中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

松果菊苷对雨蛙素诱导的急性胰腺炎大鼠模型胰腺及肝损伤的影响与机制

马明和 达哇卓玛 刘川川 樊海宁

引用本文:
Citation:

松果菊苷对雨蛙素诱导的急性胰腺炎大鼠模型胰腺及肝损伤的影响与机制

DOI: 10.12449/JCH240422
基金项目: 

青海省“昆仑英才·高端创新创业人才计划项目” 

伦理学声明:本研究方案经由青海大学附属医院伦理委员会审批,批准号:P-SL-2022-018,符合实验室动物管理与使用准则。
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:刘川川、樊海宁负责课题设计;马明和、达哇卓玛、刘川川参与收集数据,资料分析,撰写论文,修改论文;樊海宁负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    刘川川, 18797331470@139.com (ORCID: 0000-0002-8885-2368)

    樊海宁, fanhaining@medmail.com.cn (ORCID: 0000-0001-7791-5725)

Effect of echinacoside intervention on liver and pancreas injury in rats with acute pancreatitis and its mechanism

Research funding: 

Qinghai Province “Kunlun Talents·High-end Innovative Talents” Project 

More Information
  • 摘要:   目的  通过建立急性胰腺炎(AP)大鼠模型,研究松果菊苷(ECH)对雨蛙素诱导的AP大鼠模型胰腺及肝损伤的改善作用及机制。  方法  24只SD大鼠随机分为空白组(Con组)、对照组(Con+ECH组)、AP组和AP+ECH组4组,每组各6只。AP模型构建前7 d给予10 mg/kg ECH腹腔注射,雨蛙素末次给药24 h后,腹主动脉取血,分离血清行ALT、AST、乳酸脱氢酶(LDH)、GGT、ALP、Alb、TBil、胆碱酯酶(ChE)、血淀粉酶(Amy)、脂肪酶(LPS)等生化检测;HE染色检测胰腺和肝组织病理学改变;透射电镜观察胰腺和肝组织微观结构改变;ELISA检测肝组织匀浆中IL-1β、IL-6、TNF-α、IL-10水平;免疫组化分析胰腺和肝组织中TNF-α和p-p65 NF-κB水平;Western Blot检测肝组织中NF-κB通路蛋白表达水平。计量资料多组间比较采用单因素方差分析,进一步两两比较采用SNK-q或Dunnett’s T3检验。  结果  与Con组相比,AP组大鼠ALT、AST、GGT、LDH、ALP、TBil、AMY、LPS指标均明显增高(P值均<0.01);肝组织匀浆液IL-1β、IL-6、IL-10、TNF-α水平均增加(P值均<0.01)。ECH干预降低AP大鼠ALT、AST、GGT、LDH、ALP、TBil、AMY、LPS水平,并能抑制IL-1β、IL-6、TNF-α的分泌。HE染色观察可见ECH干预后胰腺组织中腺泡细胞空泡变性和炎性细胞浸润较AP组减轻,肝细胞坏死较AP组减轻。透射电镜检查镜下见ECH干预后肝和胰腺细胞内线粒体肿胀程度较AP组减轻。ECH干预后能部分逆转AP大鼠胰腺和肝组织中p-p65 NF-κB、TNF-α的表达增加。此外,AP大鼠肝组织中MyD88、p-IκBα、p-IKKα、p-p65表达上调,而ECH干预后能部分逆转。  结论  松果菊苷可通过抑制TLR4/MyD88/NF-κB途径来改善AP诱发的胰腺和肝损伤。

     

  • 图  1  ECH对AP大鼠模型血清AMY和LPS活性的影响

    Figure  1.  The effects of Echinacoside on serum amylase and lipase activity in rats with Cerulein-induced acute pancreatitis

    图  2  胰腺干湿重比

    Figure  2.  The ratio of dry to wet weight of the pancreas

    图  3  ECH对AP大鼠胰腺组织病理学改变的影响(HE染色,×400)

    注: a,Con组;b,AP组;c,ECH组;d,AP+ECH组

    Figure  3.  The effect of Echinacoside on the pancreatic morphology of rats with AP(HE staining,×400)

    图  4  ECH对AP大鼠肝脏组织病理学改变的影响(HE染色,×400)

    注: a,Con组;b,AP组;c,ECH组;d,AP+ECH组

    Figure  4.  The effect of Echinacoside on the hepatic morphology of rats with AP (HE staining,×400)

    图  5  TEM观察肝组织微观结构变化

    注: a,Con组(×25 000);b,AP组(×8 000);c,ECH组(×25 000);d,AP+ECH组(×8 000)。N:细胞核;Mi:线粒体;APG:自噬体。

    Figure  5.  Changes of hepatic microscopic structure under TEM

    图  6  TEM观察胰腺组织微观结构变化

    注: a,Con组(×25 000);b,AP组(×8 000);c,ECH组(×25 000);d,AP+ECH组(×8 000)。ZG:酶原颗粒;ER:内质网。

    Figure  6.  Changes of pancreatic microscopic structure under TEM

    图  7  大鼠IL1β、IL-6、TNF-α、IL-10炎症因子变化水平

    Figure  7.  Change levels of inflammatory factors of IL-1β, IL-6, TNF-α and IL-10 in rats

    图  8  免疫组化分析胰腺和肝组织中NF-κB p65、TNF-α表达水平

    Figure  8.  The expression levels of NF-κB p65 and TNF-α in pancreatic and hepatic tissues with Immunohistochemical analysis

    图  9  Western Blot分析肝组织中NF-κB信号通路蛋白表达水平

    Figure  9.  The expression levels of NF-κB p65 signaling pathway protein in hepatic tissues with Western blot

    表  1  ECH对雨蛙素诱导AP大鼠肝酶水平的影响

    Table  1.   The effects of Echinacoside on hepatic enzyme in rats with Cerulein-induced acute pancreatitis

    项目 Con组(n=6) Con+ECH组(n=6) AP组(n=6) AP+ECH组(n=6) F P
    ALT(U/L) 37.35±11.04 32.95±9.90 185.07±33.581) 101.05±21.883) 66.53 <0.01
    AST(U/L) 138.67±45.21 155.72±52.61 588.58±91.761) 329.28±85.663) 50.93 <0.01
    GGT(U/L) 27.13±5.98 27.92±5.35 74.78±22.351) 43.80±11.653) 17.03 <0.01
    Alb(U/L) 38.05±2.66 38.72±1.80 15.40±3.821) 27.82±3.343) 79.53 <0.01
    ChE(U/L) 114.60±19.36 117.87±21.63 58.35±12.251) 93.95±8.193) 16.96 <0.01
    LDH(U/L) 389.72±125.35 381.48±120.51 642.20±155.95 440.87±120.55 5.17 <0.01
    ALP(U/L) 26.43±4.56 26.70±5.22 55.88±14.371) 35.77±7.333) 14.88 <0.01
    TBil(μmol/L) 5.02±1.00 5.46±1.17 11.56±2.731) 6.25±1.723) 17.34 <0.01
    注:与Con组比较,1)P<0.01,2)P<0.05;与AP组比较,3)P<0.01。
    下载: 导出CSV
  • [1] MASAMUNE A, HAMADA S, KIKUTA K. Implementation of pancreatitis bundles is associated with reduced mortality in patients with severe acute pancreatitis in Japan[J]. Pancreas, 2021, 50( 2): e24- e25. DOI: 10.1097/MPA.0000000000001750.
    [2] XIAO AY, TAN MLY, WU LM, et al. Global incidence and mortality of pancreatic diseases: A systematic review, meta-analysis, and meta-regression of population-based cohort studies[J]. Lancet Gastroenterol Hepatol, 2016, 1( 1): 45- 55. DOI: 10.1016/S2468-1253(16)30004-8.
    [3] KONG LJ, ZHANG HW, LU CS, et al. AICAR, an AMP-activated protein kinase activator, ameliorates acute pancreatitis-associated liver injury partially through Nrf2-mediated antioxidant effects and inhibition of NLRP3 inflammasome activation[J]. Front Pharmacol, 2021, 12: 724514. DOI: 10.3389/fphar.2021.724514.
    [4] FU ZF, FAN X, WANG XY, et al. Cistanches Herba: An overview of its chemistry, pharmacology, and pharmacokinetics property[J]. J Ethnopharmacol, 2018, 219: 233- 247. DOI: 10.1016/j.jep.2017.10.015.
    [5] SONG YL, ZENG KW, JIANG Y, et al. Cistanches Herba, from an endangered species to a big brand of Chinese medicine[J]. Med Res Rev, 2021, 41( 3): 1539- 1577. DOI: 10.1002/med.21768.
    [6] WANG NQ, JI SZ, ZHANG H, et al. Herba cistanches: Anti-aging[J]. Aging Dis, 2017, 8( 6): 740- 759. DOI: 10.14336/AD.2017.0720.
    [7] WANG YH, XUAN ZH, TIAN S, et al. Echinacoside protects against 6-hydroxydopamine-induced mitochondrial dysfunction and inflammatory responses in PC12 cells via reducing ROS production[J]. Evid Based Complement Alternat Med, 2015, 2015: 189239. DOI: 10.1155/2015/189239.
    [8] LU CW, HSIEH HL, LIN TY, et al. Echinacoside, an active constituent of Cistanche herba, exerts a neuroprotective effect in a kainic acid rat model by inhibiting inflammatory processes and activating the akt/GSK3β pathway[J]. Biol Pharm Bull, 2018, 41( 11): 1685- 1693. DOI: 10.1248/bpb.b18-00407.
    [9] YANG L, ZHANG X, LIAO M, et al. Echinacoside improves diabetic liver injury by regulating the AMPK/SIRT1 signaling pathway in db/db mice[J]. Life Sci, 2021, 271: 119237. DOI: 10.1016/j.lfs.2021.119237.
    [10] LI W, ZHOU J, ZHANG YJ, et al. Echinacoside exerts anti-tumor activity via the miR-503-3p/TGF-β1/Smad aixs in liver cancer[J]. Cancer Cell Int, 2021, 21( 1): 304. DOI: 10.1186/s12935-021-01890-3.
    [11] CHEN XT, YANG YS, CHEN K, et al. Advances in the research of experimental animal models of acute pancreatitis[J]. Chin J Gen Pract, 2017, 15( 5): 857- 860. DOI: 10.16766/j.cnki.issn.1674-4152.2017.05.039.

    陈杏田, 杨元生, 陈垦, 等. 急性胰腺炎实验动物模型的研究进展[J]. 中华全科医学, 2017, 15( 5): 857- 860. DOI: 10.16766/j.cnki.issn.1674-4152.2017.05.039.
    [12] HYUN JJ, LEE HS. Experimental models of pancreatitis[J]. Clin Endosc, 2014, 47( 3): 212- 216. DOI: 10.5946/ce.2014.47.3.212.
    [13] MCGILL MR, JAESCHKE H. Animal models of drug-induced liver injury[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865( 5): 1031- 1039. DOI: 10.1016/j.bbadis.2018.08.037.
    [14] BARBALAT R, LAU L, LOCKSLEY RM, et al. Toll-like receptor 2 on inflammatory monocytes induces type I interferon in response to viral but not bacterial ligands[J]. Nat Immunol, 2009, 10( 11): 1200- 1207. DOI: 10.1038/ni.1792.
    [15] FUREY C, BUXBAUM J, CHAMBLISS AB. A review of biomarker utilization in the diagnosis and management of acute pancreatitis reveals amylase ordering is favored in patients requiring laparoscopic cholecystectomy[J]. Clin Biochem, 2020, 77: 54- 56. DOI: 10.1016/j.clinbiochem.2019.12.014.
    [16] HOESEL B, SCHMID JA. The complexity of NF-κB signaling in inflammation and cancer[J]. Mol Cancer, 2013, 12: 86. DOI: 10.1186/1476-4598-12-86.
    [17] ZHANG H, SHAN Y, WU Y, et al. Berberine suppresses LPS-induced inflammation through modulating Sirt1/NF-‍κB signaling pathway in RAW264.7 cells[J]. Int Immunopharmacol, 2017, 52: 93- 100. DOI: 10.1016/j.intimp.2017.08.032.
    [18] LAPIERRE P, BÉLAND K, ALVAREZ F. Pathogenesis of autoimmune hepatitis: From break of tolerance to immune-mediated hepatocyte apoptosis[J]. Transl Res, 2007, 149( 3): 107- 113. DOI: 10.1016/j.trsl.2006.11.010.
    [19] LAN DT, HE L, LI MD, et al. Echinacoside improves liver damage and inflammatory response in septic rats by activating Nrf pathway[J]. Chin J Immunol, 2020, 36( 4): 428- 432, 438. DOI: 10.3969/j.issn.1000-484X.2020.04.09.

    兰戴天, 何力, 李茂德, 等. 松果菊苷改善脓毒症大鼠的肝损伤和炎症反应与激活Nrf通路相关[J]. 中国免疫学杂志, 2020, 36( 4): 428- 432, 438. DOI: 10.3969/j.issn.1000-484X.2020.04.09.
    [20] WANG H, ZHANG XQ. Observation on Curative Effect of Huaxian Rougan Liquid Combined with Western Medicine in Treatment of Liver Fibrosis due to Hepatitis B and Effects on Serum IL-6, TNF-α and TGF-β1[J]. Chin J Tradit Med Sci Technol, 2022, 29( 4): 579- 581.

    王欢, 张晓强. 化纤柔肝饮辅助西药治疗乙型肝炎肝纤维化的效果观察及对血清IL-6、TNF-α及TGF-β1水平的影响[J]. 中国中医药科技, 2022, 29( 4): 579- 581.
    [21] FENG WW, WU AB, WANG HB. Effect of apigenin on the expressions of IL-1β, IL-6, TNF-α in rats with hepatic ischemia-reperfusion injury[J]. Chin J Gen Pract, 2019, 17( 2): 183- 185. DOI: 10.16766/j.cnki.issn.1674-4152.000634.

    冯韦韦, 吴爱兵, 王宏宾. 芹菜素对肝缺血-再灌注大鼠IL-1β、IL-6及TNF-α表达的影响[J]. 中华全科医学, 2019, 17( 2): 183- 185. DOI: 10.16766/j.cnki.issn.1674-4152.000634.
    [22] LIU JK, ZHAO WX, XU SC. Effects of Tuihuang mixture on endotoxin and levels of TNF-α, IL-1β and IL-6 in rats with acute liver failure[J]. Lishizhen Med Mater Med Res, 2015, 26( 3): 587- 588. DOI: 10.3969/j.issn.1008-0805.2015.03.026.

    刘江凯, 赵文霞, 许顺畅. 退黄合剂对急性肝衰竭大鼠内毒素及TNF-α、IL-1β、IL-6水平的影响[J]. 时珍国医国药, 2015, 26( 3): 587- 588. DOI: 10.3969/j.issn.1008-0805.2015.03.026.
    [23] UEMATSU S, FUJIMOTO K, JANG MH, et al. Regulation of humoral and cellular gut immunity by Lamina propria dendritic cells expressing Toll-like receptor 5[J]. Nat Immunol, 2008, 9( 7): 769- 776. DOI: 10.1038/ni.1622.
    [24] YAROVINSKY F, ZHANG DK, ANDERSEN JF, et al. TLR11 activation of dendritic cells by a protozoan profilin-like protein[J]. Science, 2005, 308( 5728): 1626- 1629. DOI: 10.1126/science.1109893.
    [25] YAMAMOTO M, TAKEDA K. Current views of toll-like receptor signaling pathways[J]. Gastroenterol Res Pract, 2010, 2010: 240365. DOI: 10.1155/2010/240365.
    [26] TANIGUCHI K, KARIN M. NF-κB, inflammation, immunity and cancer: Coming of age[J]. Nat Rev Immunol, 2018, 18( 5): 309- 324. DOI: 10.1038/nri.2017.142.
    [27] JIN JL, YU XF, HU ZC, et al. Isofraxidin targets the TLR4/MD-2 axis to prevent osteoarthritis development[J]. Food Funct, 2018, 9( 11): 5641- 5652. DOI: 10.1039/c8fo01445k.
    [28] KUZMICH NN, SIVAK KV, CHUBAREV VN, et al. TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis[J]. Vaccines, 2017, 5( 4): 34. DOI: 10.3390/vaccines5040034.
    [29] ZHANG XS, XUE CY, XU Q, et al. Caprylic acid suppresses inflammation via TLR4/NF-κB signaling and improves atherosclerosis in ApoE-deficient mice[J]. Nutr Metab, 2019, 16: 40. DOI: 10.1186/s12986-019-0359-2.
    [30] WAN ZH, ZENG L, ZHOU H, et al. Protective effect of polyphyllin Ⅶ on acute lung injury in rats with severe acute pancreatitis by inhibiting NF-κB signaling pathway[J]. J Jilin Univ Med Ed, 2022, 48( 3): 668- 675. DOI: 10.13481/j.1671-587X.20220315.

    万朝辉, 曾良, 周辉, 等. 重楼皂苷Ⅶ通过抑制NF-κB信号通路对重症急性胰腺炎大鼠急性肺损伤的保护作用[J]. 吉林大学学报(医学版), 2022, 48( 3): 668- 675. DOI: 10.13481/j.1671-587X.20220315.
    [31] SONG IJ, YANG YM, INOKUCHI-SHIMIZU S, et al. The contribution of toll-like receptor signaling to the development of liver fibrosis and cancer in hepatocyte-specific TAK1-deleted mice[J]. Int J Cancer, 2018, 142( 1): 81- 91. DOI: 10.1002/ijc.31029.
    [32] ZOU M, YANG L, NIU L, et al. Baicalin ameliorates Mycoplasma gallisepticum-induced lung inflammation in chicken by inhibiting TLR6-mediated NF-κB signalling[J]. Br Poult Sci, 2021, 62( 2): 199- 210. DOI: 10.1080/00071668.2020.1847251.
    [33] ZHANG HL, JIA CX, LI HO, et al. Shenshao decoction improves myocardial inflammatory injury in diabetic rats by regulation of TLR4/MyD88 pathway[J]. Chin J Comp Med, 2017, 27( 8): 28- 33. DOI: 10.3969.j.issn.1671-7856.2017.08.006.

    张红利, 贾春新, 李海鸥, 等. 参芍口服液调控TLR4/MyD88通路改善糖尿病大鼠心肌炎症损伤[J]. 中国比较医学杂志, 2017, 27( 8): 28- 33. DOI: 10.3969.j.issn.1671-7856.2017.08.006.
    [34] LIU MJ, XIE JH, SUN YX. TLR4/MyD88/NF-κB-mediated inflammation contributes to cardiac dysfunction in rats of PTSD[J]. Cell Mol Neurobiol, 2020, 40( 6): 1029- 1035. DOI: 10.1007/s10571-020-00791-9.
    [35] DANG L, SONG L, ZHANG XQ, et al. Chaiqinchengqi decoction alleviates liver injury during severe acute pancreatitis in mice via inhibition of TLR4/NF-κB p65 pathway[J]. Chin Pharmacol Bull, 2020, 36( 1): 134- 139. DOI: 10.3969/j.issn.1001-1978.2020.01.026.

    党琳, 宋亮, 张晓芹, 等. 柴芩承气汤通过抑制TLR4/NF-κB p65通路减轻小鼠重症急性胰腺炎并发肝损伤[J]. 中国药理学通报, 2020, 36( 1): 134- 139. DOI: 10.3969/j.issn.1001-1978.2020.01.026.
    [36] LU B, YU YQ, YIN JJ, et al. Effects of PPAR-γ agonists on liver cells in rats correlate with NF-kappa B/TLR4 signal pathway during acute pancreatitis[J]. China Mod Dr, 2016, 54( 33): 30- 33, 169.

    陆贝, 于源泉, 殷俊杰, 等. NF-κB/TLR4信号通路在急性胰腺炎大鼠肝损伤中的表达及PPAR-γ激动剂的保护作用[J]. 中国现代医生, 2016, 54( 33): 30- 33, 169.
    [37] ZHANG JS, ZHANG ZN, XIANG J, et al. Neuroprotective effects of echinacoside on regulating the stress-active p38MAPK and NF-κB p52 signals in the mice model of Parkinson’s disease[J]. Neurochem Res, 2017, 42( 4): 975- 985. DOI: 10.1007/s11064-016-2130-7.
    [38] ZHANG YF, WU QF, ZHONG LM, et al. Echinacoside promotes the proliferation of human renal tubular epithelial cells by blocking the HBX/TREM2-mediated NF-κB signalling pathway[J]. Mol Med Rep, 2020, 22( 2): 1137- 1144. DOI: 10.3892/mmr.2020.11201.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  299
  • HTML全文浏览量:  142
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-03
  • 录用日期:  2023-10-10
  • 出版日期:  2024-04-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回