Wnt信号通路与肝再生的关系及其在肝脏疾病中的作用
DOI: 10.12449/JCH240529
The relationship between the Wnt signaling pathway and liver regeneration and its role in liver diseases
-
摘要: Wnt信号通路在维持肝脏内稳态和肝脏再生过程中扮演重要角色,在成熟的健康肝脏中,Wnt信号通路大多是不活跃的,但在细胞更新或再生过程中,以及在某些病理条件、疾病、癌前状态和癌症中,Wnt信号通路被持续过度激活。持续的肝细胞损伤常常会导致慢性肝病,如肝纤维化、肝硬化及肝癌等。本文概述了Wnt信号通路的基本结构特点,详细分析了其在多种肝脏疾病病理进展所扮演的重要角色,希望为临床防治肝脏疾病提供新思路。Abstract: The Wnt signaling pathway plays an important role in maintaining liver homeostasis and liver regeneration. In healthy livers, the Wnt signaling pathway is mostly inactive, but it is continuously overactivated during cell renewal or regeneration processes, as well as in certain pathological conditions, diseases, precancerous states, and cancers. Persistent liver cell injury often leads to chronic liver diseases such as liver fibrosis, liver cirrhosis, and liver cancer. This article summarizes the basic structural features of the Wnt signaling pathway and analyzes its important role in the pathological progression of various liver diseases, so as to provide new ideas for the prevention and treatment of liver diseases in clinical practice.
-
Key words:
- Liver Diseases /
- Liver Regeneration /
- Wnt Signaling Pathway /
- beta Catenin
-
慢加急性肝衰竭(acute-on-chronic liver failure,ACLF)是一种以器官衰竭快速进展为特征的综合征,短期病死率高。肾脏是最容易受累的肝外器官之一,据报道22.8%~34%的ACLF患者会出现急性肾损伤(acute kidney injury,AKI)。ACLF患者更常出现3期AKI,其中大多数患者对目前的治疗方法应答不佳。2024年亚太肝病学会围绕ACLF患者AKI的早期诊断、病理生理学、预防和管理,制定了包含共识声明和推荐意见的立场性文件[1]。现将相关内容摘译如下。
该指南根据牛津循证医学中心系统进行证据评级,依据专家之间共识意见的一致性程度分为“强”和“弱”(表1)。
表 1 证据和推荐等级Table 1. Level of evidence and recommendation项目 说明 证据等级 1级 RCT的Meta分析或高质量RCT 2级 较低质量的RCT或前瞻性对照研究 3级 病例对照研究或回顾性研究 4级 无比较或对照组的病例系列 5级 病例报道或者专家意见 推荐 强 一致性>80% 弱 一致性<80% 注:RCT,随机对照试验。
1. ACLF患者AKI的发病率、定义、类型、病程和病理生理学基础
1.1 AKI的发病率和定义
声明:ACLF患者AKI的发病率高于失代偿期肝硬化患者。(LoE4,强烈推荐,一致性100%)
声明:ACLF患者AKI的定义为6 h内尿量少于0.5 mL/kg,或在48 h内血清肌酐(sCr)升高超过0.3 mg/dL(≥26.5 µmol/L),或在过去7 d内sCr较基线水平升高50%。ACLF患者的AKI分期应纳入尿量标准。(LoE4,强烈推荐,一致性100%)
声明:与失代偿期肝硬化患者相比,ACLF具有明显不同的AKI类型,以结构性AKI为主。(LoE4,强烈推荐,一致性97%)
1.2 ACLF患者发生AKI的病理生理基础是什么?
声明:内毒素血症、严重的系统性炎症、高血清胆红素水平和循环功能障碍是ACLF患者AKI病理生理基础的关键决定因素。(LoE4,强烈推荐,一致性100%)
声明:胆汁酸、氧化应激和肾缺血可能参与ACLF患者AKI的病理生理过程。(LoE5,强烈推荐,一致性100%)
1.3 ACLF患者AKI会转变为慢性肾脏病(chronic kidney disease,CKD)吗?
声明:ACLF患者AKI转变为急性肾脏病(acute kidney disease,AKD)和CKD的数据有限。(LoE5,强烈推荐,一致性100%)
声明:AKI分期为2期或3期的ACLF患者更可能出现不能缓解的AKI、AKD和转变为CKD,需要密切监测。(LoE5,强烈推荐,一致性100%)
1.4 ACLF患者AKI的危险因素有哪些?
声明:ACLF患者AKI的危险因素可分为肝、肾相关危险因素以及其他危险因素,尤其是使用肾毒性药物。(LoE4,强烈推荐,一致性97%)
推荐意见:对所有ACLF合并AKI的患者应该进行详细的临床病史和危险因素评估。对危险因素做好记录并进行分层,如肝、肾相关危险因素以及其他危险因素,尤其是使用药物。(LoE4,强烈推荐,一致性97%)
2. ACLF患者AKI的生物标志物
2.1 生物标志物能否用于ACLF患者AKI的及时诊断?
声明:胱抑素C和其他生物标志物对于预测失代偿期肝硬化AKI是有意义的。由于缺失ACLF相关的数据,需要开展该类患者生物标志物的研究。(LoE5,强烈推荐,一致性97%)
2.2 生物标志物能否区分ACLF患者AKI的不同类型[肝肾综合征-急性肾损伤(HRS-AKI)和急性肾小管坏死(ATN)]?
声明:生物标志物特别是尿中性粒细胞明胶酶相关脂质运载蛋白(neutrophil gelatinase-associated lipocalin,NGAL)有助于鉴别失代偿期肝硬化患者的ATN和HRS-AKI。由于ACLF患者NGAL的数据有限,需要开展相关研究。(LoE5,弱推荐,一致性97%)
2.3 生物标志物能否有助于预测ACLF患者AKI病程和指导特利加压素的及时应用?
声明:采用生物标志物来判定是否启动特利加压素治疗HRS-AKI的数据有限。(LoE5,强烈推荐,一致性97%)
2.4 生物标志物能否有助于判定ACLF患者是否需要透析?
声明:尚无研究阐明应用生物标志物来判定患者是否需要透析。除肾脏替代治疗的启动标准外,单独的生物标志物不能用于判定ACLF患者是否需要透析。(LoE5,弱推荐,一致性97%)
2.5 生物标志物能否预测ACLF患者的肾功能恢复?
声明:一些生物标志物(例如尿NGAL)对于预测失代偿期肝硬化患者的肾功能恢复是有意义的。由于缺乏ACLF患者的数据,需要开展有关ACLF肾功能恢复预测的生物标志物研究。(LoE5,弱推荐,一致性97%)
2.6 生物标志物能否判断ACLF患者移植前后CKD发生的风险?
推荐意见:生物标志物(例如尿NGAL)有助于判断肝硬化患者移植前后发生CKD的风险。由于缺失ACLF患者的数据,需要开展ACLF发生CKD的生物标志物研究。(LoE5,弱推荐,一致性97%)
3. ACLF患者AKI的预防
3.1 PIRO模型能否用于ACLF患者AKI的风险分层?
声明:PIRO模型的组成包括高血清胆红素、尿素氮、钾和肌酐以及使用肾毒性药物、系统性炎症和循环衰竭。该模型基于多国数据开发而成,具有良好的敏感度和特异度。PIRO模型能够用于AKI的风险分层,但是需要进一步验证。胆汁酸的作用亦需要探索。(LoE4,弱推荐,一致性90%)
推荐意见:推荐静脉输注白蛋白预防中等容量治疗性穿刺引起的循环功能障碍。(LoE2,强烈推荐,一致性97%)
推荐意见:白蛋白也可以预防自发性细菌性腹膜炎引起的肾功能不全,其剂量可根据容量状态进行个体化调整。(LoE4,强烈推荐,一致性91%)
推荐意见:没有证据表明粒细胞集落刺激因子、己酮可可碱和/或抗氧化剂具有预防ACLF患者AKI发生的作用。(LoE4,强烈推荐,一致性97%)
推荐意见:研究表明β受体阻滞剂对ACLF患者具有一定益处。但是,不建议β受体阻滞剂用于ACLF患者AKI的预防。由于非选择性β受体阻滞剂能够降低肾血流量和灌注,增加AKI发生的风险,对于已接受非选择性β受体阻滞剂治疗的ACLF患者应该停用或减量。(LoE4,弱推荐,一致性91%)
推荐意见:预防性使用诺氟沙星可减少细菌感染的发生率,但是对于AKI的益处尚未研究。不推荐预防性使用抗生素用于ACLF患者AKI的预防。(LoE5,弱推荐,一致性84.8%)
4. ACLF患者AKI的管理
4.1 ACLF患者AKI的液体管理
4.1.1 ACLF患者合并1期AKI的治疗是否应该给予静脉注射白蛋白?
声明:ACLF患者合并1期AKI使用白蛋白扩容有助于改善并防止病情进展(LoE4),但证据有限。建议ACLF患者合并1期AKI时使用白蛋白扩容,并密切监测以防止容量负荷过重。(LoE4,强烈推荐,一致性100%)
4.1.2 ACLF患者AKI伴休克是否应使用5%白蛋白进行液体复苏?声明:首选4%或5%白蛋白对ACLF患者AKI伴休克进行扩容,最好在入院3 h内给予。(LoE2)
声明:当ACLF合并AKI的患者需要更多容量的液体复苏时,可在4%~5%白蛋白基础上,使用平衡晶体液。(LoE5)
声明:在没有休克的情况下,ACLF合并AKI患者应使用20%~25%的白蛋白扩容。(LoE2)
推荐意见:伴低血容量、AKI和休克的ACLF患者,与晶体液或20%~25%白蛋白相比,应使用4%~5%白蛋白进行液体复苏。(LoE2,弱推荐,一致性91%)
推荐意见:当需要更多的液体量时,可采用平衡晶体液联合4%~5%白蛋白进行液体复苏。(LoE5,强烈推荐,一致性97%)
推荐意见:ACLF合并AKI但不伴有休克的患者,应使用20%~25%白蛋白进行扩容。(LoE2,强烈推荐,一致性100%)
4.1.3 ACLF患者AKI治疗过程中,白蛋白的合适剂量是多少?
声明:治疗ACLF合并AKI患者的白蛋白剂量应个体化,可根据动态指标进行调整,优先选择下腔静脉测量和肺部超声进行监测。(LoE4)
推荐意见:ACLF合并AKI患者应给予静脉注射白蛋白扩容,剂量应该个体化并根据反映液体治疗应答情况的动态指标进行调整。(LoE4,强烈推荐,一致性94%)
4.1.4 ACLF合并AKI和张力性腹水的患者是否应常规测量腹内压?
声明:腹内压测量可能有助于改善ACLF合并AKI和张力性腹水患者的预后。但由于缺乏数据,目前临床上尚不推荐常规检测。(LoE5,弱推荐,一致性78%)
推荐意见:为改善AKI的预后,ACLF合并张力性腹水患者可进行腹内压检测。(LoE5,弱推荐,一致性78%)
4.1.5 心肺评估是否有助于伴有高血容量或合并症的ACLF AKI患者进行白蛋白治疗?
声明:心肺评估有助于伴有高血容量或合并症的ACLF AKI患者进行白蛋白治疗。(LoE4,强烈推荐,一致性97%)
推荐意见:心肺评估可降低20%白蛋白的不良事件发生率,ACLF合并AKI的治疗期间尤其是重症监护病房的患者应进行心肺评估。(LoE5,强烈推荐,一致性97%)
4.2 血管收缩剂在ACLF患者AKI治疗中的应用
声明:连续输注特利加压素在逆转ACLF患者HRS-AKI方面优于去甲肾上腺素。(LoE2,强烈推荐,一致性94%)
推荐意见:在无禁忌证的情况下,可选择特利加压素作为血管收缩剂,连续输注治疗ACLF合并HRS-AKI的患者。(LoE2,强烈推荐,一致性94%)
声明:扩容后等待48 h与较低的逆转率和较高的透析需求有关。因此,对于合并HRS-AKI的ACLF患者,应考虑尽早开始使用血管收缩剂。(LoE2,强烈推荐,一致性90%)
推荐意见:建议在合并HRS-AKI的ACLF患者治疗过程中,进行每24 h sCr或每12 h尿量(导尿患者)的动态监测,白蛋白扩容后AKI仍持续/进展,可以给予血管收缩剂。(LoE2,强烈推荐,一致性88%)
声明:较高的平均动脉压(mean arterial pressure,MAP)目标优于较低的目标。较高的MAP可通过改善内脏和全身血管扩张,改善肾灌注。但应注意密切监测,尤其是正接受特利加压素治疗患者的不良事件。(LoE4,强烈推荐,一致性91%)
推荐意见:建议ACLF合并HRS-AKI治疗期间最低MAP目标为65~70 mmHg。(LoE4,强烈推荐,一致性85%)
推荐意见:HRS-AKI治疗时,考虑到不良事件发生的可能性较高,特利加压素应该以2 mg/24 h的起始剂量给予,逐步递增到最大剂量6 mg/d。(LoE4,强烈推荐,一致性97%)
推荐意见:ACLF患者HRS-AKI治疗时,应该至少每6 h测量MAP和尿量,每日监测sCr,从而有助于指导特利加压素剂量的递增。(LoE2,强烈推荐,一致性97%)
推荐意见:MAP达到80~85 mmHg目标的患者,若给予最大剂量的特利加压素但尿量未改善,或sCr没有降低25%,或发生不良事件,应视为特利加压素无应答者。此类患者应停用特利加压素并考虑更换方案。(LoE5,强烈推荐,一致性85%)
推荐意见:AKI降低一期的患者(基于上述AKI修订标准,包括尿量或sCr)应被视为特利加压素应答者。此类患者可持续给予特利加压素直到肾功能完全恢复或接受肝移植。(LoE5,强烈推荐,一致性91%)
4.3 ACLF患者AKI的肾脏替代治疗
4.3.1 ACLF合并3期AKI的患者肾脏替代治疗的启动策略、模式和剂量是什么?
声明:最初12~24 h内有进展或对血管收缩剂无应答的ACLF合并3期AKI患者,可能需要尽快启动肾脏替代治疗。(LoE5,强烈推荐,一致性91%)
推荐意见:ACLF合并3期AKI的患者,病情有进展或对血管收缩剂无应答,应该考虑进行肾脏替代治疗。(LoE5,弱推荐,一致性85%)
推荐意见:鉴于系统炎症反应是ACLF患者AKI的关键驱动因素以及存在显著的循环功能障碍,连续性肾脏替代治疗优于间歇性的透析模式。但是该决策也需要考虑资源的可及性、专业程度和治疗费用。(LoE5,强烈推荐,一致性97%)
推荐意见:对于ACLF合并3期AKI患者,连续性肾脏替代治疗优于间断透析模式。(LoE5,强烈推荐,一致性97%)
推荐意见:与较高剂量相比,建议采取较低剂量20~25 mL·kg-1·h-1作为ACLF合并3期AKI治疗的初始策略。对较低剂量无应答的患者可个体化采用较高剂量。(LoE5,强烈推荐,一致性100%)
4.3.2 ACLF患者连续性肾脏替代治疗采用枸橼酸抗凝安全吗?
声明:局部枸橼酸抗凝可用于ACLF合并3期AKI患者的连续性肾脏替代治疗,但基于目前的证据尚不能被常规推荐。应密切监测总钙与离子钙比值,以便判断枸橼酸的蓄积情况。与不抗凝相比,ACLF合并AKI患者采用局部枸橼酸抗凝的安全性尚需更多的研究。(LoE4,强烈推荐,一致性97%)
推荐意见:局部枸橼酸抗凝可用于ACLF患者的连续性肾脏替代治疗,应密切监测酸碱水平和总钙与离子钙比值,判断枸橼酸是否蓄积。(LoE4,弱推荐,一致性97%)
4.3.3 接受肾脏替代治疗的ACLF患者何时停机?
声明:正接受透析治疗的ACLF合并3期AKI患者应积极寻找停机时机。(LoE5,强烈推荐,一致性97%)
推荐意见:如果患者肾功能恢复或者不适合肝移植,应积极停止透析。(LoE5,强烈推荐,一致性97%)
4.4 ACLF合并AKI患者的肝移植
声明:1期或2期AKI如果没有缓解,不应成为尽快肝移植的禁忌证。(LoE4,强烈推荐,一致性94%)
推荐意见:合并1期或2期AKI的ACLF患者,即使病情没有缓解,也可以考虑尽快进行肝移植。(LoE4,强烈推荐,一致性94%)
声明:正接受透析、伴有ATN、少尿以及其他器官衰竭的ACLF合并AKI患者的预后差。应由多学科团队参与此类患者的临床决策,考量进行单一肝移植还是肝肾联合移植,并依据个体的具体情况而定。(LoE4,弱推荐,一致性97%)
推荐意见:伴有ATN或少尿以及正进行肾脏替代治疗的ACLF合并AKI患者,应该根据个体情况来决定进行单一肝移植还是同时肝肾联合移植。(LoE4,强烈推荐,一致性97%)
5. ACLF合并AKI患者出院后的护理
声明:考虑到结构性AKI患病率较高且对治疗无应答,ACLF患者出院后应密切随访是否出现AKD或进展为CKD。(LoE5,强烈推荐,一致性97%)
推荐意见:建议ACLF合并AKI患者康复出院后,密切监测肾功能。(LoE5,强烈推荐,一致性97%)
6. ACLF患者CKD基础上发生AKI
声明:ACLF患者单独发生CKD不常见,大多与AKI同时发生。有限的数据表明,CKD的存在不会给这些患者带来更差的结局。基础CKD对ACLF患者的影响需要开展进一步的前瞻性研究。(LoE4,弱推荐,一致性97%)
7. AKI患者的营养
推荐意见:不应该限制ACLF合并AKI患者的蛋白质摄入。(LoE5,弱推荐,一致性97%)
推荐意见:接受连续性肾脏替代治疗的ACLF合并AKI患者处于高分解代谢状态,应给予1.5~2 g/kg的蛋白质。(LoE5,弱推荐,一致性97%)
8. 小结
AKI是ACLF最常见的肝外受累器官表现,常见结构性肾损伤,病情进展迅速。预防是关键,应尽量避免使用可能诱发ACLF患者AKI的肾毒性药物,维持适当的MAP并定期监测肾功能,以期早期发现AKI。该临床实践指南基于相关文献与该领域相关专家的意见,尽力构建ACLF患者AKI的诊治流程,其主要的局限性是目前仍缺乏支持各种推荐意见的有力数据。因此,未来需要开展随机的临床试验和多中心研究,进一步探索ACLF患者AKI诊治面临的许多临床问题。
-
表 1 针对Wnt/β-catenin信号传导的药物临床试验
Table 1. Clinical trials of agents targeting Wnt/β-catenin signalling
药物 类型 靶点 作用 阶段 临床试验记录 LGK974(WNT974) 融合蛋白 Wnt配体 FZD8融合蛋白与FZD8竞争结合Wnt配体 Ⅰ期 NCT01608867,NCT02050178, NCT02069145,NCT02092363 OMP-131R10 单抗 R-spondin 3 抑制 RSPO-LGR-ZNRF3/RNF43复合体 Ⅰ期 NCT02482441 OTSA101 单抗 FZD10 抗FZD10型单抗 Ⅰ期 NCT01469975 OMP-18R5 单抗 FZD受体 抗FZD受体型单抗 Ⅰ期 NCT01345201,NCT01957007, NCT01973309,NCT02005315 DKN-01 单抗 DKK1 抗DKK1型单抗,抑制非典型β-catenin传导途径 Ⅰ期, Ⅱ期 NCT01457417,NCT01711671, NCT02013154,NCT02375880 BHQ880 单抗 DKK1 抗DKK1型单抗,抑制非典型β-catenin传导途径 Ⅰ期, Ⅱ期 NCT00741377,NCT01302886, NCT01337752 Foxy-5 小肽 FZD受体 Wnt 5a类似物 Ⅰ期 NCT02020291,NCT02655952 PRI 724 小分子 β-catenin, CREB结合蛋白 下调β-catenin反应基因 Ⅰ期, Ⅱ期 NCT01302405,NCT01606579, NCT01764477,NCT02195440 SM08502 小分子 未知 抑制β-catenin传导途径 Ⅰ期 NCT03355066 -
[1] TREFTS E, GANNON M, WASSERMAN DH. The liver[J]. Curr Biol, 2017, 27( 21): R1147- R1151. DOI: 10.1016/j.cub.2017.09.019. [2] BAJAJ JS. Alcohol, liver disease and the gut microbiota[J]. Nat Rev Gastroenterol Hepatol, 2019, 16( 4): 235- 246. DOI: 10.1038/s41575-018-0099-1. [3] MANDATO C, di NUZZI A, VAJRO P. Nutrition and liver disease[J]. Nutrients, 2017, 10( 1): 9. DOI: 10.3390/nu10010009. [4] XIAO J, WANG F, WONG NK, et al. Global liver disease burdens and research trends: Analysis from a Chinese perspective[J]. J Hepatol, 2019, 71( 1): 212- 221. DOI: 10.1016/j.jhep.2019.03.004. [5] ASRANI SK, DEVARBHAVI H, EATON J, et al. Burden of liver diseases in the world[J]. J Hepatol, 2019, 70( 1): 151- 171. DOI: 10.1016/j.jhep.2018.09.014. [6] NUSSE R, CLEVERS H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities[J]. Cell, 2017, 169( 6): 985- 999. DOI: 10.1016/j.cell.2017.05.016. [7] LOH KM, van AMERONGEN R, NUSSE R. Generating cellular diversity and spatial form: Wnt signaling and the evolution of multicellular animals[J]. Dev Cell, 2016, 38( 6): 643- 655. DOI: 10.1016/j.devcel.2016.08.011. [8] NAPOLITANO T, SILVANO S, AYACHI C, et al. Wnt pathway in pancreatic development and pathophysiology[J]. Cells, 2023, 12( 4): 565. DOI: 10.3390/cells12040565. [9] RASLAN AA, YOON JK. WNT signaling in lung repair and regeneration[J]. Mol Cells, 2020, 43( 9): 774- 783. DOI: 10.14348/molcells.2020.0059. [10] STEINHART Z, ANGERS S. Wnt signaling in development and tissue homeostasis[J]. Development, 2018, 145( 11): dev146589. DOI: 10.1242/dev.146589. [11] ZHAN T, RINDTORFF N, BOUTROS M. Wnt signaling in cancer[J]. Oncogene, 2017, 36( 11): 1461- 1473. DOI: 10.1038/onc.2016.304. [12] CLEVERS H, NUSSE R. Wnt/β-catenin signaling and disease[J]. Cell, 2012, 149( 6): 1192- 1205. DOI: 10.1016/j.cell.2012.05.012. [13] MONGA SP, PEDIADITAKIS P, MULE K, et al. Changes in WNT/beta-catenin pathway during regulated growth in rat liver regeneration[J]. Hepatology, 2001, 33( 5): 1098- 1109. DOI: 10.1053/jhep.2001.23786. [14] CHEN TY, OH S, GREGORY S, et al. Single-cell omics analysis reveals functional diversification of hepatocytes during liver regeneration[J]. JCI Insight, 2020, 5( 22): e141024. DOI: 10.1172/jci.insight.141024. [15] APTE U, THOMPSON MD, CUI SS, et al. Wnt/beta-catenin signaling mediates oval cell response in rodents[J]. Hepatology, 2008, 47( 1): 288- 295. DOI: 10.1002/hep.21973. [16] NELSEN CJ, RICKHEIM DG, TIMCHENKO NA, et al. Transient expression of cyclin D1 is sufficient to promote hepatocyte replication and liver growth in vivo[J]. Cancer Res, 2001, 61( 23): 8564- 8568. [17] TAN XP, BEHARI J, CIEPLY B, et al. Conditional deletion of beta-catenin reveals its role in liver growth and regeneration[J]. Gastroenterology, 2006, 131( 5): 1561- 1572. DOI: 10.1053/j.gastro.2006.08.042. [18] PLANAS-PAZ L, ORSINI V, BOULTER L, et al. The RSPO-LGR4/5-ZNRF3/RNF43 module controls liver zonation and size[J]. Nat Cell Biol, 2016, 18( 5): 467- 479. DOI: 10.1038/ncb3337. [19] SUN TL, PIKIOLEK M, ORSINI V, et al. AXIN2+ pericentral hepatocytes have limited contributions to liver homeostasis and regeneration[J]. Cell Stem Cell, 2020, 26( 1): 97- 107. e 6. DOI: 10.1016/j.stem.2019.10.011. [20] JHO EH, ZHANG T, DOMON C, et al. Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway[J]. Mol Cell Biol, 2002, 22( 4): 1172- 1183. DOI: 10.1128/MCB.22.4.1172-1183.2002. [21] LUSTIG B, JERCHOW B, SACHS M, et al. Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors[J]. Mol Cell Biol, 2002, 22( 4): 1184- 1193. DOI: 10.1128/MCB.22.4.1184-1193.2002. [22] JUNG YS, JUN S, KIM MJ, et al. TMEM9 promotes intestinal tumorigenesis through vacuolar-ATPase-activated Wnt/β-catenin signalling[J]. Nat Cell Biol, 2018, 20( 12): 1421- 1433. DOI: 10.1038/s41556-018-0219-8. [23] HENDERSON NC, RIEDER F, WYNN TA. Fibrosis: From mechanisms to medicines[J]. Nature, 2020, 587( 7835): 555- 566. DOI: 10.1038/s41586-020-2938-9. [24] SEKI E, SCHWABE RF. Hepatic inflammation and fibrosis: Functional links and key pathways[J]. Hepatology, 2015, 61( 3): 1066- 1079. DOI: 10.1002/hep.27332. [25] GE WS, WANG YJ, WU JX, et al. β-catenin is overexpressed in hepatic fibrosis and blockage of Wnt/β-catenin signaling inhibits hepatic stellate cell activation[J]. Mol Med Rep, 2014, 9( 6): 2145- 2151. DOI: 10.3892/mmr.2014.2099. [26] XIONG WJ, HU LJ, JIAN YC, et al. Wnt5a participates in hepatic stellate cell activation observed by gene expression profile and functional assays[J]. World J Gastroenterol, 2012, 18( 15): 1745- 1752. DOI: 10.3748/wjg.v18.i15.1745. [27] MYUNG SJ, YOON JH, GWAK GY, et al. Wnt signaling enhances the activation and survival of human hepatic stellate cells[J]. FEBS Lett, 2007, 581( 16): 2954- 2958. DOI: 10.1016/j.febslet.2007.05.050. [28] TOKUNAGA Y, OSAWA Y, OHTSUKI T, et al. Selective inhibitor of Wnt/β-catenin/CBP signaling ameliorates hepatitis C virus-induced liver fibrosis in mouse model[J]. Sci Rep, 2017, 7( 1): 325. DOI: 10.1038/s41598-017-00282-w. [29] IRVINE KM, CLOUSTON AD, GADD VL, et al. Deletion of Wntless in myeloid cells exacerbates liver fibrosis and the ductular reaction in chronic liver injury[J]. Fibrogenesis Tissue Repair, 2015, 8: 19. DOI: 10.1186/s13069-015-0036-7. [30] PREZIOSI ME, SINGH S, VALORE EV, et al. Mice lacking liver-specific β-catenin develop steatohepatitis and fibrosis after iron overload[J]. J Hepatol, 2017, 67( 2): 360- 369. DOI: 10.1016/j.jhep.2017.03.012. [31] GEH D, ANSTEE QM, REEVES HL. NAFLD-associated HCC: Progress and opportunities[J]. J Hepatocell Carcinoma, 2021, 8: 223- 239. DOI: 10.2147/JHC.S272213. [32] MONGA SP. β-catenin signaling and roles in liver homeostasis, injury, and tumorigenesis[J]. Gastroenterology, 2015, 148( 7): 1294- 1310. DOI: 10.1053/j.gastro.2015.02.056. [33] SEO MH, LEE JM, HONG SW, et al. Exendin-4 inhibits hepatic lipogenesis by increasing β-catenin signaling[J]. PLoS One, 2016, 11( 12): e0166913. DOI: 10.1371/journal.pone.0166913. [34] DEBEBE A, MEDINA V, CHEN CY, et al. Wnt/β-catenin activation and macrophage induction during liver cancer development following steatosis[J]. Oncogene, 2017, 36( 43): 6020- 6029. DOI: 10.1038/onc.2017.207. [35] LIU SG, YEH TH, SINGH VP, et al. β-catenin is essential for ethanol metabolism and protection against alcohol-mediated liver steatosis in mice[J]. Hepatology, 2012, 55( 3): 931- 940. DOI: 10.1002/hep.24766. [36] GO GW, SRIVASTAVA R, HERNANDEZ-ONO A, et al. The combined hyperlipidemia caused by impaired Wnt-LRP6 signaling is reversed by Wnt3a rescue[J]. Cell Metab, 2014, 19( 2): 209- 220. DOI: 10.1016/j.cmet.2013.11.023. [37] CARPINO G, NOBILI V, RENZI A, et al. Macrophage activation in pediatric nonalcoholic fatty liver disease(NAFLD) correlates with hepatic progenitor cell response via Wnt3a pathway[J]. PLoS One, 2016, 11( 6): e0157246. DOI: 10.1371/journal.pone.0157246. [38] Chinese Society of Hepatology, Chinese Medical Association. Guideline on the management of cholestasis liver diseases[J]. J Clin Hepatol, 2022, 38( 1): 62- 69. DOI: 10.3760/cma.j.cn112138-20211112-00795.中华医学会肝病学分会. 胆汁淤积性肝病管理指南(2021年)[J]. 临床肝胆病杂志, 2022, 38( 1): 62- 69. DOI: 10.3760/cma.j.cn112138-20211112-00795. [39] YEH TH, KRAULAND L, SINGH V, et al. Liver-specific β-catenin knockout mice have bile canalicular abnormalities, bile secretory defect, and intrahepatic cholestasis[J]. Hepatology, 2010, 52( 4): 1410- 1419. DOI: 10.1002/hep.23801. [40] LEMBERGER UJ, FUCHS CD, KARER M, et al. Hepatocyte specific expression of an oncogenic variant of β-catenin results in cholestatic liver disease[J]. Oncotarget, 2016, 7( 52): 86985- 86998. DOI: 10.18632/oncotarget.13521. [41] SHACKEL NA, MCGUINNESS PH, ABBOTT CA, et al. Identification of novel molecules and pathogenic pathways in primary biliary cirrhosis: CDNA array analysis of intrahepatic differential gene expression[J]. Gut, 2001, 49( 4): 565- 576. DOI: 10.1136/gut.49.4.565. [42] TANAKA A, LEUNG PS, KENNY TP, et al. Genomic analysis of differentially expressed genes in liver and biliary epithelial cells of patients with primary biliary cirrhosis[J]. J Autoimmun, 2001, 17( 1): 89- 98. DOI: 10.1006/jaut.2001.0522. [43] THOMPSON MD, AWUAH P, SINGH S, et al. Disparate cellular basis of improved liver repair in beta-catenin-overexpressing mice after long-term exposure to 3, 5-diethoxycarbonyl-1, 4-dihydrocollidine[J]. Am J Pathol, 2010, 177( 4): 1812- 1822. DOI: 10.2353/ajpath.2010.100173. [44] OKABE H, YANG J, SYLAKOWSKI K, et al. Wnt signaling regulates hepatobiliary repair following cholestatic liver injury in mice[J]. Hepatology, 2016, 64( 5): 1652- 1666. DOI: 10.1002/hep.28774. [45] SACKETT SD, GAO Y, SHIN S, et al. Foxl1 promotes liver repair following cholestatic injury in mice[J]. Lab Invest, 2009, 89( 12): 1387- 1396. DOI: 10.1038/labinvest.2009.103. [46] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68( 6): 394- 424. DOI: 10.3322/caac.21492. [47] GILES RH, van ES JH, CLEVERS H. Caught up in a Wnt storm: Wnt signaling in cancer[J]. Biochim Biophys Acta, 2003, 1653( 1): 1- 24. DOI: 10.1016/s0304-419x(03)00005-2. [48] WANG Z, SHENG YY, GAO XM, et al. β-catenin mutation is correlated with a favorable prognosis in patients with hepatocellular carcinoma[J]. Mol Clin Oncol, 2015, 3( 4): 936- 940. DOI: 10.3892/mco.2015.569. [49] DING X, YANG Y, HAN BD, et al. Transcriptomic characterization of hepatocellular carcinoma with CTNNB1 mutation[J]. PLoS One, 2014, 9( 5): e95307. DOI: 10.1371/journal.pone.0095307. [50] LIAO X, SONG G, XU ZH, et al. Oxaliplatin resistance is enhanced by saracatinib via upregulation Wnt-ABCG1 signaling in hepatocellular carcinoma[J]. BMC Cancer, 2020, 20( 1): 31. DOI: 10.1186/s12885-019-6480-9. [51] LEUNG HW, LEUNG CON, LAU EY, et al. EPHB2 activates β-catenin to enhance cancer stem cell properties and drive sorafenib resistance in hepatocellular carcinoma[J]. Cancer Res, 2021, 81( 12): 3229- 3240. DOI: 10.1158/0008-5472.CAN-21-0184. [52] KARABICICI M, AZBAZDAR Y, OZHAN G, et al. Changes in Wnt and TGF-β signaling mediate the development of regorafenib resistance in hepatocellular carcinoma cell line HuH7[J]. Front Cell Dev Biol, 2021, 9: 639779. DOI: 10.3389/fcell.2021.639779. [53] CADORET A, OVEJERO C, SAADI-KHEDDOUCI S, et al. Hepatomegaly in transgenic mice expressing an oncogenic form of beta-catenin[J]. Cancer Res, 2001, 61( 8): 3245- 3249. [54] ZHAN N, MICHAEL AA, WU KY, et al. The effect of selective c-MET inhibitor on hepatocellular carcinoma in the MET-active, β-catenin-mutated mouse model[J]. Gene Expr, 2018, 18( 2): 135- 147. DOI: 10.3727/105221618X15174108894682. [55] PATIL MA, LEE SA, MACIAS E, et al. Role of cyclin D1 as a mediator of c-met- and beta-catenin-induced hepatocarcinogenesis[J]. Cancer Res, 2009, 69( 1): 253- 261. DOI: 10.1158/0008-5472.CAN-08-2514. [56] BANALES JM, CARDINALE V, CARPINO G, et al. Expert consensus document: Cholangiocarcinoma: Current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma(ENS-CCA)[J]. Nat Rev Gastroenterol Hepatol, 2016, 13( 5): 261- 280. DOI: 10.1038/nrgastro.2016.51. [57] TOKUMOTO N, IKEDA S, ISHIZAKI Y, et al. Immunohistochemical and mutational analyses of Wnt signaling components and target genes in intrahepatic cholangiocarcinomas[J]. Int J Oncol, 2005, 27( 4): 973- 980. [58] ZHANG KS, ZHOU Q, WANG YF, et al. Inhibition of Wnt signaling induces cell apoptosis and suppresses cell proliferation in cholangiocarcinoma cells[J]. Oncol Rep, 2013, 30( 3): 1430- 1438. DOI: 10.3892/or.2013.2560. [59] SUGIMACHI K, TAGUCHI K, AISHIMA S, et al. Altered expression of beta-catenin without genetic mutation in intrahepatic cholangiocarcinoma[J]. Mod Pathol, 2001, 14( 9): 900- 905. DOI: 10.1038/modpathol.3880409. [60] LOILOME W, BUNGKANJANA P, TECHASEN A, et al. Activated macrophages promote Wnt/β-catenin signaling in cholangiocarcinoma cells[J]. Tumour Biol, 2014, 35( 6): 5357- 5367. DOI: 10.1007/s13277-014-1698-2. [61] BOULTER L, GUEST RV, KENDALL TJ, et al. WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited[J]. J Clin Invest, 2015, 125( 3): 1269- 1285. DOI: 10.1172/JCI76452. [62] SHEN DY, ZHANG W, ZENG X, et al. Inhibition of Wnt/β-catenin signaling downregulates P-glycoprotein and reverses multi-drug resistance of cholangiocarcinoma[J]. Cancer Sci, 2013, 104( 10): 1303- 1308. DOI: 10.1111/cas.12223. [63] HUANG GL, LUO Q, RUI G, et al. Oncogenic activity of retinoic acid receptor γ is exhibited through activation of the Akt/NF-κB and Wnt/β-catenin pathways in cholangiocarcinoma[J]. Mol Cell Biol, 2013, 33( 17): 3416- 3425. DOI: 10.1128/MCB.00384-13. [64] KOCH A, DENKHAUS D, ALBRECHT S, et al. Childhood hepatoblastomas frequently carry a mutated degradation targeting box of the beta-catenin gene[J]. Cancer Res, 1999, 59( 2): 269- 273. [65] FORBES SA, BEARE D, BOUTSELAKIS H, et al. COSMIC: Somatic cancer genetics at high-resolution[J]. Nucleic Acids Res, 2017, 45( D1): D777- D783. DOI: 10.1093/nar/gkw1121. [66] ARMENGOL C, CAIRO S, FABRE M, et al. Wnt signaling and hepatocarcinogenesis: The hepatoblastoma model[J]. Int J Biochem Cell Biol, 2011, 43( 2): 265- 270. DOI: 10.1016/j.biocel.2009.07.012. [67] CAIRO S, ARMENGOL C, DE REYNIÈS A, et al. Hepatic stem-like phenotype and interplay of Wnt/beta-catenin and Myc signaling in aggressive childhood liver cancer[J]. Cancer Cell, 2008, 14( 6): 471- 484. DOI: 10.1016/j.ccr.2008.11.002. [68] TAO JY, CALVISI DF, RANGANATHAN S, et al. Activation of β-catenin and Yap1 in human hepatoblastoma and induction of hepatocarcinogenesis in mice[J]. Gastroenterology, 2014, 147( 3): 690- 701. DOI: 10.1053/j.gastro.2014.05.004. -