中药抑制肝细胞癌血管生成的作用机制
DOI: 10.12449/JCH240729
Research advances in the mechanism of action of traditional Chinese medicine in inhibiting angiogenesis in hepatocellular carcinoma
-
摘要: 血管生成是肝细胞癌(HCC)发生发展的关键过程,血管新生可为HCC细胞的增殖、侵袭与转移提供必备物质条件。抑制血管生成已成为HCC治疗领域的研究热点。中药以多靶点、多途径、增效减毒、改善肿瘤预后以及延长生存期的特点成为抗HCC治疗的潜力药物。经现代研究证实,中药可通过抑制促血管生长因子表达、上调抗血管生成因子水平、抑制内皮细胞增殖、降低HCC组织微血管密度和调控相关信号通路等作用机制抑制肿瘤血管生成,在HCC的治疗方面具有独特优势。本文通过梳理并总结近年来国内外相关文献,分析中药抑制HCC血管生成的作用机制,以期为临床HCC治疗策略的优化提供一定的理论依据和参考。Abstract: Angiogenesis is a key process in the development and progression of hepatocellular carcinoma (HCC) and can provide essential material conditions for the proliferation, invasion, and metastasis of HCC cells. Inhibition of angiogenesis has become a research hotspot in the field of HCC therapy. Traditional Chinese medicine has become a potential drug for HCC therapy due to its characteristics of multiple targets and pathways, enhancing efficacy and reducing toxicity, improving tumor prognosis, and prolonging survival time. Modern studies have confirmed that traditional Chinese medicine can inhibit tumor angiogenesis by inhibiting the expression of angiogenic factors, upregulating the levels of anti-angiogenic factors, inhibiting endothelial cell proliferation, reducing the microvascular density of HCC tissue, and regulating related signaling pathways, and therefore, traditional Chinese medicine has unique advantages in the treatment of HCC. By summarizing related articles in China and globally in recent years, this article analyzes the mechanism of action of traditional Chinese medicine on inhibiting HCC angiogenesis, in order to provide certain theoretical basis and reference for the optimization of HCC treatment strategies in clinical practice.
-
表 1 中药调节促血管生成因子和抗血管生成因子的作用
Table 1. Role of traditional Chinese medicine in regulating pro-angiogenic factors and inhibiting angiogenesis inhibition
中药复方或活性成分 实验模型 作用机制 文献 表没食子儿茶素没食子酸酯 H22肝癌荷瘤小鼠 抑制VEGF表达 [20] 美洲大蠊多肽PAE2 HepG2/ADM移植瘤裸鼠 降低VEGF表达 [21] 白花丹醌 人肝癌HepG2细胞 下调HIF-1α蛋白,抑制MMP-9表达 [24] 香菇多糖 肝癌细胞BEL-7402/S VEGF和HIF-1α表达下调 [25] SDSF 人肝癌HepG2细胞 降低MMP-2、MMP-9活性 [27] 柔肝化纤解毒颗粒 肝癌患者 降低HIF-1α、VEGF、MMP-2、MMP-9表达 [28] 丹参酮ⅡA 人肝癌SMMC-7721细胞株 抑制Ang-2及其受体Tie-2表达 [31] 柴胡皂苷d 人肝癌BEL-7402细胞 抑制VEGF、Ang-2蛋白表达 [32] 参苓白术散 H22肝癌移植瘤小鼠 沉默Ang-2表达 [33] 癌毒清颗粒 肝癌模型小鼠 下调VEGF、HIF-α、bFGF表达 [34] 当归贝母苦参丸加味方 H22荷瘤小鼠 下调bFGF表达 [37] 毒痰瘀脾虚方 肝癌患者 下调血清中b-FGF、VEGF水平 [38] 十全大补汤 小鼠肝癌细胞CT-26 上调AS、ES表达,下调VEGF水平 [41] 二鳖散 Walker-256肝癌大鼠 调控VEGF/ES的失衡 [42] 表 2 中药抑制内皮细胞增殖及降低肝癌组织MVD的作用
Table 2. Role of traditional Chinese medicine in reducing microvascular density
表 3 中药调节相关通路的作用
Table 3. Role of TCM in regulating related pathways
中药复方或活性成分 实验模型 作用机制 文献 荷包牡丹碱 人肝癌MHCC97-H细胞 抑制JAK2/STAT3信号通路的活化,下调VEGF、MMP-2、MMP-9基因表达 [55] 复方苦参注射液 肝癌HepG2细胞 抑制JAK2/STAT3信号通路,降低MMP-2、MMP-9表达 [56] 复方苦参注射液 LPC-H12肝癌细胞异种移植瘤斑马鱼 阻断PI3K/Akt通路的活化 [59] 山慈菇多糖 肝癌腹水荷瘤小鼠 抑制PI3K/Akt通路激活,抑制肿瘤血管生成 [60] 地锦草 H22肝癌小鼠 调控NF-κB信号通路,降低VEGF mRNA和蛋白表达 [63] 紫葛花青素 人肝癌Hep3B细胞移植瘤小鼠 抑制NF-κB信号通路表达,降低MMP-2、MMP-9表达水平 [64] -
[1] PHILIPS CA, RAJESH S, NAIR DC, et al. Hepatocellular carcinoma in 2021: An exhaustive update[J]. Cureus, 2021, 13( 11): e19274. DOI: 10.7759/cureus.19274. [2] CHEN WL, XU XM. New progress in the study of markers for the early diagnosis of liver cancer[J]. China Med Herald, 2023, 20( 1): 40- 44. DOI: 10.20047/j.issn1673-7210.2023.01.08.陈文亮, 徐细明. 肝癌早期诊断标志物的研究新进展[J]. 中国医药导报, 2023, 20( 1): 40- 44. DOI: 10.20047/j.issn1673-7210.2023.01.08. [3] MAN S, LUO C, YAN M, et al. Treatment for liver cancer: From sorafenib to natural products[J]. Eur J Med Chem, 2021, 224: 113690. DOI: 10.1016/j.ejmech.2021.113690. [4] ZHAO L, YI YX. Efficacy of method of strengthening vital qi and detoxication as an adjuvant therapy in the treatment of primary liver cancer[J]. J Changchun Univ Chin Med, 2023, 39( 10): 1111- 1114. DOI: 10.13463/j.cnki.cczyy.2023.10.010.赵亮, 易永祥. 扶正解毒法辅助治疗原发性肝癌的疗效[J]. 长春中医药大学学报, 2023, 39( 10): 1111- 1114. DOI: 10.13463/j.cnki.cczyy.2023.10.010. [5] SUN QQ, CHEN XQ, CHEN LJ, et al. Molecular regulatory mechanism of Actinidia chinensis Planch root for liver cancer[J]. Clin J Med Offic, 2022, 50( 7): 733- 737. DOI: 10.16680/j.1671-3826.2022.07.19.孙庆庆, 陈晓泉, 陈潞君, 等. 中华猕猴桃根抗肝癌分子调控机制研究[J]. 临床军医杂志, 2022, 50( 7): 733- 737. DOI: 10.16680/j.1671-3826.2022.07.19. [6] LU DY, YE XW. Effect of Shenqi Huayu Formula combined with transcatheter arterial chemoembolization in the treatment of patients with primary hepatocellular carcinoma[J]. China Med Herald, 2023, 20( 5): 98- 101, 110. DOI: 10.20047/j.issn1673-7210.2023.05.23.卢冬彦, 叶小卫. 参芪化瘀方联合经导管动脉化疗栓塞治疗原发性肝癌患者的效果[J]. 中国医药导报, 2023, 20( 5): 98- 101, 110. DOI: 10.20047/j.issn1673-7210.2023.05.23. [7] ZONG RY, LUO XP, LU XC, et al. Progress of angiogenesis and targeted therapy strategies in human cancer[J]. Chin Bull Life Sci, 2022, 34( 6): 644- 652. DOI: 10.13376/j.cbls/2022074.宗如月, 罗新鹏, 路小超, 等. 血管生成在恶性肿瘤中作用及靶向治疗策略的研究进展[J]. 生命科学, 2022, 34( 6): 644- 652. DOI: 10.13376/j.cbls/2022074. [8] LI MG, DANG ZB, DANG ZQ. Application of strengthening body resistance, detoxicating and eliminating symptoms in the treatment of primary liver cancer[J]. J Tradit Chin Med, 2022, 63( 2): 180- 183. DOI: 10.13288/j.11-2166/r.2022.02.016.李梦阁, 党志博, 党中勤. 扶正解毒消癥法在原发性肝癌治疗中的运用[J]. 中医杂志, 2022, 63( 2): 180- 183. DOI: 10.13288/j.11-2166/r.2022.02.016. [9] ZHANG SY, CHEN G, HUANG XS, et al. Preliminary study on TCM theory of angiogenesis[J]. J Tradit Chin Med, 2007, 48( 9): 773- 775. DOI: 10.13288/j.11-2166/r.2007.09.001.张三印, 陈钢, 黄秀深, 等. 血管生成的中医理论初探[J]. 中医杂志, 2007, 48( 9): 773- 775. DOI: 10.13288/j.11-2166/r.2007.09.001. [10] FOLKMAN J. Tumor angiogenesis: Therapeutic implications[J]. N Engl J Med, 1971, 285( 21): 1182- 1186. DOI: 10.1056/NEJM197111182852108. [11] LIU ZL, CHEN HH, ZHENG LL, et al. Angiogenic signaling pathways and anti-angiogenic therapy for cancer[J]. Signal Transduct Target Ther, 2023, 8( 1): 198. DOI: 10.1038/s41392-023-01460-1. [12] WANG Z, DABROSIN C, YIN X, et al. Broad targeting of angiogenesis for cancer prevention and therapy[J]. Semin Cancer Biol, 2015, 35( Suppl): S224- S243. DOI: 10.1016/j.semcancer.2015.01.001. [13] XI SY, GAO XM, ZHANG JJ, et al. Recognition of tumor angiogenesis based on TCM theory of collateral diseases and abnormal collaterals[J]. J Beijing Univ Tradit Chin Med, 2008, 31( 12): 804- 807, 822. DOI: 10.3321/j.issn: 1006-2157.2008.12.003.奚胜艳, 高学敏, 张建军, 等. 从中医络病与病络理论认识肿瘤血管生成[J]. 北京中医药大学学报, 2008, 31( 12): 804- 807, 822. DOI: 10.3321/j.issn: 1006-2157.2008.12.003. [14] LIU YH, CHANG J, ZHENG QL, et al. Treatment of tumor from collateral disease theory[J]. Mod J Integr Tradit Chin West Med, 2010, 19( 24): 3098- 3099. DOI: 10.3969/j.issn.1008-8849.2010.24.071.刘永惠, 常靖, 郑清莲, 等. 从络病理论论治肿瘤[J]. 现代中西医结合杂志, 2010, 19( 24): 3098- 3099. DOI: 10.3969/j.issn.1008-8849.2010.24.071. [15] WANG YR, LI J. Understanding of tumor neovascularization from perspective of collateral disease theory[J]. Acta Chin Med, 2023, 38( 3): 525- 529. DOI: 10.16368/j.issn.1674-8999.2023.03.089.王一然, 李晶. 从络病理论认识肿瘤新生血管[J]. 中医学报, 2023, 38( 3): 525- 529. DOI: 10.16368/j.issn.1674-8999.2023.03.089. [16] ZHANG P, HA M, LI LB, et al. microRNA-3064-5p sponged by MALAT1 suppresses angiogenesis in human hepatocellular carcinoma by targeting the FOXA1/CD24/Src pathway[J]. FASEB J, 2020, 34( 1): 66- 81. DOI: 10.1096/fj.201901834R. [17] FERNÁNDEZ M, SEMELA D, BRUIX J, et al. Angiogenesis in liver disease[J]. J Hepatol, 2009, 50( 3): 604- 620. DOI: 10.1016/j.jhep.2008.12.011. [18] YAO CY, WU SL, KONG J, et al. Angiogenesis in hepatocellular carcinoma: Mechanisms and anti-angiogenic therapies[J]. Cancer Biol Med, 2023, 20( 1): 25- 43. DOI: 10.20892/j.issn.2095-3941.2022.0449. [19] MORSE MA, SUN WJ, KIM R, et al. The role of angiogenesis in hepatocellular carcinoma[J]. Clin Cancer Res, 2019, 25( 3): 912- 920. DOI: 10.1158/1078-0432.CCR-18-1254. [20] PENG J, CHEN X. Inhibitory effect of epigallocatechin gallate on tumor growth of H22 liver cancer-bearing mice[J]. Chin Tradit Patent Med, 2021, 43( 4): 1037- 1040. DOI: 10.3969/j.issn.1001-1528.2021.04.040.彭静, 陈曦. 表没食子儿茶素没食子酸酯对H22肝癌荷瘤小鼠肿瘤生长的抑制作用[J]. 中成药, 2021, 43( 4): 1037- 1040. DOI: 10.3969/j.issn.1001-1528.2021.04.040. [21] OU L, WU DY, LYU H, et al. Effect of Periplaneta americana polypeptide PAE2 on apoptosis protein expression and angiogenesis of HepG2/ADM xenograft tumor in nude mice[J]. Chin J Clin Pharmacol, 2022, 38( 6): 560- 564. DOI: 10.13699/j.cnki.1001-6821.2022.06.018.欧玲, 吴定宇, 吕鸿, 等. 美洲大蠊多肽PAE2对HepG2/ADM移植瘤裸鼠凋亡蛋白表达及血管生成的影响[J]. 中国临床药理学杂志, 2022, 38( 6): 560- 564. DOI: 10.13699/j.cnki.1001-6821.2022.06.018. [22] LI HY, LUO YH, LUO XF, et al. Mechanism of action and clinical significance of hypoxia-inducible factors in hepatocellular carcinoma[J]. J Clin Hepatol, 2022, 38( 3): 688- 692. DOI: 10.3969/j.issn.1001-5256.2022.03.040.李宏一, 罗业浩, 罗筱凡, 等. 缺氧诱导因子对肝细胞癌的作用机制及临床意义[J]. 临床肝胆病杂志, 2022, 38( 3): 688- 692. DOI: 10.3969/j.issn.1001-5256.2022.03.040. [23] WANG ML, ZHAO XL, ZHU DW, et al. HIF-1α promoted vasculogenic mimicry formation in hepatocellular carcinoma through LOXL2 up-regulation in hypoxic tumor microenvironment[J]. J Exp Clin Cancer Res, 2017, 36( 1): 60. DOI: 10.1186/s13046-017-0533-1. [24] WEI YF, LYU BB, JIN LJ, et al. Effects of plumbagin on proliferation, apoptosis, invasion and expression of HIF-1α in hepatocellular HepG2 cells under hypoxia condition[J]. Chin J Mod Appl Pharm, 2022, 39( 14): 1789- 1795. DOI: 10.13748/j.cnki.issn1007-7693.2022.14.001.韦燕飞, 吕贝贝, 金丽杰, 等. 缺氧条件下白花丹醌对肝癌HepG2细胞增殖、凋亡与侵袭及HIF-1α表达的影响[J]. 中国现代应用药学, 2022, 39( 14): 1789- 1795. DOI: 10.13748/j.cnki.issn1007-7693.2022.14.001. [25] HAN LL, WU F, HUANG LX, et al. Reverse effect of lentinanin on Sorafenib resistance in cultured hepatocellular carcinoma cells and its mechanism[J]. J Xi'an Jiaotong Univ: Med Sci, 2021, 42( 1): 48- 52, 64. DOI: 10.7652/jdyxb202101009.韩丽丽, 吴菲, 黄蓝萱, 等. 香菇多糖对培养肝癌细胞索拉非尼耐药的逆转作用及机制[J]. 西安交通大学学报(医学版), 2021, 42( 1): 48- 52, 64. DOI: 10.7652/jdyxb202101009. [26] KESSENBROCK K, PLAKS V, WERB Z. Matrix metalloproteinases: Regulators of the tumor microenvironment[J]. Cell, 2010, 141( 1): 52- 67. DOI: 10.1016/j.cell.2010.03.015. [27] JIANG YJ, LUO S, ZHANG YZ, et al. Solidago decurrens extracts inhibit proliferation, invasion and migration of liver cancer cells by suppressing cyclinA1/CDK2 pathway[J]. Chin J New Drugs Clin Remed, 2023, 42( 4): 233- 239. DOI: 10.14109/j.cnki.xyylc.2023.04.06.姜银杰, 罗霜, 张彦哲, 等. 一枝黄花提取物下调cyclinA1/CDK2通路抑制肝癌细胞增殖、迁移与侵袭[J]. 中国新药与临床杂志, 2023, 42( 4): 233- 239. DOI: 10.14109/j.cnki.xyylc.2023.04.06. [28] LYU YH, WU SS, WANG ZC, et al. Clinical effect of Rougan Huaxian Granules combined with TACE in the treatment of primary liver cancer and its effect on serum index and immune function[J]. China J Tradit Chin Med Pharm, 2022, 37( 4): 2386- 2390.吕艳杭, 吴姗姗, 王振常, 等. 柔肝化纤解毒颗粒联合TACE治疗原发性肝癌疗效及对其血清指标和免疫功能的影响[J]. 中华中医药杂志, 2022, 37( 4): 2386- 2390. [29] AKWII RG, SAJIB MS, ZAHRA FT, et al. Role of angiopoietin-2 in vascular physiology and pathophysiology[J]. Cells, 2019, 8( 5): 471. DOI: 10.3390/cells8050471. [30] CHOI GH, JANG ES, KIM JW, et al. Prognostic role of plasma level of angiopoietin-1, angiopoietin-2, and vascular endothelial growth factor in hepatocellular carcinoma[J]. World J Gastroenterol, 2021, 27( 27): 4453- 4467. DOI: 10.3748/wjg.v27.i27.4453. [31] REN MD, HU YN, HE SX, et al. Effects of Tanshinone II A on the expressions of angiopoietin-2 and Tie-2 in human hepatocellular carcinoma cell line SMMC-7721[J]. J Xi’an Jiaotong Univ: Med Sci, 2012, 33( 2): 203- 206, 210. DOI: 10.3969/j.issn.1671-8259.2012.02.018.任牡丹, 胡雅楠, 和水祥, 等. 丹参酮ⅡA对人肝癌细胞Ang-2及其受体Tie-2表达的影响[J]. 西安交通大学学报(医学版), 2012, 33( 2): 203- 206, 210. DOI: 10.3969/j.issn.1671-8259.2012.02.018. [32] WANG YL, SONG T, HU YN, et al. Effects of saikosaponins-d on Ang-2 and VEGF expressions in experimental hepatocarcinoma in rats[J]. J Xi'an Jiaotong Univ: Med Sci, 2013, 34( 5): 664- 668. DOI: 10.7652/jdyxb201305024.王艳丽, 宋涛, 胡雅楠, 等. 柴胡皂甙d对实验性大鼠肝癌Ang-2及VEGF表达的影响[J]. 西安交通大学学报(医学版), 2013, 34( 5): 664- 668. DOI: 10.7652/jdyxb201305024. [33] PENG Y, XI SY, WANG YH, et al. Effects of Shenling Baizhu Powder on expression of apoptosis related proteins of tumor chemotherapy model mice with H22 hepatocellular carcinoma cells[J]. China J Tradit Chin Med Pharm, 2017, 32( 7): 2909- 2913.彭樱, 奚胜艳, 王彦晖, 等. 参苓白术散对H22肝癌移植瘤小鼠化疗后肿瘤凋亡相关因子的影响[J]. 中华中医药杂志, 2017, 32( 7): 2909- 2913. [34] DIANAT-MOGHADAM H, TEIMOORI-TOOLABI L. Implications of fibroblast growth factors(FGFs) in cancer: From prognostic to therapeutic applications[J]. Curr Drug Targets, 2019, 20( 8): 852- 870. DOI: 10.2174/1389450120666190112145409. [35] ZHANG JQ, SONG HL, LU YQ, et al. Effects of estradiol on VEGF and bFGF by Akt in endometrial cancer cells are mediated through the NF-κB pathway[J]. Oncol Rep, 2016, 36( 2): 705- 714. DOI: 10.3892/or.2016.4888. [36] RONG PR, LIU FL, ZHU Q, et al. Effects of aiduqing granule on HIF-1α, VEGF and bFGF in liver cancer model mice[J]. Jiangxi J Tradit Chin Med, 2019, 50( 8): 69- 71.容佩荣, 刘凤莉, 朱倩, 等. 癌毒清颗粒对肝癌模型小鼠HIF-1α、VEGF、bFGF的影响[J]. 江西中医药, 2019, 50( 8): 69- 71. [37] LIU CP, LI HL, ZHANG Y, et al. Effects of Dangguibeimukushen pill on expressions of MMP13 and bFGF on H22 hepatocarcinoma xenograft mice[J]. Int J Lab Med, 2017, 38( 2): 153- 156. DOI: 10.3969/j.issn.1673-4130.2017.02.004.刘春萍, 李海龙, 张艳, 等. 当归贝母苦参丸加味方对荷瘤小鼠H22肝癌肿瘤组织MMP13和 bFGF表达的影响[J]. 国际检验医学杂志, 2017, 38( 2): 153- 156. DOI: 10.3969/j.issn.1673-4130.2017.02.004. [38] MAO YQ, ZHANG HX, SONG HY, et al. Clinical efficacy of auxiliary DutanyuPixu Formulae therapy after TACE in the treatment of patients with primary liver cancer[J]. J Pract Hepatol, 2022, 25( 6): 873- 876. DOI: 10.3969/j.issn.1672-5069.2022.06.029.毛月琴, 张红侠, 宋海燕, 等. TACE联合毒痰瘀脾虚方治疗原发性肝癌患者临床疗效研究[J]. 实用肝脏病杂志, 2022, 25( 6): 873- 876. DOI: 10.3969/j.issn.1672-5069.2022.06.029. [39] DUDLEY AC, GRIFFIOEN AW. Pathological angiogenesis: Mechanisms and therapeutic strategies[J]. Angiogenesis, 2023, 26( 3): 313- 347. DOI: 10.1007/s10456-023-09876-7. [40] POLUZZI C, IOZZO RV, SCHAEFER L. Endostatin and endorepellin: A common route of action for similar angiostatic cancer avengers[J]. Adv Drug Deliv Rev, 2016, 97: 156- 173. DOI: 10.1016/j.addr.2015.10.012. [41] LI SZ. Effects of Shiquan Dabu Decoction on the growth and angiogenesis of primary liver cancer in mice[J]. Contemp Med, 2016, 22( 25): 3- 5. DOI: 10.3969/j.issn.1009-4393.2016.25.002.李书征. 十全大补汤对小鼠原发性肝癌的生长及血管生成的影响[J]. 当代医学, 2016, 22( 25): 3- 5. DOI: 10.3969/j.issn.1009-4393.2016.25.002. [42] WANG SM, XU XY, ZHANG WL, et al. Effects of Erbie San on Walker-256 liver cancer and adjustment to unbalance of VEGF/endostatin in rats[J]. China J Chin Mater Med, 2009, 34( 1): 89- 91. DOI: 10.3321/j.issn: 1001-5302.2009.01.023.王淑美, 徐晓玉, 张文亮, 等. 二鳖散对大鼠Walker-256肝癌肿瘤生长及血清VEGF, endostatin表达的影响[J]. 中国中药杂志, 2009, 34( 1): 89- 91. DOI: 10.3321/j.issn: 1001-5302.2009.01.023. [43] KANG ZC, JIANG WL, LUAN HY, et al. Cornin induces angiogenesis through PI3K-Akt-eNOS-VEGF signaling pathway[J]. Food Chem Toxicol, 2013, 58: 340- 346. DOI: 10.1016/j.fct.2013.05.017. [44] DENG W, XIANG Q, LI B, et al. Effect of herbofsanqi extract on HepG2 cells invasionandmetasis[J]. J Guangxi Med Univ, 2014, 31( 1): 38- 42. DOI: 10.16190/j.cnki.45-1211/r.2014.01.002.邓伟, 向清, 李宝, 等. 中药三七提取液对HepG2细胞侵袭转移性的影响[J]. 广西医科大学学报, 2014, 31( 1): 38- 42. DOI: 10.16190/j.cnki.45-1211/r.2014.01.002. [45] LIU L, PENG Q, WU ZM, et al. Inhibitory effect and its mechanism of evodiamine on tumor vascular proliferation[J]. Her Med, 2023, 42( 9): 1305- 1311. DOI: 10.3870/j.issn.1004-0781.2023.09.007.刘磊, 彭琴, 吴泽明, 等. 吴茱萸碱对肿瘤血管增生的抑制作用及其机制[J]. 医药导报, 2023, 42( 9): 1305- 1311. DOI: 10.3870/j.issn.1004-0781.2023.09.007. [46] WEI YF, YANG Q, ZHANG Y, et al. Plumbagin restrains hepatocellular carcinoma angiogenesis by suppressing the migration and invasion of tumor-derived vascular endothelial cells[J]. Oncotarget, 2017, 8( 9): 15230- 15241. DOI: 10.18632/oncotarget.14774. [47] MAEDA R, ISHII G, ITO M, et al. Number of circulating endothelial progenitor cells and intratumoral microvessel density in non-small cell lung cancer patients: Differences in angiogenic status between adenocarcinoma histologic subtypes[J]. J Thorac Oncol, 2012, 7( 3): 503- 511. DOI: 10.1097/JTO.0b013e318241780e. [48] SUN C, LI JM, WANG B, et al. Tumor angiogenesis and bone metastasis- Correlation in invasive breast carcinoma[J]. J Immunol Methods, 2018, 452: 46- 52. DOI: 10.1016/j.jim.2017.10.006. [49] ZHANG Y, TIE MH, WANG K, et al. Tanshinone II improves distribution and anti-tumor efficacy of pegylated liposomal doxorubicin via normalizing the structure and function of tumor vasculature in hepa1-6 hepatoma mice model[J]. J Tradit Chin Med, 2018, 38( 6): 815- 822. [50] MAO K, YE Z, WANG YQ, et al. The effect of Shenmai injection combined with radiofrequency ablation on microvascular density and vascular endothelial growth factor in liver cancer[J]. Chin J Integr Tradit West Med Dig, 2018, 26( 11): 903- 906. DOI: 10.3969/j.issn.1671-038X.2018.11.03.毛魁, 叶子, 王友清, 等. 参麦注射液联合射频消融对肝癌微血管密度及血管内皮生长因子影响[J]. 中国中西医结合消化杂志, 2018, 26( 11): 903- 906. DOI: 10.3969/j.issn.1671-038X.2018.11.03. [51] ZENG FY, ZHAO KL, LIN LZ, et al. Gan-Qing-Ning formula inhibits the growth of hepatocellular carcinoma by promoting apoptosis and inhibiting angiogenesis in H22 tumor-bearing mice[J]. Evid Based Complement Alternat Med, 2020, 2020: 6376912. DOI: 10.1155/2020/6376912. [52] CHEN MX, LIU JX, WU QX, et al. Inhibitory effect of cinnamaldehyde on proliferation, migration and tube formation of VEGF-induced endothelial cells via JAK2/STAT3 pathway[J]. Chin J Exp Tradit Med Formulae, 2019, 25( 8): 28- 33. DOI: 10.13422/j.cnki.syfjx.20190704.陈明霞, 刘建勋, 武曲星, 等. 桂皮醛经JAK2/STAT3通路抑制VEGF诱导的内皮细胞增殖、迁移及成管[J]. 中国实验方剂学杂志, 2019, 25( 8): 28- 33. DOI: 10.13422/j.cnki.syfjx.20190704. [53] JIA YJ, WANG Q, LIANG ML, et al. KPNA2 promotes angiogenesis by regulating STAT3 phosphorylation[J]. J Transl Med, 2022, 20( 1): 627. DOI: 10.1186/s12967-022-03841-6. [54] WANG L, ASTONE M, ALAM SK, et al. Suppressing STAT3 activity protects the endothelial barrier from VEGF-mediated vascular permeability[J]. Dis Model Mech, 2021, 14( 11): dmm049029. DOI: 10.1242/dmm.049029. [55] GUO M, ZHANG CH, WU TT. Effects of dicentrine on migration and invasion of human hepatocellular carcinoma MHCC97-H cells and potential mechanisms[J]. Chin Tradit Herb Drugs, 2019, 50( 22): 5515- 5520. DOI: 10.7501/j.issn.0253-2670.2019.22.019.郭锰, 张成辉, 吴婷婷. 荷包牡丹碱对人肝癌MHCC97-H细胞转移、侵袭的影响及机制研究[J]. 中草药, 2019, 50( 22): 5515- 5520. DOI: 10.7501/j.issn.0253-2670.2019.22.019. [56] ZHANG DW, ZHANG HG, WANG LL, et al. Regulation of compound Sophora flavescens injection on proliferation and invasion of HepG2 cells via JAK2/STAT3 signaling pathway[J]. J Hepatobiliary Surg, 2020, 28( 2): 145- 148. DOI: 10.3969/j.issn.1006-4761.2020.02.019.张大为, 张海光, 王丽莉, 等. 复方苦参注射液通过JAK2/STAT3信号通路对肝癌HepG2细胞增殖、侵袭的调控作用[J]. 肝胆外科杂志, 2020, 28( 2): 145- 148. DOI: 10.3969/j.issn.1006-4761.2020.02.019. [57] RAHMANI F, ZIAEEMEHR A, SHAHIDSALES S, et al. Role of regulatory miRNAs of the PI3K/AKT/mTOR signaling in the pathogenesis of hepatocellular carcinoma[J]. J Cell Physiol, 2020, 235( 5): 4146- 4152. DOI: 10.1002/jcp.29333. [58] BELAIBA RS, BONELLO S, ZÄHRINGER C, et al. Hypoxia up-regulates hypoxia-inducible factor-1α transcription by involving phosphatidylinositol 3-kinase and nuclear factor κB in pulmonary artery smooth muscle cells[J]. Mol Biol Cell, 2007, 18( 12): 4691- 4697. DOI: 10.1091/mbc.e07-04-0391. [59] FAN QQ, SHE GM, WEI J, et al. Anti-tumor and analgesic activity evaluation and mechanism of Compound Kushen Injection[J]. China J Chin Mater Med, 2022, 47( 10): 2712- 2720. DOI: 10.19540/j.cnki.cjcmm.20211129.701.范琦琦, 折改梅, 魏静, 等. 复方苦参注射液抗肿瘤、镇痛活性评价及机制研究[J]. 中国中药杂志, 2022, 47( 10): 2712- 2720. DOI: 10.19540/j.cnki.cjcmm.20211129.701. [60] ZHANG ZQ, WEI YQ, YANG YL, et al. Improvement mechanism of Pseudobulbus Cremastrae Seu Pleiones polysaccharide on the symptoms of hepatoma ascites bearing mice[J]. Northwest Pharm J, 2023, 38( 3): 74- 80. DOI: 10.3969/j.issn.1004-2407.2023.03.013.张志强, 魏毅强, 杨亚莉, 等. 山慈菇多糖对肝癌腹水荷瘤小鼠症状的改善机制[J]. 西北药学杂志, 2023, 38( 3): 74- 80. DOI: 10.3969/j.issn.1004-2407.2023.03.013. [61] GRINBERG-BLEYER Y, OH H, DESRICHARD A, et al. NF-κB c-Rel is crucial for the regulatory T cell immune checkpoint in cancer[J]. Cell, 2017, 170( 6): 1096- 1108. DOI: 10.1016/j.cell.2017.08.004. [62] ZHANG J, ZHANG DL, JIAO XL, et al. S100A4 regulates migration and invasion in hepatocellular carcinoma HepG2 cells via NF-κB-dependent MMP-9 signal[J]. Eur Rev Med Pharmacol Sci, 2013, 17( 17): 2372- 2382. [63] HU JX, XI XT, WANG XM, et al. Mechanism of humifuse euphorbia in regulating tumor angiogenesis by NF-κB/VEGF signal pathway[J]. Chin J Exp Tradit Med Formulae, 2018, 24( 23): 165- 170. DOI: 10.13422/j.cnki.syfjx.20182027.胡建新, 席晓甜, 王晓敏, 等. 地锦草调控NF-κB/VEGF信号通路抑制肿瘤血管生成的机制[J]. 中国实验方剂学杂志, 2018, 24( 23): 165- 170. DOI: 10.13422/j.cnki.syfjx.20182027. [64] KIM MJ, PARAMANANTHAM A, LEE WS, et al. Anthocyanins derived from Vitis coignetiae pulliat contributes anti-cancer effects by suppressing NF-κB pathways in Hep3B human hepatocellular carcinoma cells and in vivo[J]. Molecules, 2020, 25( 22): 5445. DOI: 10.3390/molecules25225445.