中药活性成分调控糖代谢抗胆管癌的分子机制
DOI: 10.12449/JCH240832
Molecular mechanism of traditional Chinese medicine active components in regulating glucose metabolism against cholangiocarcinoma
-
摘要: 胆管癌是一种高度异质性的肿瘤,其发病隐匿、病情凶险、恶性程度高、预后极差。葡萄糖是胆管癌增殖和转移的主要能量来源,胆管癌细胞在快速增殖过程中其糖代谢途径会被重新编辑,产生大量能量以满足自身需求。中医药在胆管癌治疗中具有独特优势,中药活性成分已被证明可以通过调控糖代谢抑制胆管癌的发生和发展。本文对胆管癌中的糖代谢特点和中药活性成分调控糖代谢抗胆管癌进行综述,为胆管癌的治疗提供新思路。
-
关键词:
- 胆管肿瘤 /
- 碳水化合物代谢 /
- 中药 /
- 药理作用分子作用机制(中药)
Abstract: Cholangiocarcinoma is a highly heterogeneous tumor with an insidious onset, severe conditions, a high degree of malignancy, and an extremely poor prognosis. Glucose is a major energy source for the proliferation and metastasis of cholangiocarcinoma, and the glucose metabolism pathway of cholangiocarcinoma cells will be re-edited in the process of rapid proliferation to produce a large amount of energy for their own needs. Traditional Chinese medicine has unique advantages in the treatment of cholangiocarcinoma, and studies have shown that the active components of traditional Chinese medicine can inhibit the development and progression of cholangiocarcinoma by regulating glucose metabolism. This article reviews the characteristics of glucose metabolism in cholangiocarcinoma and the role of the active components of traditional Chinese medicine in regulating glucose metabolism against cholangiocarcinoma, in order to provide new ideas for the treatment of cholangiocarcinoma. -
【据Journal of Gastroenterology and Hepatology 2021年1月报道】题:自发性脾肾分流对肝硬化患者长期生存的影响(作者Yi F等)
自发性脾肾分流(SSRS)是肝硬化门静脉高压的表现之一。然而,SSRS对肝硬化患者长期生存的影响尚不清楚。来自北部战区总医院消化内科的Yi等推测SSRS可能通过减少肝血流灌注使肝功能恶化,并增加肝硬化死亡的风险。
研究筛选了于2014年12月—2019年8月连续住院且接受腹部增强CT/MRI检查的肝硬化患者。测量门静脉系血管和SSRS的最大直径,计算肝腹面积比(LAAR)。对所有患者进行随访,最后一次随访日期为2019年8月31日。研究共纳入122例肝硬化患者,其中30.3%发现有SSRS,SSRS患者门静脉右支、门静脉主干最大直径和LAAR评分中位数明显小于无SSRS患者(9 mm vs 11.20 mm、15.30 mm vs 16.80 mm、25.39 vs 31.58,P值分别为0.001、0.017、<0.001);SSRS患者Child-Pugh B/C级占比、MELD评分中位数、死亡率明显高于无SSRS患者(62.1% vs 43.5%、12.17 vs 9.79、18.9% vs 4.7%,P值分别为0.026、0.006、0.012)。Kaplan-Meier曲线分析发现,SSRS患者累积生存率明显低于无SSRS患者(P=0.014)。Cox回归分析显示,SSRS是肝硬化患者死亡率增加的危险因素(RR=4.161,95%CI: 1.215~14.255,P=0.023)。
研究表明,肝硬化SSRS患者的门静脉直径更细,肝功能更差,肝体积更小,死亡率更高。
摘译自YI F, GUO X, WANG L, et al. Impact of spontaneous splenorenal shunt on liver volume and long-term survival of liver cirrhosis[J]. J Gastroenterol Hepatol, 2021. [Online ahead of print]. DOI: 10.1111/jgh.15386.
(北部战区总医院消化内科 易芳芳 祁兴顺 报道)
-
[1] Chinese Chapter of International Hepato-Pancreato-Biliary Association; Hepatic Surgery Group, Chinese Society of Surgery, Chinese Medical Association. Diagnosis and treatment of cholangiocarcinoma: Surgical expert consensus[J]. J Clin Hepatol, 2015, 31( 1): 12- 16. DOI: 10.3969/j.issn.1001-5256.2015.01.003.国际肝胆胰学会中国分会, 中华医学会外科学分会肝脏外科学组. 胆管癌诊断与治疗——外科专家共识[J]. 临床肝胆病杂志, 2015, 31( 1): 12- 16. DOI: 10.3969/j.issn.1001-5256.2015.01.003. [2] BANALES JM, MARIN JJG, LAMARCA A, et al. Cholangiocarcinoma 2020: The next horizon in mechanisms and management[J]. Nat Rev Gastroenterol Hepatol, 2020, 17( 9): 557- 588. DOI: 10.1038/s41575-020-0310-z. [3] RIZVI S, KHAN SA, HALLEMEIER CL, et al. Cholangiocarcinoma—Evolving concepts and therapeutic strategies[J]. Nat Rev Clin Oncol, 2018, 15: 95- 111. DOI: 10.1038/nrclinonc.2017.157. [4] BLECHACZ B, GORES GJ. Cholangiocarcinoma: Advances in pathogenesis, diagnosis, and treatment[J]. Hepatology, 2008, 48( 1): 308- 321. DOI: 10.1002/hep.22310. [5] HOWELL M, VALLE JW. The role of adjuvant chemotherapy and radiotherapy for cholangiocarcinoma[J]. Best Pract Res Clin Gastroenterol, 2015, 29( 2): 333- 343. DOI: 10.1016/j.bpg.2015.03.001. [6] VALERO V 3, COSGROVE D, HERMAN JM, et al. Management of perihilar cholangiocarcinoma in the era of multimodal therapy[J]. Expert Rev Gastroenterol Hepatol, 2012, 6( 4): 481- 495. DOI: 10.1586/egh.12.20. [7] GLAZER ES, LIU P, ABDALLA EK, et al. Neither neoadjuvant nor adjuvant therapy increases survival after biliary tract cancer resection with wide negative margins[J]. J Gastrointest Surg, 2012, 16( 9): 1666- 1671. DOI: 10.1007/s11605-012-1935-1. [8] RAGGI C, TADDEI ML, RAE C, et al. Metabolic reprogramming in cholangiocarcinoma[J]. J Hepatol, 2022, 77( 3): 849- 864. DOI: 10.1016/j.jhep.2022.04.038. [9] CHEN XY, DONG Q, TIAN SD, et al. Comment on the clinical value of traditional Chinese medicine in the maintenance treatment of tumor[J]. J Beijing Univ Tradit Chin Med, 2021, 44( 9): 777- 783. DOI: 10.3969/j.issn.1006-2157.2021.09.002.陈信义, 董青, 田劭丹, 等. 恶性肿瘤中医药维持治疗临床价值与述评[J]. 北京中医药大学学报, 2021, 44( 9): 777- 783. DOI: 10.3969/j.issn.1006-2157.2021.09.002. [10] CHEN HB, ZHOU HG, LI L, et al. Thoughts on the development of TCM oncology[J]. Chin J Inf Tradit Chin Med, 2019, 26( 11): 1- 4. DOI: 10.3969/j.issn.1005-5304.2019.11.001.陈海彬, 周红光, 李黎, 等. 中医肿瘤学科发展思考[J]. 中国中医药信息杂志, 2019, 26( 11): 1- 4. DOI: 10.3969/j.issn.1005-5304.2019.11.001. [11] CHEN Y, JIANG Y, YANG H, et al. Research progress of anti-tumor traditional Chinese medicine ingredients regulating key enzymes of aerobic glycolysis pathway[J]. Chin J Oncol Prev Treat, 2020, 12( 6): 705- 709. DOI: 10.3969/j.issn.1674-5671.2020.06.20.陈亚, 江圆, 杨浩, 等. 调控有氧糖酵解途径关键酶的抗肿瘤中药成分的研究进展[J]. 中国癌症防治杂志, 2020, 12( 6): 705- 709. DOI: 10.3969/j.issn.1674-5671.2020.06.20. [12] LI XY, BIAN K. Research progress on intervention of Chinese material medical on cancer Warburg effect[J]. Acta Univ Tradit Med Sin Pharmacol Shanghai, 2017, 31( 1): 87- 99. DOI: 10.16306/j.1008-861x.2017.01.020.李晓芸, 卞卡. 中药干预肿瘤Warburg效应的研究进展[J]. 上海中医药大学学报, 2017, 31( 1): 87- 99. DOI: 10.16306/j.1008-861x.2017.01.020. [13] WU QX, SUN MY, XU B, et al. Research progress of Chinese medicine intervention on metabolism reprogramming for anti-tumor[J]. Acad J Shanghai Univ Tradit Chin Med, 2020, 34( 2): 94- 100. DOI: 10.16306/j.1008-861x.2020.02.017.吴秋雪, 孙梦瑶, 许博, 等. 中药干预代谢重编程抗肿瘤研究进展[J]. 上海中医药大学学报, 2020, 34( 2): 94- 100. DOI: 10.16306/j.1008-861x.2020.02.017. [14] ANCEY PB, CONTAT C, MEYLAN E. Glucose transporters in cancer- from tumor cells to the tumor microenvironment[J]. FEBS J, 2018, 285( 16): 2926- 2943. DOI: 10.1111/febs.14577. [15] PAUDYAL B, ORIUCHI N, PAUDYAL P, et al. Expression of glucose transporters and hexokinase II in cholangiocellular carcinoma compared using[18F]-2-fluro-2-deoxy-d-glucose positron emission tomography[J]. Cancer Sci, 2008, 99( 2): 260- 266. DOI: 10.1111/j.1349-7006.2007.00683.x. [16] KUBO Y, AISHIMA S, TANAKA Y, et al. Different expression of glucose transporters in the progression of intrahepatic cholangiocarcinoma[J]. Hum Pathol, 2014, 45( 8): 1610- 1617. DOI: 10.1016/j.humpath.2014.03.008. [17] LI X, YU C, LUO YC, et al. Aldolase A enhances intrahepatic cholangiocarcinoma proliferation and invasion through promoting glycolysis[J]. Int J Biol Sci, 2021, 17( 7): 1782- 1794. DOI: 10.7150/ijbs.59068. [18] THAMRONGWARANGGOON U, SEUBWAI W, PHOOMAK C, et al. Targeting hexokinase II as a possible therapy for cholangiocarcinoma[J]. Biochem Biophys Res Commun, 2017, 484( 2): 409- 415. DOI: 10.1016/j.bbrc.2017.01.139. [19] MAZUREK S. Pyruvate kinase type M2: A key regulator of the metabolic budget system in tumor cells[J]. Int J Biochem Cell Biol, 2011, 43( 7): 969- 980. DOI: 10.1016/j.biocel.2010.02.005. [20] QIAN Z, HU WD, LV Z, et al. PKM2 upregulation promotes malignancy and indicates poor prognosis for intrahepatic cholangiocarcinoma[J]. Clin Res Hepatol Gastroenterol, 2020, 44( 2): 162- 173. DOI: 10.1016/j.clinre.2019.06.008. [21] YU YP, LIAO MQ, LIU RW, et al. Overexpression of lactate dehydrogenase-a in human intrahepatic cholangiocarcinoma: Its implication for treatment[J]. World J Surg Oncol, 2014, 12( 1): 78. DOI: 10.1186/1477-7819-12-78. [22] THONSRI U, SEUBWAI W, WARAASAWAPATI S, et al. Overexpression of lactate dehydrogenase A in cholangiocarcinoma is correlated with poor prognosis[J]. Histol Histopathol, 2017, 32( 5): 503- 510. DOI: 10.14670/HH-11-819. [23] CHEN MZ, LI YL, TANG LK, et al. Research progress in IDH1 mutation in treatment of intrahepatic cholangiocarcinoma[J/OL]. Chin J Hepat Surg: Electronic Edition, 2024, 13( 1): 103- 108. DOI: 10.3877/cma.j.issn.2095-3232.2024.01.021.陈明政, 栗玉龙, 唐流康, 等. IDH1突变应用于肝内胆管癌治疗的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13( 1): 103- 108. DOI: 10.3877/cma.j.issn.2095-3232.2024.01.021. [24] WU MJ, SHI L, MERRITT J, et al. Biology of IDH mutant cholangiocarcinoma[J]. Hepatology, 2022, 75( 5): 1322- 1337. DOI: 10.1002/hep.32424. [25] CHEN X, YANG PP, QIAO Y, et al. Effects of cancer-associated point mutations on the structure, function, and stability of isocitrate dehydrogenase 2[J]. Sci Rep, 2022, 12: 18830. DOI: 10.1038/s41598-022-23659-y. [26] LI D, WANG CQ, MA PF, et al. PGC1α promotes cholangiocarcinoma metastasis by upregulating PDHA1 and MPC1 expression to reverse the Warburg effect[J]. Cell Death Dis, 2018, 9( 5): 466. DOI: 10.1038/s41419-018-0494-0. [27] PANT K, RICHARD S, PEIXOTO E, et al. Role of glucose metabolism reprogramming in the pathogenesis of cholangiocarcinoma[J]. Front Med(Lausanne), 2020, 7: 113. DOI: 10.3389/fmed.2020.00113. [28] RAGGI C, TADDEI ML, SACCO E, et al. Mitochondrial oxidative metabolism contributes to a cancer stem cell phenotype in cholangiocarcinoma[J]. J Hepatol, 2021, 74( 6): 1373- 1385. DOI: 10.1016/j.jhep.2020.12.031. [29] GIACOMINI I, RAGAZZI E, PASUT G, et al. The pentose phosphate pathway and its involvement in cisplatin resistance[J]. Int J Mol Sci, 2020, 21( 3): 937. DOI: 10.3390/ijms21030937. [30] YANG HC, WU YH, YEN WC, et al. The redox role of G6PD in cell growth, cell death, and cancer[J]. Cells, 2019, 8( 9): 1055. DOI: 10.3390/cells8091055. [31] QU XZ, SHENG JY, SHEN LY, et al. Autophagy inhibitor chloroquine increases sensitivity to cisplatin in QBC939 cholangiocarcinoma cells by mitochondrial ROS[J]. PLoS One, 2017, 12( 3): e0173712. DOI: 10.1371/journal.pone.0173712. [32] ZHAO W, YANG SZ, CHEN JF, et al. Forced overexpression of FBP1 inhibits proliferation and metastasis in cholangiocarcinoma cells via Wnt/β-catenin pathway[J]. Life Sci, 2018, 210: 224- 234. DOI: 10.1016/j.lfs.2018.09.009. [33] ZHOU ZL, YANG YX, DING J, et al. Triptolide: Structural modifications, structure–activity relationships, bioactivities, clinical development and mechanisms[J]. Nat Prod Rep, 2012, 29( 4): 457. DOI: 10.1039/c2np00088a. [34] LI L, WANG CT, QIU ZP, et al. Triptolide inhibits intrahepatic cholangiocarcinoma growth by suppressing glycolysis via the AKT/mTOR pathway[J]. Phytomedicine, 2023, 109: 154575. DOI: 10.1016/j.phymed.2022.154575. [35] ANDÚJAR I, RECIO MC, GINER RM, et al. Traditional Chinese medicine remedy to jury: The pharmacological basis for the use of shikonin as an anticancer therapy[J]. Curr Med Chem, 2013, 20( 23): 2892- 2898. DOI: 10.2174/09298673113209990008. [36] THONSRI U, SEUBWAI W, WARAASAWAPATI S, et al. Antitumor effect of shikonin, a PKM2 inhibitor, in cholangiocarcinoma cell lines[J]. Anticancer Res, 2020, 40( 9): 5115- 5124. DOI: 10.21873/anticanres.14515. [37] LAI LJ, XIE JL, HUANG ZH. Progress in pharmacological effects of icaritin[J]. Pharmacol Clin Chin Mater Med, 2016, 32( 6): 235- 238. DOI: 10.13412/j.cnki.zyyl.2016.06.068.赖丽娟, 谢佳丽, 黄志华. 淫羊藿素的抗肿瘤作用及机制研究进展[J]. 中药药理与临床, 2016, 32( 6): 235- 238. DOI: 10.13412/j.cnki.zyyl.2016.06.068. [38] DENG DJ, LI L, TAN XY, et al. Effect and mechanism of icaritin on inhibiting proliferation of intrahepatic cholangiocarcinoma cells by Akt/mTOR-mediated glycolysis[J]. Chin Tradit Herb Drugs, 2022, 53( 10): 3061- 3069. DOI: 10.7501/j.issn.0253-2670.2022.10.016.邓冬杰, 李励, 谈相云, 等. 淫羊藿素通过Akt/mTOR调控糖酵解抑制肝内胆管癌细胞增殖的作用机制研究[J]. 中草药, 2022, 53( 10): 3061- 3069. DOI: 10.7501/j.issn.0253-2670.2022.10.016. [39] CHEN C, XIE YY, HUANG LP. Advance of pharmacological studies on nuciferine[J]. J Nanjing Univ Tradit Chin Med, 2021, 37( 4): 619- 624. DOI: 10.14148/j.issn.1672-0482.2021.0619.陈畅, 谢永艳, 黄丽萍. 荷叶碱药理作用的研究进展[J]. 南京中医药大学学报, 2021, 37( 4): 619- 624. DOI: 10.14148/j.issn.1672-0482.2021.0619. [40] QU YQ, ZHANG QY, TAN XY, et al. Effect of nuciferine against the proliferation of cholangiocarcinoma cells through Akt/mTOR/4EBP1-glycolytic pathway[J]. Nat Prod Res Dev, 2023, 35( 8): 1297- 1304, 1379. DOI: 10.16333/j.1001-6880.2023.8.002.屈雅琴, 张倩玉, 谈相云, 等. 荷叶碱抑制Akt/mTOR/4EBP1-糖酵解通路抗胆管癌细胞增殖作用研究[J]. 天然产物研究与开发, 2023, 35( 8): 1297- 1304, 1379. DOI: 10.16333/j.1001-6880.2023.8.002. [41] DAI S, WANG C, ZHAO XT, et al. Cucurbitacin B: A review of its pharmacology, toxicity, and pharmacokinetics[J]. Pharmacol Res, 2023, 187: 106587. DOI: 10.1016/j.phrs.2022.106587. [42] LI L, DENG DJ, TAN XY, et al. Mechanism of cucurbitacin B in regulating glycolysis and inhibiting proliferation of HuCCT1 cells[J]. Chin J Exp Tradit Med Formulae, 2022, 28( 16): 74- 81. DOI: 10.13422/j.cnki.syfjx.20221624.李励, 邓冬杰, 谈相云, 等. 葫芦素B调控糖酵解抑制HuCCT1细胞增殖的作用机制[J]. 中国实验方剂学杂志, 2022, 28( 16): 74- 81. DOI: 10.13422/j.cnki.syfjx.20221624. [43] LI YF, LIU YS, LI YS. Chemical composition and pharmacological effects of RadixBupleuri[J]. Northwest Pharm J, 2022, 37( 5): 186- 192. DOI: 10.3969/j.issn.1004-2407.2022.05.036.李艳凤, 刘雅舒, 李艳生. 柴胡的化学成分与药理作用研究进展[J]. 西北药学杂志, 2022, 37( 5): 186- 192. DOI: 10.3969/j.issn.1004-2407.2022.05.036. [44] HE H, GUO JQ, HU YX, et al. Saikosaponin D reverses epinephrine- and norepinephrine-induced gemcitabine resistance in intrahepatic cholangiocarcinoma by downregulating ADRB2/glycolysis signaling[J]. Acta Biochim Biophys Sin, 2023: 55( 9): 1404- 1414. DOI: 10.3724/abbs.2023040. 期刊类型引用(1)
1. 张潮鹤,张昕玮,王相峰. 片仔癀在对乙酰氨基酚所致肝损伤中的保护作用及其机制. 吉林大学学报(医学版). 2025(01): 105-114 . 百度学术
其他类型引用(0)
-