中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

草苁蓉环烯醚萜苷(IGBR)对TGF-β1诱导的HepG2细胞上皮间质转化模型的影响

金爱花 朱洁波 尹学哲 全吉淑

引用本文:
Citation:

草苁蓉环烯醚萜苷(IGBR)对TGF-β1诱导的HepG2细胞上皮间质转化模型的影响

DOI: 10.12449/JCH240617
基金项目: 

国家自然科学基金 (82060113);

国家自然科学基金 (81760659);

吉林省教育厅项目 (JJKH20210578KJ)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:金爱花负责课题设计,资料分析,撰写论文,参与实验;朱洁波参与数据分析与实验;尹学哲参与数据分析与修改论文;全吉淑负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    全吉淑, quanjs@ybu.edu.cn (ORCID: 0000-0002-6466-5787)

Effect of iridoid glycosides from Boschniakia rossica on epithelial-mesenchymal transition of HepG2 cells induced by transforming growth factor-beta 1

Research funding: 

National Natural Science Foundation of China (82060113);

National Natural Science Foundation of China (81760659);

Jilin Province Education Department project (JJKH20210578KJ)

More Information
    Corresponding author: QUAN Jishu, quanjs@ybu.edu.cn (ORCID: 0000-0002-6466-5787)
  • 摘要:   目的  研究草苁蓉环烯醚萜苷(IGBR)对TGF-β1诱导肝癌HepG2细胞上皮间质转化(EMT)的影响作用。  方法  用10 μg/L TGF-β1诱导HepG2肝癌细胞株构建肝癌细胞EMT模型。实验分为对照组、模型组与IGBR组3组,对照组用无血清DMEM处理,模型组用10 μg/L TGF-β1处理,IGBR组用10 μg/L TGF-β1和500 mg/L IGBR联合处理,培养48 h。利用细胞黏附实验、划痕愈合实验和Transwell小室实验观察细胞迁移和侵袭能力。RT-PCR法和Western Blot法检测细胞中E-钙黏蛋白、N-钙黏蛋白、波形蛋白的mRNA和蛋白表达,Western Blot法检测Slug、Twist1、ZEB1、p-STAT3、STAT3的蛋白表达。计量资料多组间比较采用单因素方差分析,进一步两两比较采用LSD-t检验;两组间比较采用成组t检验。  结果  TGF-β1诱导后,模型组HepG2细胞呈现长梭形改变;与模型组比较,IGBR组细胞黏附率降低,抑制细胞迁移、侵袭能力(P值均<0.05),E-钙黏蛋白的mRNA表达和蛋白表达均增高(P值均<0.05),N-钙黏蛋白和波形蛋白的mRNA表达和蛋白表达均降低(P值均<0.05),Slug、Twist1、ZEB1蛋白表达和p-STAT3蛋白表达均降低(P值均<0.05)。  结论  IGBR可抑制TGF-β1诱导的HepG2细胞EMT过程,从而减弱HepG2细胞黏附力和细胞迁移、侵袭能力,上调E-钙黏蛋白,下调N-钙黏蛋白和波形蛋白,上调Slug、Twist1、ZEB1、STAT3的蛋白表达,其作用可能通过抑制STAT3通路下调Slug、Twist1、ZEB1等EMT转录因子来实现。

     

  • Figure  .  The EMT model of HepG2 cells was induced by TGF-β1

    图  2  IGBR对HepG2细胞形态的影响(×100)

    注: a,对照组;b,模型组;c,IGBR组。

    Figure  2.  Effect of IGBR on HepG 2 cell morphology(×100)

    图  3  IGBR对HepG2细胞迁移能力的影响(×40)

    Figure  3.  Effect of IGBR on the migratory ability of HepG 2 cells(×40)

    图  4  IGBR对HepG2细胞侵袭能力的影响(×100)

    注: a,对照组;b,模型组;c,IGBR组。

    Figure  4.  Effect of IGBR on the invasive ability of HepG 2 cells(×100)

    图  5  IGBR对HepG2细胞E-钙黏蛋白、N-钙黏蛋白和波形蛋白表达的影响

    注: a,RT-PCR结果;b,Western Blot结果。

    Figure  5.  Effect of IGBR on the expression of E-cadherin, N-cadherin, and vimentin in HepG 2 cells

    图  6  IGBR对HepG2细胞EMT相关转录因子表达的影响

    Figure  6.  Effect of IGBR on the expression of EMT-associated transcription factors in HepG 2 cells

    图  7  IGBR对HepG2细胞STAT3蛋白表达的影响

    Figure  7.  Effect of IGBR on STAT 3 protein expression in HepG 2 cells

    表  1  HepG2细胞EMT模型中E-钙黏蛋白、N-钙黏蛋白和波形蛋白表达的比较

    Table  1.   Comparison of E-cadherin, N-cadherin, and vimentin expression in the EMT model of HepG2 cells

    组别 mRNA 蛋白
    E-钙黏蛋白 N-钙黏蛋白 波形蛋白 E-钙黏蛋白 N-钙黏蛋白 波形蛋白
    对照组 1.41±0.11 0.25±0.06 0.36±0.08 1.40±0.13 0.42±0.06 0.36±0.12
    模型组 0.26±0.09 1.45±0.14 0.89±0.10 0.31±0.09 1.63±0.14 2.10±0.10
    t 14.015 13.646 7.168 11.940 13.759 19.294
    P 0.000 2 0.000 2 0.002 0 0.000 3 0.000 2 <0.000 1
    下载: 导出CSV

    表  2  IGBR对HepG2细胞E-钙黏蛋白、N-钙黏蛋白和波形蛋白表达的比较

    Table  2.   Comparison of IGBR on E-cadherin, N-cadheractin, and vimentin expression in HepG 2 cells

    组别 mRNA 蛋白
    E-钙黏蛋白 N-钙黏蛋白 波形蛋白 E-钙黏蛋白 N-钙黏蛋白 波形蛋白
    对照组 0.80±0.05 0.17±0.06 0.14±0.04 1.45±0.05 0.12±0.06 0.14±0.05
    模型组 0.20±0.091) 0.78±0.061) 1.20±0.101) 0.25±0.031) 1.08±0.091) 1.37±0.101)
    IGBR组 0.42±0.072) 0.58±0.032) 0.65±0.092) 0.08±0.102) 0.70±0.122) 1.10±0.142)
    F 53.50 107.40 128.40 242.40 69.01 127.90
    P 0.000 1 <0.000 1 <0.000 1 <0.000 1 <0.000 1 <0.000 1
    注:与对照组相比,1) P<0.05;与模型组相比,2) P<0.05。
    下载: 导出CSV
  • [1] ZHU JB, DONG XH, CUI XD, et al. Inhibitory effect of iridoid glucosides from Boschniakia rossica on SK-Hep1 cell EMT and its mechanism[J]. Guangdong Med J, 2019, 40( 22): 3103- 3107. DOI: 10.13820/j.cnki.gdyx.20191100.

    朱洁波, 董学花, 崔香丹, 等. 草苁蓉环烯醚萜苷对SK-Hep1细胞EMT的抑制作用及其机制[J]. 广东医学, 2019, 40( 22): 3103- 3107. DOI: 10.13820/j.cnki.gdyx.20191100.
    [2] LIN P, CAI MQ, FANG JW, et al. Research status and progress on surgical treatment of postoperative recurrence of hepatocellular carcinoma[J]. Ogran Transplant, 2022, 13( 1): 111- 119. DOI: 10.3969/j.issn.1674-7445.2022.01.017.

    林鹏, 蔡敏清, 房俊伟, 等. 肝癌术后复发的外科治疗研究现状及进展[J]. 器官移植, 2022, 13( 1): 111- 119. DOI: 10.3969/j.issn.1674-7445.2022.01.017.
    [3] CHEN CM, ZHANG GZ, LIU PP, et al. Berberine inhibits TGF-β1-induced epithelial-mesenchymal transition in human liver cancer HepG2 cells via TGF-β/Smad pathway[J]. Chin Pharmacol Bull, 2020, 36( 2): 261- 267. DOI: 10.3969/j.issn.1001-1978.2020.02.021.

    陈春苗, 张国哲, 刘平平, 等. 小檗碱通过TGF-β/Smad通路抑制TGF-β1诱导的人肝癌HepG2细胞上皮间质转化的研究[J]. 中国药理学通报, 2020, 36( 2): 261- 267. DOI: 10.3969/j.issn.1001-1978.2020.02.021.
    [4] HU ZY, ZHANG H, GU L, et al. The role of DEPDC1B in the proliferation, migration and epithelial-mesenchymal transition of hepatocellular carcinoma and clinical relevance[J]. Chin J Integr Tradit West Med Liver Dis, 2023, 33( 8): 692- 697. DOI: 10.3969/j.issn.1005-0264.2023.008.004.

    胡志勇, 张海, 顾磊, 等. DEPDC1B在肝癌增殖、迁移和上皮间质转化中的作用及其临床相关性研究[J]. 中西医结合肝病杂志, 2023, 33( 8): 692- 697. DOI: 10.3969/j.issn.1005-0264.2023.008.004.
    [5] DING R, GE RR, WANG EY, et al. Extract from modified Xiao Xianxiongtang inhibits epithelial-mesenchymal transition and invasion and migration mediated by TGF-β1 of human gastric cancer MGC-803 cells via Wnt5a/Ca2+/NFAT signaling pathway[J]. Chin J Exp Tradit Med Formulae, 2021, 27( 4): 37- 46. DOI: 10.13422/j.cnki.syfjx.20202326.

    丁芮, 葛瑞瑞, 王恩宇, 等. 加味小陷胸汤水提物通过Wnt5a/Ca2+/NFAT信号通路抑制TGF-β1介导的人胃癌MGC-803细胞上皮-间质转化及侵袭迁移[J]. 中国实验方剂学杂志, 2021, 27( 4): 37- 46. DOI: 10.13422/j.cnki.syfjx.20202326.
    [6] CUI XD, ZHENG F, ZHU JB, et al. Inhibitive effect of iridoid glycosides from Boschniakia rossica on apoptosis of liver cancer cells[J]. Chin J Public Health, 2018, 34( 4): 521- 524. DOI: 10.11847/zgggws1117089.

    崔香丹, 郑峰, 朱洁波, 等. 草苁蓉环烯醚萜苷对肝癌抑制作用[J]. 中国公共卫生, 2018, 34( 4): 521- 524. DOI: 10.11847/zgggws1117089.
    [7] QUAN JS, PIAO L, XU HX, et al. Protective effect of iridoid glucosides from Boschniakia rossica on acute liver injury induced by carbon tetrachloride in rats[J]. Biosci Biotechnol Biochem, 2009, 73( 4): 849- 854. DOI: 10.1271/bbb.80757.
    [8] LIN LC, LEE LC, HUANG C, et al. Effects of boschnaloside from Boschniakia rossica on dysglycemia and islet dysfunction in severely diabetic mice through modulating the action of glucagon-like peptide-1[J]. Phytomedicine, 2019, 62: 152946. DOI: 10.1016/j.phymed.2019.152946.
    [9] YIN ZZ, KIM HS, KIM YH, et al. Iridoid compounds from Boschniakia rossica[J]. Arch Pharm Res, 1999, 22( 1): 78- 80. DOI: 10.1007/BF02976441.
    [10] DONG XH, ZHU JB, YAN GH, et al. Inhibitory effect of Iridoid glycosides from Boschniakia rossica combined with 5-fluorouracil on EMT in human hepatocellular carcinoma SMMC-7721 cells[J]. Lishizhen Med Mater Med Res, 2020, 31( 5): 1038- 1042. DOI: 10.3969/j.issn.1008-0805.2020.05.004.

    董学花, 朱洁波, 延光海, 等. 草苁蓉环烯醚萜苷联合5-氟尿嘧啶对人肝癌SMMC-7721细胞EMT的抑制作用[J]. 时珍国医国药, 2020, 31( 5): 1038- 1042. DOI: 10.3969/j.issn.1008-0805.2020.05.004.
    [11] LEE H, PYO MJ, BAE SK, et al. Nemopilema nomurai jellyfish venom exerts an anti-metastatic effect by inhibiting Smad- and NF-κB-mediated epithelial-mesenchymal transition in HepG2 cells[J]. Sci Rep, 2018, 8( 1): 2808. DOI: 10.1038/s41598-018-20724-3.
    [12] ZHANG L, ZHAO YS, WANG ZA, et al. The genus Boschniakia in China: An ethnopharmacological and phytochemical review[J]. J Ethnopharmacol, 2016, 194: 987- 1004. DOI: 10.1016/j.jep.2016.10.051.
    [13] LI CF, WANG XQ, LIU Y, et al. Advances in studies on chemical constituents of Boschniakia rossica and their pharmacological activities[J]. Chin Tradit Herb Drugs, 2014, 45( 7): 1016- 1023. DOI: 10.7501/j.issn.0253-2670.2014.7.023.

    李彩峰, 王晓琴, 刘勇, 等. 草苁蓉化学成分及药理活性研究进展[J]. 中草药, 2014, 45( 7): 1016- 1023. DOI: 10.7501/j.issn.0253-2670.2014.7.023.
    [14] YIN XZ, XU HX, JIN AH, et al. Anti-tumor effect of iridoid glucosides from Boschniakia rossica in VX2-bearing rabbits[J]. Chin J Exp Tradit Med Formulae, 2010, 16( 6): 134- 136, 140. DOI: 10.13422/j.cnki.syfjx.2010.06.075.

    尹学哲, 许惠仙, 金爱花, 等. 草苁蓉环烯醚萜苷对移植鳞癌VX2荷瘤兔的抑瘤作用[J]. 中国实验方剂学杂志, 2010, 16( 6): 134- 136, 140. DOI: 10.13422/j.cnki.syfjx.2010.06.075.
    [15] CUI XD, ZHENG F, ZHU JB, et al. Effect of Iridoid Glucosides from Boschniakia Rossica on rat models of diethylnitrosamine-induced hepatocarcinomat[J]. China J Mod Med, 2017, 27( 27): 7- 11. DOI: 10.3969/j.issn.1005-8982.2017.27.002.

    崔香丹, 郑峰, 朱洁波, 等. 草苁蓉环烯醚萜苷对二乙基亚硝胺诱发肝癌大鼠细胞凋亡的影响[J]. 中国现代医学杂志, 2017, 27( 27): 7- 11. DOI: 10.3969/j.issn.1005-8982.2017.27.002.
    [16] ZHU DM, KONG LB, JIA WB, et al. ANKRD1 promotes proliferation and metastasis of hepatocellular carcinoma by activating epithelial mesenchymal transition pathway[J]. J Nanjing Med Univ Nat Sci, 2023, 43( 4): 484- 491. DOI: 10.7655/NYDXBNS20230406.

    朱德明, 孔连宝, 贾文博, 等. ANKRD1通过介导上皮细胞间充质转化促进肝细胞肝癌增殖与转移[J]. 南京医科大学学报(自然科学版), 2023, 43( 4): 484- 491. DOI: 10.7655/NYDXBNS20230406.
    [17] SHI YJ, CHEN YM, HUANG SC, et al. Serine arginine protein kinase 1 promotes epithelial mesenchymal transformation in hepatoma cells through Wnt/β-catenin pathway activation[J]. Med J West China, 2023, 35( 7): 951- 958. DOI: 10.3969/j.issn.1672-3511.2023.07.003.

    石永杰, 陈旖鹛, 黄思聪, 等. SRPK1激活Wnt/β-catenin通路促进肝癌细胞上皮间充质转化[J]. 西部医学, 2023, 35( 7): 951- 958. DOI: 10.3969/j.issn.1672-3511.2023.07.003.
    [18] WARE KE, THOMAS BC, OLAWUNI PD, et al. A synthetic lethal screen for Snail-induced enzalutamide resistance identifies JAK/STAT signaling as a therapeutic vulnerability in prostate cancer[J]. Front Mol Biosci, 2023, 10: 1104505. DOI: 10.3389/fmolb.2023.1104505.
    [19] CHAI FY, ZHANG JF, FU T, et al. Identification of SLC2A3 as a prognostic indicator correlated with the NF-κB/EMT axis and immune response in head and neck squamous cell carcinoma[J]. Channels, 2023, 17( 1): 2208928. DOI: 10.1080/19336950.2023.2208928.
    [20] FAN CN, WANG Q, KUIPERS TB, et al. LncRNA LITATS1 suppresses TGF-β-induced EMT and cancer cell plasticity by potentiating TβRI degradation[J]. EMBO J, 2023, 42( 10): e112806. DOI: 10.15252/embj.2022112806.
    [21] LUO BF, YUAN Y, ZHU YF, et al. MicroRNA-145-5p inhibits prostate cancer bone metastatic by modulating the epithelial-mesenchymal transition[J]. Front Oncol, 2022, 12: 988794. DOI: 10.3389/fonc.2022.988794.
    [22] PADUA D, MASSAGUÉ J. Roles of TGFβ in metastasis[J]. Cell Res, 2009, 19( 1): 89- 102. DOI: 10.1038/cr.2008.316.
    [23] VINCENT T, NEVE EPA, JOHNSON JR, et al. A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition[J]. Nat Cell Biol, 2009, 11( 8): 943- 950. DOI: 10.1038/ncb1905.
    [24] PEINADO H, QUINTANILLA M, CANO A. Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: Mechanisms for epithelial mesenchymal transitions[J]. J Biol Chem, 2003, 278( 23): 21113- 21123. DOI: 10.1074/jbc.M211304200.
    [25] CHEN ZH, ZHU WJ, SHEN BB, et al. Inhibitory effect of 6-paradol on the proliferation, migration, and invasion of intrahepatic cholangiocarcinoma cells and its mechanism[J]. J Clin Hepatol, 2022, 38( 4): 857- 864. DOI: 10.3969/j.issn.1001-5256.2022.04.022.

    陈泽昊, 朱文杰, 申兵兵, 等. 6-姜酮酚抑制肝内胆管癌细胞的增殖、迁移、侵袭作用及其机制探讨[J]. 临床肝胆病杂志, 2022, 38( 4): 857- 864. DOI: 10.3969/j.issn.1001-5256.2022.04.022.
    [26] ZHANG H, LIU LX, ZHAO ZX, et al. Role of transforming growth factor-β in the development and progression of pancreatic cancer[J]. J Clin Hepatol, 2022, 38( 12): 2892- 2896. DOI: 10.3969/j.issn.1001-5256.2022.12.041.

    张浩, 刘林勋, 赵占学, 等. 转化生长因子β在胰腺癌发生发展中的作用[J]. 临床肝胆病杂志, 2022, 38( 12): 2892- 2896. DOI: 10.3969/j.issn.1001-5256.2022.12.041.
    [27] LI YL, ZHANG MM, WU LW, et al. DYRK1A reinforces epithelial-mesenchymal transition and metastasis of hepatocellular carcinoma via cooperatively activating STAT3 and SMAD[J]. J Biomed Sci, 2022, 29( 1): 34. DOI: 10.1186/s12929-022-00817-y.
    [28] HORIGUCHI K, SHIRAKIHARA T, NAKANO A, et al. Role of Ras signaling in the induction of snail by transforming growth factor-beta[J]. J Biol Chem, 2009, 284( 1): 245- 253. DOI: 10.1074/jbc.M804777200.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  238
  • HTML全文浏览量:  96
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-23
  • 录用日期:  2024-02-28
  • 出版日期:  2024-06-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回