52(41~63) 39(30~52) Z=-6.50 <0.01 BMI(kg/m2) 27.57±4.67 24.75±3.89 t=-5.25 <0.01 TBil(μmol/L) 12.50(10.30~16.78) 13.20(10.38~16.50) Z=-0.34 0.73 ALT(U/L) 28.22(18.00~42.00) 17.59(12.96~26.96) Z=-5.55 <0.01 AST(U/L) 24.25(19.58~32.89) 20.00(16.07~24.23) Z=-5.20 <0.01 ALP(U/L) 86.47(72.32~105.99) 74.66(59.60~87.06) Z=-3.60 <0.01 GGT(U/L) 30.75(22.00~48.92) 18.00(12.00~26.25) Z=-7.16 <0.01 FPG(mmol/L) 5.12(4.59~6.03) 4.92(4.49~5.22) Z=-2.67 <0.01 TC(mmol/L) 5.09(4.34~5.81) 4.88(4.27~5.49) Z=-1.57 0.12 TG(mmol/L) 1.79(1.19~2.49) 1.04(0.79~1.45) Z=-7.33 <0.01 LDL(mmol/L) 3.15(2.62~3.61) 3.00(2.47~3.45) Z=-1.57 0.12 HDL(mmol/L) 1.15(1.02~1.32) 1.30(1.13~1.49) Z=-4.08 <0.01 表 3 rs1044925、rs1157651、rs10830963基因型分布
Table 3. Distribution of rs1044925, rs1157651, rs10830963 genotypes
基因型 NAFLD组(n=228) 对照组(n=164) χ2值 P值 rs1044925[例(%)] 0.285 0.593 AA 183(80.26) 128(78.05) CC 4(1.75) 2(1.22) AC 41(17.98) 34(20.73) rs1157651[例(%)] 0.967 0.326 GG 177(77.63) 134(81.71) CC 3(1.32) 0(0) GC 48(21.05) 30(18.29) rs10830963[例(%)] 0.531 0.767 GG 47(20.80) 30(18.40) CC 75(33.19) 59(36.20) GC 104(46.02) 74(45.40) 注:rs1044925和rs1157651的CC基因型比例低,不适用于χ2检验,因此将其与杂合子合并后进行χ2检验。不同位点因检出率差异,检测数略小于总例数。 表 4 ACAT1 rs1044925不同等位基因携带生化指标比较
Table 4. Comparison of biochemical indices of different alleles of ACAT1 rs1044925
指标 AA基因型携带者 C等位基因携带者 统计值 P值 BMI(kg/m2) 26.70±4.85 26.69±3.64 t=0.02 0.99 TBil(μmol/L) 12.75(10.33~16.68) 13.00(9.98~16.75) Z=-0.07 0.94 ALT(U/L) 22.97(14.56~35.16) 26.10(17.09~43.52) Z=-1.23 0.22 AST(U/L) 22.02(18.08~28.67) 22.09(18.64~32.13) Z=-0.71 0.48 ALP(U/L) 84.91(69.04~100.89) 84.07(69.29~99.70) Z=-0.14 0.89 GGT(U/L) 25.82(17.07~42.94) 30.00(17.71~48.02) Z=-0.53 0.60 FPG(mmol/L) 5.04(4.52~5.76) 5.19(4.62~5.87) Z=-1.14 0.25 TC(mmol/L) 5.09(4.31~5.76) 4.92(4.27~5.56) Z=-1.07 0.29 TG(mmol/L) 1.42(0.94~2.1) 1.47(1.04~2.2) Z=-0.78 0.44 LDL(mmol/L) 3.13(2.63~3.57) 2.81(2.32~3.45) Z=-2.08 0.04 HDL(mmol/L) 1.21(1.05~1.40) 1.16(1.03~1.34) Z=-0.38 0.38 表 5 ACAT1 rs1157651不同等位基因携带生化指标比较
Table 5. Comparison of biochemical indices of different alleles of ACAT1 rs1157651
指标 GG携带者 C等位基因携带者 统计值 P值 BMI(kg/m2) 26.47±4.46 27.51±5.14 t=-1.65 0.10 TBil(μmol/L) 13.05(10.30~16.80) 12.20(10.45~15.90) Z=-0.90 0.37 ALT(U/L) 23.00(14.65~37.05) 23.17(16.46~35.35) Z=-0.40 0.69 AST(U/L) 22.06(18.62~29.85) 22.07(18.02~28.25) Z=-0.31 0.76 ALP(U/L) 84.75(68.98~101.77) 84.70(73.16~100.35) Z=-0.15 0.88 GGT(U/L) 24.91(16.86~43.23) 28.00(19.05~47.76) Z=-1.44 0.15 FPG(mmol/L) 5.06(4.55~5.74) 5.12(4.50~6.59) Z=-1.19 0.23 TC(mmol/L) 5.00(4.34~5.77) 5.10(4.21~5.66) Z=-0.74 0.46 TG(mmol/L) 1.38(0.94~2.12) 1.67(1.05~2.20) Z=-0.96 0.34 LDL(mmol/L) 3.10(2.56~3.56) 3.12(2.54~3.51) Z=-0.44 0.66 HDL(mmol/L) 1.22(1.06~1.40) 1.12(0.99~1.33) Z=-1.94 0.05 表 6 MTNR1B rs10830963不同等位基因携带生化指标比较
Table 6. Comparison of biochemical indices of different alleles of MTNR1B rs10830963
指标 G等位基因携带者 CC携带者 统计值 P值 BMI(kg/m2) 26.50±4.05 26.90±5.25 t=-0.75 0.45 TBil(μmol/L) 13.20(10.60~16.80) 12.15(10.13~16.58) Z=-0.89 0.37 ALT(U/L) 23.00(15.19~37.43) 23.30(14.47~36.34) Z=-0.17 0.87 AST(U/L) 22.28(18.13~30.43) 21.77(18.64~28.13) Z=-0.45 0.65 ALP(U/L) 84.58(70.61~102.29) 84.36(68.34~100.35) Z=-0.23 0.82 GGT(U/L) 27.00(17.95~44.21) 24.22(16.22~44.17) Z=-0.98 0.33 FPG(mmol/L) 5.14(4.65~5.88) 4.90(4.39~5.39) Z=-3.01 <0.01 TC(mmol/L) 4.98(4.28~5.70) 5.09(4.64~5.77) Z=-0.96 0.49 TG(mmol/L) 1.46(1.04~2.12) 1.42(0.89~2.21) Z=-0.56 0.58 LDL(mmol/L) 3.08(2.53~3.51) 3.16(2.61~3.60) Z=-0.88 0.38 HDL(mmol/L) 1.18(1.05~1.38) 1.22(1.03~1.38) Z=-0.08 0.94 -
[1] DU DY, LIU C, QIN MY, et al. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma[J]. Acta Pharm Sin B, 2022, 12( 2): 558- 580. DOI: 10.1016/j.apsb.2021.09.019. [2] CHAO HW, CHAO SW, LIN H, et al. Homeostasis of glucose and lipid in non-alcoholic fatty liver disease[J]. Int J Mol Sci, 2019, 20( 2): 298. DOI: 10.3390/ijms20020298. [3] LU QR, TIAN XY, WU H, et al. Metabolic changes of hepatocytes in NAFLD[J]. Front Physiol, 2021, 12: 710420. DOI: 10.3389/fphys.2021.710420. [4] KOLIAKI C, SZENDROEDI J, KAUL K, et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis[J]. Cell Metab, 2015, 21( 5): 739- 746. DOI: 10.1016/j.cmet.2015.04.004. [5] SUNNY NE, PARKS EJ, BROWNING JD, et al. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease[J]. Cell Metab, 2011, 14( 6): 804- 810. DOI: 10.1016/j.cmet.2011.11.004. [6] TILG H, MOSCHEN AR, RODEN M. NAFLD and diabetes mellitus[J]. Nat Rev Gastroenterol Hepatol, 2017, 14( 1): 32- 42. DOI: 10.1038/nrgastro.2016.147. [7] HAAS JT, FRANCQUE S, STAELS B. Pathophysiology and mechanisms of nonalcoholic fatty liver disease[J]. Annu Rev Physiol, 2016, 78: 181- 205. DOI: 10.1146/annurev-physiol-021115-105331. [8] JONAS W, SCHÜRMANN A. Genetic and epigenetic factors determining NAFLD risk[J]. Mol Metab, 2021, 50: 101111. DOI: 10.1016/j.molmet.2020.101111. [9] WU CM, ZHANG CY, XU HL, et al. Epidemiological research and diagnosis of nonalcoholic fatty liver disease in China[J]. China Med Herald, 2023, 20( 11): 158- 161. DOI: 10.20047/j.issn1673-7210.2023.11.36.吴车敏, 张从玉, 徐慧丽, 等. 我国非酒精性脂肪性肝病的流行病学研究和诊断现状分析[J]. 中国医药导报, 2023, 20( 11): 158- 161. DOI: 10.20047/j.issn1673-7210.2023.11.36. [10] HAI QM, SMITH JD. Acyl-coenzyme A: Cholesterol acyltransferase(ACAT) in cholesterol metabolism: From its discovery to clinical trials and the genomics era[J]. Metabolites, 2021, 11( 8): 543. DOI: 10.3390/metabo11080543. [11] OHTA T, TAKATA K, KATSUREN K, et al. The influence of the acyl-CoA: Cholesterol acyltransferase-1 gene(-77G→A) polymorphisms on plasma lipid and apolipoprotein levels in normolipidemic and hyperlipidemic subjects[J]. Biochim Biophys Acta BBA Mol Cell Biol Lipds, 2004, 1682( 1-3): 56- 62. DOI: 10.1016/j.bbalip.2004.01.008. [12] WANG YT, WANG YH, MA YT, et al. ACAT-1 gene polymorphism is associated with increased susceptibility to coronary artery disease in Chinese Han population: A case-control study[J]. Oncotarget, 2017, 8( 51): 89055- 89063. DOI: 10.18632/oncotarget.21649. [13] YIN RX, WU DF, AUNG LHH, et al. Several lipid-related gene polymorphisms interact with overweight/obesity to modulate blood pressure levels[J]. Int J Mol Sci, 2012, 13( 9): 12062- 12081. DOI: 10.3390/ijms130912062. [14] WU YH, FISCHER DF, KALSBEEK A, et al. Pineal clock gene oscillation is disturbed in Alzheimer’s disease, due to functional disconnection from the“master clock”[J]. FASEB J, 2006, 20( 11): 1874- 1876. DOI: 10.1096/fj.05-4446fje. [15] SATO K, MENG FY, FRANCIS H, et al. Melatonin and circadian rhythms in liver diseases: Functional roles and potential therapies[J]. J Pineal Res, 2020, 68( 3): e12639. DOI: 10.1111/jpi.12639. [16] LYSSENKO V, NAGORNY CLF, ERDOS MR, et al. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion[J]. Nat Genet, 2009, 41( 1): 82- 88. DOI: 10.1038/ng.288. [17] XIA Q, CHEN ZX, WANG YC, et al. Association between the melatonin receptor 1B gene polymorphism on the risk of type 2 diabetes, impaired glucose regulation: A meta-analysis[J]. PLoS One, 2012, 7( 11): e50107. DOI: 10.1371/journal.pone.0050107. [18] MAHAJAN A, TALIUN D, THURNER M, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps[J]. Nat Genet, 2018, 50( 11): 1505- 1513. DOI: 10.1038/s41588-018-0241-6. [19] QI YY, FAN LR, RAN DC, et al. Main risk factors of type 2 diabetes mellitus with nonalcoholic fatty liver disease and hepatocellular carcinoma[J]. J Oncol, 2021, 2021: 7764817. DOI: 10.1155/2021/7764817. [20] National Workshop on Fatty Liver and Alcoholic Liver Disease, Chinese Society of Hepatology, Chinese Medical Association: Fatty Liver Expert Committee, Chinese Medical Doctor Association. Guidelines of prevention and treatment for nonalcoholic fatty liver disease: a 2018 update[J]. J Clin Hepatol, 2018, 34( 5): 947- 957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.中华医学会肝病学分会脂肪肝和酒精性肝病学组, 中国医师协会脂肪性肝病专家委员会. 非酒精性脂肪性肝病防治指南(2018年更新版)[J]. 临床肝胆病杂志, 2018, 34( 5): 947- 957. DOI: 10.3969/j.issn.1001-5256.2018.05.007. [21] LIU Q, LIU SS, ZHAO ZZ, et al. TRIB1 rs17321515 gene polymorphism increases the risk of coronary heart disease in general population and non-alcoholic fatty liver disease patients in Chinese Han population[J]. Lipids Health Dis, 2019, 18( 1): 165. DOI: 10.1186/s12944-019-1108-2. [22] GHOSH S, ZHAO B, BIE JH, et al. Macrophage cholesteryl ester mobilization and atherosclerosis[J]. Vascul Pharmacol, 2010, 52( 1-2): 1- 10. DOI: 10.1016/j.vph.2009.10.002. [23] MIN HK, KAPOOR A, FUCHS M, et al. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease[J]. Cell Metab, 2012, 15( 5): 665- 674. DOI: 10.1016/j.cmet.2012.04.004. [24] KIM CH, YOUNOSSI ZM. Nonalcoholic fatty liver disease: a manifestation of the metabolic syndrome[J]. Cleve Clin J Med, 2008, 75( 10): 721- 728. DOI: 10.3949/ccjm.75.10.721. [25] LUDWIG J, MCGILL DB, LINDOR KD. Review: nonalcoholic steatohepatitis[J]. J Gastroenterol Hepatol, 1997, 12( 5): 398- 403. DOI: 10.1111/j.1440-1746.1997.tb00450.x. [26] LI Q, BAI H, FAN P, et al. Analysis of acyl-coenzyme A: cholesterol acyltransferase 1 polymorphism in patients with endogenous hypertriglyceridemia in Chinese population[J]. Chin J Med Genetics, 2008, 25( 2): 206- 210.李琴, 白怀, 范平, 等. 正常中国人及内源性高甘油三酯血症患者酰基辅酶A: 胆固醇酰基转移酶基因多态性的研究[J]. 中华医学遗传学杂志, 2008, 25( 2): 206- 210. [27] WU DF, YIN RX, CAO XL, CHEN WX. Association between single nucleotide polymorphism rs1044925 and the risk of coronary artery disease and ischemic stroke[J]. Int J Mol Sci, 2014, 15( 3): 3546- 3559. DOI: 10.3390/ijms15033546. [28] JI HEO, YOON DW, YU JH, et al. Melatonin improves insulin resistance and hepatic steatosis through attenuation of alpha-2-HS-glycoprotein[J]. J Pineal Res, 2018, 65( 2): e12493. DOI: 10.1111/jpi.12493 [29] GASTALDELLI A. Insulin resistance and reduced metabolic flexibility: cause or consequence of NAFLD?[J]. Clin Sci(Lond), 2017, 131( 22): 2701- 2704. DOI: 10.1042/CS20170987. [30] TUOMI T, NAGORNY CLF, SINGH P, et al. Increased melatonin signaling is a risk factor for type 2 diabetes[J]. Cell Metab, 2016, 23( 6): 1067- 1077. DOI: 10.1016/j.cmet.2016.04.009.
计量
- 文章访问数: 349
- HTML全文浏览量: 144
- PDF下载量: 34
- 被引次数: 0