中药有效成分及其复方防治非酒精性脂肪性肝病的现状与展望
DOI: 10.12449/JCH241002
Active components of traditional Chinese medicine and their compound prescriptions in prevention and treatment of nonalcoholic fatty liver disease: Current status and prospects
-
摘要: 非酒精性脂肪性肝病(NAFLD)是目前全球患病率最高的慢性肝病,发病机制复杂,临床治疗手段局限。近20多年来,从中药中发现治疗NAFLD的有效成分以及能发挥多靶点综合作用的成分复方是研究热点之一。本文根据其化学成分,以黄酮类、酚类、萜类、生物碱类、皂苷类分类阐述具有治疗NAFLD前景的中药有效成分,以及具有配伍增效作用的有效成分复方,以期进一步为NAFLD药物治疗策略提供新思路。Abstract: Nonalcoholic fatty liver disease (NAFLD) is currently a chronic liver disease with the highest prevalence rate in the world, with complex pathogeneses and limited clinical treatment methods. Over the past 20 years, the discovery of active components for NAFLD treatment from traditional Chinese medicine and compound prescriptions of the components that can exert a multi-target effect has been one of the research hotspots. Based on the chemical components of traditional Chinese medicine, this article elaborates on the active components with a promising future in the treatment of NAFLD, including flavonoids, phenols, terpenoids, alkaloids, and saponins, as well as the compound prescriptions of active components with a synergistic effect, in order to provide new ideas for the strategies of pharmacotherapy for NAFLD.
-
表 1 治疗NAFLD的中药有效成分
Table 1. Effective components of traditional Chinese medicine for the treatment of NAFLD
分类 有效成分 NAFLD模型构建 剂量 作用机制 黄酮类 槲皮素[12] db/db小鼠;
高糖和FFA诱导 HepG2细胞
体内:50/100/150 mg/kg;
体外:10/20/40 μmol/L
mTOR/YY1↓
CYP7A1↑
水飞蓟宾[13] HFD小鼠 100/300 mg/kg 产SCFA菌↑:
Blautia,Bacteroides,Akkermansia
木犀草素[14] HFD大鼠 HFD饮食含0.5%木犀草素 ZO-1↑
LPS↓TLR4/NF-κB↓
葛根素[16] NASH小鼠、斑马鱼模型;
FFA诱导HepG2细胞;
LPS+INF-γ诱导RAW 264.7细胞
小鼠:100 mg/kg;
斑马鱼:100/200/400 μg/mL;细胞:20/40/80 μmol/L
AMPK↑—mTOR↓—pULK-1—PAI-1↓—STAT3/HIF1α↓
PI3K/AKT↑
二氢杨梅素[18] HFD大鼠;
PA诱导HepG2细胞
体内:50/100/200 mg/kg;
体外:10 μmol/L
AMPK/PGC-1α↑
PPARα↑
山柰酚[20] db/db小鼠;
油酸诱导HepG2细胞
体内:50 mg/kg;
体外:10-6/-7/-8 mol/L
Sirt1/AMPK/PGC-1α↑
ACC/FAS/SREBP1↓
酚类 白藜芦醇[21] HFD大鼠 50/100 mg/kg 产SCFA菌↑:Ruminococcaceae、Lachnospiraceae
产LPS菌↓:Desulfovibrio
姜黄素[22] HFD大鼠;
FFA诱导LSEC细胞、L02细胞
体内:25/50/100 g/kg;
体外:1/2/4/8/10 mol/L
NF-κB↓
PI3K/Akt/HIF-1α↓
绿原酸[23] HFD小鼠;
AML12细胞;THLE-2细胞
体内:50 mg/kg;
体外:12.5/25/50/100 μmol/L
AXL/ERK/LKB1↓
AMPK/ULK-1↑
EGCG[24] HFD大鼠;
LPS诱导Caco-2细胞
体内:100/200 mg/kg;
体外:25/50/75/100 μmol/L
LPS/TLR4/NF-κB↓
Nrf2—ZO-1/Occludin↑
和厚朴酚[25] 胆碱缺乏的高脂肪饮食小鼠;
FFA诱导AML12细胞
体内:2.5/10 mg/kg;
体外:5/10 μmol/L
SIRT3/AMPK↑
维持线粒体功能
萜类 栀子苷[26] tyloxapol诱导NAFLD模型小鼠;
FFA诱导HepG2细胞
体内:50/75/100 g/kg;
体外:65/130/260 μmol/L
Nrf2/HO-1/AMPK↑
mTOR↓
白术内酯Ⅲ[27] HFD小鼠;
FFA诱导HepG2细胞
体内:10 mg/kg灌胃+
1 mg/mL尾静脉注射;
体外:25 μg/mL
AdipoR1/AMPK/SIRT1↑ 白桦脂酸[28] HFD小鼠;
MCD小鼠;
HepG2细胞;Hepa1-6细胞
体内:150 mg/kg;
体外:10 μmol/L
YY1/FAS↓ 丹参酮ⅡA[29] FFA诱导HepG2细胞、Huh7细胞 5/10 μmol/L LXRα/SREBP1↓ 生物碱 小檗碱[34] HFD小鼠;
油酸诱导原代肝细胞
体内:1.4 g/kg;
体外:4 μmol/L
SCD1/FABP1/CD36/CPT1A↓ 氧化小檗碱[35] HFD大鼠 100 mg/kg IRS-1/PI3K/AKT↑ 甜菜碱[36] CDA-HFD小鼠 0.2%/0.5%/1% Atg7/LC3Ⅱ/Ⅰ↑
AMPK↑ ACC↑ Bip/ATF6↓
氧化苦参碱[37] HFD饮食联合链脲佐菌素注射;
PA诱导 HepG2细胞
体内:45/90 mg/kg;
体外:0.1/0.2 mg/mL
NLRP3/IL-1β↓ 皂苷 人参皂苷Rb1[39] HFD小鼠 10 mg/kg PPAR-γ↑ 人参皂苷Re[40] HFD小鼠 20/40 mg/kg PI3K/AKT↓
TLR4/NF-κB↓
人参皂苷RO[41] HFD小鼠 45/90 mg/kg GLP-1↑
TGR5↑
黄芪皂苷Ⅳ[42] HFD大鼠 20/40/80 mg/kg TLR4↓、MyD88 ↓、NF-κB↓ 绞股蓝皂苷LXXV[43] MCD小鼠;
PA诱导HepG2细胞;
TGF-β诱导LX2细胞;
LPS+ATP诱导THP-1细胞
体内:15/30 mg/kg;
体外:0.001~10 μg/mL
α-SMA、TGF-β1、TNF-α、MCP-1、IL-1β、NF-κB、GRP78↓ 表 2 治疗NAFLD的中药有效成分复方
Table 2. Effective component compound of traditional Chinese medicine for the treatment of NAFLD
中药有效成分复方 比例及剂量 作用机制 栀子苷+绿原酸[46-48] 67.16∶1;
90 mg/kg+1.34 mg/kg
SCD-1↓ LPS/TLR-4、TNF-α、
IL-1β↓ MAPK↓
花生皮提取物+栀子苷+异槲皮素[49] 16∶10∶1;
80 mg/kg+50 mg/kg+5 mg/kg
TLR4/NF-κB↓ AMPK/ACC/CPT1↑
AMPK/UKL-1/LC3B↑
葛根素+小檗碱[51] 10∶1~40∶1 PPARγ 葛根素+小檗碱+黄芩苷[52] 10∶1∶1~10∶1∶2 PPARγ 小檗碱+姜黄素[53-54] 50 mg/kg+50 mg/kg PPARγ↑ caveolin-1↑
SREBP-1c↓ SCD-1↓
NF-κB↓TNF-α↓
小檗碱+生育三烯酚+绿原酸[56] 小鼠:87.84 mg/kg+5.27 mg/kg+5.28 mg/kg;
人:500 mg+30 mg+30 mg
miR-122↑ miR-34a↓ 丹酚酸B+苦杏仁苷+五味子酯甲[10,57] 16 mg/kg+0.5 mg/kg+2 mg/kg CK7、CK19、EpCAM、OV6↓
Notch↓
水飞蓟宾+丹酚酸B+葛根素[58] 总质量100.3 g,干预饲料含:0.101 g+0.046 g+0.042 g 益生菌↑:Akkermansia、Blautia;
次生胆汁酸合成相关的属↓:Clostridium、Bacteroides
原人参二醇+丹参酮ⅡA+大黄素[60] 10∶10∶1 血清ALT、TC、HDL-c、LDL-c ↓ 阿魏酸+香豆酸[61] 1∶1.3 HDAC1↓
PPARγ/FABP/CD36↓
木犀草素+番茄红素[62] 体内:20 mg/kg+20 mg/kg;
体外:20 μmol/L+10 μmol/L
Sirt1/AMPK/β氧化↑
NF-κB/IL-6、IL-1β、TNF-α↓
毛冬青皂苷A1+海南冬青苷D[63] 41.6∶54.4,60/120/240 mg/kg ZO-1、Occludin↑ Akkermansia↑ Desulfovibrio↓ EGCG+咖啡因[64] 40 mg/kg+20 mg/kg TNF-α、IL-6、MCP-1↓ 姜黄素+白藜芦醇[65] 8∶2,150 mg/kg PI3K/AKT/mTOR/STAT3/
HIF-1α/VEGF↓
-
[1] BRUNT EM, WONG VWS, NOBILI V, et al. Nonalcoholic fatty liver disease[J]. Nat Rev Dis Primers, 2015, 1: 15080. DOI: 10.1038/nrdp.2015.80. [2] POWELL EE, WONG VWS, RINELLA M. Non-alcoholic fatty liver disease[J]. Lancet, 2021, 397( 10290): 2212- 2224. DOI: 10.1016/S0140-6736(20)32511-3. [3] LE MH, YEO YH, ZOU BY, et al. Forecasted 2040 global prevalence of nonalcoholic fatty liver disease using hierarchical Bayesian approach[J]. Clin Mol Hepatol, 2022, 28( 4): 841- 850. DOI: 10.3350/cmh.2022.0239. [4] SABET A. A phase 3 trial of resmetirom in NASH with liver fibrosis[J]. N Engl J Med, 2024, 390( 17): 1632. DOI: 10.1056/NEJMc2402905. [5] DAY CP, JAMES OFW. Steatohepatitis: A tale of two“hits”?[J]. Gastroenterology, 1998, 114( 4): 842- 845. DOI: 10.1016/S0016-5085(98)70599-2. [6] TILG H, ADOLPH TE, MOSCHEN AR. Multiple parallel hits hypothesis in nonalcoholic fatty liver disease: Revisited after a decade[J]. Hepatology, 2021, 73( 2): 833- 842. DOI: 10.1002/hep.31518. [7] LIU QH, LI XJ, PAN YQ, et al. Efficacy and safety of Qushi Huayu, a traditional Chinese medicine, in patients with nonalcoholic fatty liver disease in a randomized controlled trial[J]. Phytomedicine, 2024, 130: 155398. DOI: 10.1016/j.phymed.2024.155398. [8] ZOU JJ, XIANG Q, TAN DN, et al. Zuogui-Jiangtang-Qinggan-Fang alleviates high-fat diet-induced type 2 diabetes mellitus with non-alcoholic fatty liver disease by modulating gut microbiome-metabolites-short chain fatty acid composition[J]. Biomedecine Pharmacother, 2023, 157: 114002. DOI: 10.1016/j.biopha.2022.114002. [9] KHEONG C WAH, MUSTAPHA NR NIK, MAHADEVA S. A randomized trial of silymarin for the treatment ofNonalcoholic steatohepatitis[J]. Clin Gastroenterol Hepatol, 2017, 15( 12): 1940- 1949. e 8. DOI: 10.1016/j.cgh.2017.04.016. [10] FU YD, HU YH, XIAO Z, et al. Study of the Chinese herbal compound JY5 against biliary hepatic fibrosis through inhibition of ductular reaction[J]. Tradit Chin Drug Res Clin Pharmacol, 2022, 33( 10): 1298- 1306. DOI: 10.19378/j.issn.1003-9783.2022.10.002.付亚东, 胡永红, 肖准, 等. 中药成分复方JY5通过抑制胆管反应抗胆汁性肝纤维化的研究[J]. 中药新药与临床药理, 2022, 33( 10): 1298- 1306. DOI: 10.19378/j.issn.1003-9783.2022.10.002. [11] XIN X, JIN Y, WANG X, et al. A combination of geniposide and chlorogenic acid combination ameliorates nonalcoholic steatohepatitis in mice by inhibiting kupffer cell activation[J]. Biomed Res Int, 2021, 2021: 6615881. DOI: 10.1155/2021/6615881. [12] YANG TT, WANG YY, CAO XY, et al. Targeting mTOR/YY1 signaling pathway by quercetin through CYP7A1-mediated cholesterol-to-bile acids conversion alleviated type 2 diabetes mellitus induced hepatic lipid accumulation[J]. Phytomedicine, 2023, 113: 154703. DOI: 10.1016/j.phymed.2023.154703. [13] LI XX, WANG YP, XING YL, et al. Changes of gut microbiota during silybin-mediated treatment of high-fat diet-induced non-alcoholic fatty liver disease in mice[J]. Hepatol Res, 2020, 50( 1): 5- 14. DOI: 10.1111/hepr.13444. [14] SUN WL, YANG JW, DOU HY, et al. Anti-inflammatory effect of luteolin is related to the changes in the gut microbiota and contributes to preventing the progression from simple steatosis to nonalcoholic steatohepatitis[J]. Bioorg Chem, 2021, 112: 104966. DOI: 10.1016/j.bioorg.2021.104966. [15] ZHOU HL, MA C, WANG C, et al. Research progress in use of traditional Chinese medicine monomer for treatment of non-alcoholic fatty liver disease[J]. Eur J Pharmacol, 2021, 898: 173976. DOI: 10.1016/j.ejphar.2021.173976. [16] FANG XX, LAN XT, ZHU M, et al. Puerarin induces macrophage M2 polarization to exert antinonalcoholic steatohepatitis pharmacological activity via the activation of autophagy[J]. J Agric Food Chem, 2024, 72( 13): 7187- 7202. DOI: 10.1021/acs.jafc.3c09601. [17] CHEN SH, ZHAO XL, WAN J, et al. Dihydromyricetin improves glucose and lipid metabolism and exerts anti-inflammatory effects in nonalcoholic fatty liver disease: A randomized controlled trial[J]. Pharmacol Res, 2015, 99: 74- 81. DOI: 10.1016/j.phrs.2015.05.009. [18] YANG Y, QIU W, XIAO JY, et al. Dihydromyricetin ameliorates hepatic steatosis and insulin resistance via AMPK/PGC-1α and PPARα- mediated autophagy pathway[J]. J Transl Med, 2024, 22( 1): 309. DOI: 10.1186/s12967-024-05060-7. [19] YAO YX, YU YJ, DAI S, et al. Kaempferol efficacy in metabolic diseases: Molecular mechanisms of action in diabetes mellitus, obesity, non-alcoholic fatty liver disease, steatohepatitis, and atherosclerosis[J]. Biomedecine Pharmacother, 2024, 175: 116694. DOI: 10.1016/j.biopha.2024.116694. [20] LI N, YIN L, SHANG JM, et al. Kaempferol attenuates nonalcoholic fatty liver disease in type 2 diabetic mice via the Sirt1/AMPK signaling pathway[J]. Biomedecine Pharmacother, 2023, 165: 115113. DOI: 10.1016/j.biopha.2023.115113. [21] CHEN MT, HOU PF, ZHOU M, et al. Resveratrol attenuates high-fat diet-induced non-alcoholic steatohepatitis by maintaining gut barrier integrity and inhibiting gut inflammation through regulation of the endocannabinoid system[J]. Clin Nutr, 2020, 39( 4): 1264- 1275. DOI: 10.1016/j.clnu.2019.05.020. [22] WU JZ, LI MY, HUANG N, et al. Curcumin alleviates high-fat diet-induced nonalcoholic steatohepatitis via improving hepatic endothelial function with microbial biotransformation in rats[J]. J Agric Food Chem, 2023, 71( 27): 10338- 10348. DOI: 10.1021/acs.jafc.3c01067. [23] MENG FT, SONG CC, LIU J, et al. Chlorogenic acid modulates autophagy by inhibiting the activity of ALKBH5 demethylase, thereby ameliorating hepatic steatosis[J]. J Agric Food Chem, 2023, 71( 41): 15073- 15086. DOI: 10.1021/acs.jafc.3c03710. [24] ZUO GL, CHEN MY, ZUO YP, et al. Tea polyphenol epigallocatechin gallate protects against nonalcoholic fatty liver disease and associated endotoxemia in rats via modulating gut microbiota dysbiosis and alleviating intestinal barrier dysfunction and related inflammation[J]. J Agric Food Chem, 2024. DOI: 10.1021/acs.jafc.3c04832.[ Online ahead of print] [25] LIU JX, ZHANG T, ZHU JZ, et al. Honokiol attenuates lipotoxicity in hepatocytes via activating SIRT3-AMPK mediated lipophagy[J]. Chin Med, 2021, 16( 1): 115. DOI: 10.1186/s13020-021-00528-w. [26] SHEN BY, FENG HH, CHENG JQ, et al. Geniposide alleviates non-alcohol fatty liver disease via regulating Nrf2/AMPK/mTOR signalling pathways[J]. J Cell Mol Med, 2020, 24( 9): 5097- 5108. DOI: 10.1111/jcmm.15139. [27] LI Q, TAN JX, HE Y, et al. Atractylenolide iii ameliorates non-alcoholic fatty liver disease by activating hepatic adiponectin receptor 1-Mediated ampk pathway[J]. Int J Biol Sci, 2022, 18( 4): 1594- 1611. DOI: 10.7150/ijbs.68873. [28] MU Q, WANG H, TONG L, et al. Betulinic acid improves nonalcoholic fatty liver disease through YY1/FAS signaling pathway[J]. FASEB J, 2020, 34( 9): 13033- 13048. DOI: 10.1096/fj.202000546R. [29] GAO WY, CHEN PY, HSU HJ, et al. Tanshinone IIA downregulates lipogenic gene expression and attenuates lipid accumulation through the modulation of LXRα/SREBP1 pathway in HepG2 cells[J]. Biomedicines, 2021, 9( 3): 326. DOI: 10.3390/biomedicines9030326. [30] LENG YR, ZHANG MH, LUO JG, et al. Pathogenesis of NASH and promising natural products[J]. Chin J Nat Med, 2021, 19( 1): 12- 27. DOI: 10.1016/S1875-5364(21)60002-X. [31] LI CL, ZHOU WJ, JI G, et al. Natural products that target macrophages in treating non-alcoholic steatohepatitis[J]. World J Gastroenterol, 2020, 26( 18): 2155- 2165. DOI: 10.3748/wjg.v26.i18.2155. [32] WANG L, YAN YH, WU LF, et al. Natural products in non-alcoholic fatty liver disease(NAFLD): Novel lead discovery for drug development[J]. Pharmacol Res, 2023, 196: 106925. DOI: 10.1016/j.phrs.2023.106925. [33] ZHANG Y, CHEN Q, FU X, et al. Current advances in the regulatory effects of bioactive compounds from dietary resources on nonalcoholic fatty liver disease: Role of autophagy[J]. J Agric Food Chem, 2023, 71( 46): 17554- 17569. DOI: 10.1021/acs.jafc.3c04692. [34] YU MY, ALIMUJIANG M, HU LL, et al. Berberine alleviates lipid metabolism disorders via inhibition of mitochondrial complex I in gut and liver[J]. Int J Biol Sci, 2021, 17( 7): 1693- 1707. DOI: 10.7150/ijbs.54604. [35] LI QP, DOU YX, HUANG ZW, et al. Therapeutic effect of oxyberberine on obese non-alcoholic fatty liver disease rats[J]. Phytomedicine, 2021, 85: 153550. DOI: 10.1016/j.phymed.2021.153550. [36] SEO J, KWON D, KIM SH, et al. Role of autophagy in betaine-promoted hepatoprotection against non-alcoholic fatty liver disease in mice[J]. Curr Res Food Sci, 2024, 8: 100663. DOI: 10.1016/j.crfs.2023.100663. [37] LOU D, FANG Q, HE YH, et al. Oxymatrine alleviates high-fat diet/streptozotocin-induced non-alcoholic fatty liver disease in C57BL/6 J mice by modulating oxidative stress, inflammation and fibrosis[J]. Biomedecine Pharmacother, 2024, 174: 116491. DOI: 10.1016/j.biopha.2024.116491. [38] ZHONG GC, LIAO ZH, CHEN Y, et al. Research progress on pharmacological effects of ginsenoside Rb1 in treatment of non-alcoholic fatty liver disease[J]. Chin Arch Tradit Chin Med, 2023, 41( 4): 162- 168. DOI: 10.13193/j.issn.1673-7717.2023.04.032.钟光成, 廖志涵, 陈依, 等. 人参皂苷Rb1治疗非酒精性脂肪性肝病药理作用的研究进展[J]. 中华中医药学刊, 2023, 41( 4): 162- 168. DOI: 10.13193/j.issn.1673-7717.2023.04.032. [39] SONG B, SUN Y, CHU YF, et al. Ginsenoside Rb1 alleviated high-fat-diet-induced hepatocytic apoptosis via peroxisome proliferator-activated receptor γ[J]. Biomed Res Int, 2020, 2020: 2315230. DOI: 10.1155/2020/2315230. [40] ZHANG JS, DUAN MF, WU SH, et al. Comprehensive pharmacological and experimental study of Ginsenoside Re as a potential therapeutic agent for non-alcoholic fatty liver disease[J]. Biomedecine Pharmacother, 2024, 177: 116955. DOI: 10.1016/j.biopha.2024.116955. [41] JIANG LS, LI W, ZHUANG TX, et al. Ginsenoside ro ameliorates high-fat diet-induced obesity and insulin resistance in mice via activation of the G protein-coupled bile acid receptor 5 pathway[J]. J Pharmacol Exp Ther, 2021, 377( 3): 441- 451. DOI: 10.1124/jpet.120.000435. [42] LIU YL, ZHANG QZ, WANG YR, et al. Astragaloside IV improves high-fat diet-induced hepatic steatosis in nonalcoholic fatty liver disease rats by regulating inflammatory factors level via TLR4/NF-κB signaling pathway[J]. Front Pharmacol, 2020, 11: 605064. DOI: 10.3389/fphar.2020.605064. [43] LEE JH, OH JY, KIM SH, et al. Pharmaceutical efficacy of gypenoside LXXV on non-alcoholic steatohepatitis(NASH)[J]. Biomolecules, 2020, 10( 10): 1426. DOI: 10.3390/biom10101426. [44] LENG J, HUANG F, HAI YM, et al. Amelioration of non-alcoholic steatohepatitis by Qushi Huayu decoction is associated with inhibition of the intestinal mitogen-activated protein kinase pathway[J]. Phytomedicine, 2020, 66: 153135. DOI: 10.1016/j.phymed.2019.153135. [45] TIAN HJ, FANG Y, LIU W, et al. Inhibition on XBP1s-driven lipogenesis by Qushi Huayu Decoction contributes to amelioration of hepatic steatosis induced by fructose[J]. J Ethnopharmacol, 2023, 301: 115806. DOI: 10.1016/j.jep.2022.115806. [46] TANG YJ, MENG SX, FENG Q, et al. Screen and verification of Chinese medicine by uniform design for the prevention and treatment of fatty liver[J]. Acta Univ Tradit Med Sin Pharmacol Shanghai, 2013, 27( 4): 53- 57. DOI: 10.16306/j.1008-861x.2013.04.022.唐亚军, 孟胜喜, 冯琴, 等. 基于均匀设计的防治脂肪肝中药有效组分复方筛选与验证[J]. 上海中医药大学学报, 2013, 27( 4): 53- 57. DOI: 10.16306/j.1008-861x.2013.04.022. [47] CHEN C, XIN X, LIU Q, et al. Geniposide and chlorogenic acid combination improves non-alcoholic fatty liver disease involving the potent suppression of elevated hepatic SCD-1[J]. Front Pharmacol, 2021, 12: 653641. DOI: 10.3389/fphar.2021.653641. [48] PENG JH, LENG J, TIAN HJ, et al. Geniposide and chlorogenic acid combination ameliorates non-alcoholic steatohepatitis involving the protection on the gut barrier function in mouse induced by high-fat diet[J]. Front Pharmacol, 2018, 9: 1399. DOI: 10.3389/fphar.2018.01399. [49] YI MJ, FASINA OB, LI YJ, et al. Mixture of peanut skin extract, geniposide, and isoquercitrin improves the hepatic lipid accumulation of mice via modification of gut microbiota homeostasis and the TLR4 and AMPK signaling pathways[J]. Int J Mol Sci, 2023, 24( 23): 16684. DOI: 10.3390/ijms242316684. [50] ZHANG CY, FEI N, HE PF, et al. The mechanism of Gegen Qinlian Decoction regulating PI3K/AKT/FOXO1 signaling pathway on anti-inflammatory and anti-oxidative stress in rats with non-alcoholic steatohepatitis[J/OL]. Chin J Immunol, 1- 11[ 2024-08-23]. http://kns.cnki.net/kcms/detail/22.1126.r.20230517.1515.006.html. http://kns.cnki.net/kcms/detail/22.1126.r.20230517.1515.006.html张超云, 费娜, 郝鹏飞, 等. 葛根芩连汤调控PI3K/AKT/FOXO1信号通路对非酒精性脂肪肝炎大鼠抗炎和抗氧化应激的作用机制[J/OL]. 中国免疫学杂志, 1- 11[ 2024-08-23]. http://kns.cnki.net/kcms/detail/22.1126.r.20230517.1515.006.html. http://kns.cnki.net/kcms/detail/22.1126.r.20230517.1515.006.html [51] WANG YL, YE Y, CHENG JW, et al. Experimental studies of the combination effects of berberine and puerarin on NASH in vitro[J]. Chin J Integr Tradit West Med Dig, 2015, 23( 5): 321- 326. DOI: 10.3969/j.issn.1671-038X.2015.05.05.王允亮, 叶杨, 程佳伟, 等. 葛根素和小檗碱联合用药干预NASH细胞模型的实验研究[J]. 中国中西医结合消化杂志, 2015, 23( 5): 321- 326. DOI: 10.3969/j.issn.1671-038X.2015.05.05. [52] WANG YL. Study on the mechanism of Gegen Qinlian decoction and its effective components in intervening PPARγ in nonalcoholic steatohepatitis[D]. Beijing: Beijing University of Chinese Medicine, 2014.王允亮. 葛根芩连汤及其有效组分干预非酒精性脂肪性肝炎PPARγ的作用机制研究[D]. 北京: 北京中医药大学, 2014. [53] KUANG SY. Study on the activity of three traditional Chinese medicines and their effective components based on the treatment of NAFLD[D]. Changsha: Hunan University of Chinese Medicine, 2014.匡双玉. 基于治疗NAFLD的三味中药及有效成分的活性研究[D]. 长沙: 湖南中医药大学, 2014. [54] FENG WW, KUANG SY, TU C, et al. Natural products berberine and curcumin exhibited better ameliorative effects on rats with non-alcohol fatty liver disease than lovastatin[J]. Biomedecine Pharmacother, 2018, 99: 325- 333. DOI: 10.1016/j.biopha.2018.01.071. [55] COSSIGA V, LEMBO V, GUARINO M, et al. Berberis aristata, Elaeis guineensis and Coffea canephora extracts modulate the insulin receptor expression and improve hepatic steatosis in nafld patients: A pilot clinical trial[J]. Nutrients, 2019, 11( 12): 3070. DOI: 10.3390/nu11123070. [56] COSSIGA V, LEMBO V, NIGRO C, et al. The combination of berberine, tocotrienols and coffee extracts improves metabolic profile and liver steatosis by the modulation of gut microbiota and hepatic miR-122 and miR-34a expression in mice[J]. Nutrients, 2021, 13( 4): 1281. DOI: 10.3390/nu13041281. [57] XIAO Z, FU YD, HU YH, et al. Study on the compatibility of the main components of fuzheng Huayu formula against hepatic fibrosis[J]. Mod Tradit Chin Med Mater Med World Sci Technol, 2021, 23( 5): 1567- 1578. DOI: 10.11842/wst.20201102002.肖准, 付亚东, 胡永红, 等. 扶正化瘀方抗肝纤维化主要成分的配伍研究[J]. 世界科学技术-中医药现代化, 2021, 23( 5): 1567- 1578. DOI: 10.11842/wst.20201102002. [58] WANG X, JIN YF, DI C, et al. Supplementation of silymarin alone or in combination with salvianolic acids B and puerarin regulates gut microbiota and its metabolism to improve high-fat diet-induced NAFLD in mice[J]. Nutrients, 2024, 16( 8): 1169. DOI: 10.3390/nu16081169. [59] SHU XB, ZHAO YT, YANG ZX. Clinical observation of Jiangzhi Granule combined with lifestyle intervention in treating NAFLD patients with damp-heat accumulation syndrome[J]. Shanghai J Tradit Chin Med, 2023, 57( 2): 35- 40. DOI: 10.16305/j.1007-1334.2023.2208086.舒祥兵, 赵燕婷, 杨志新. 降脂颗粒联合生活方式干预治疗湿热蕴结型非酒精性脂肪性肝病的临床观察[J]. 上海中医药杂志, 2023, 57( 2): 35- 40. DOI: 10.16305/j.1007-1334.2023.2208086. [60] LIU Y, XU JY, YANG LL, et al. Optimization of active components compatibility of Jiangzhi Granule to improve NAFLD based on weighed modification method[J]. Shanghai J Tradit Chin Med, 2021, 55( 3): 65- 73. DOI: 10.16305/j.1007-1334.2021.2011005.刘洋, 徐娇雅, 杨丽丽, 等. 基于权重配方法的降脂颗粒改善非酒精性脂肪性肝病的有效成分配伍优化研究[J]. 上海中医药杂志, 2021, 55( 3): 65- 73. DOI: 10.16305/j.1007-1334.2021.2011005. [61] CUI KL, ZHANG LC, LA XQ, et al. Ferulic acid and P-coumaric acid synergistically attenuate non-alcoholic fatty liver disease through HDAC1/PPARG-mediated free fatty acid uptake[J]. Int J Mol Sci, 2022, 23( 23): 15297. DOI: 10.3390/ijms232315297. [62] ZHU YX, LIU RJ, SHEN ZL, et al. Combination of luteolin and lycopene effectively protect against the“two-hit” in NAFLD through Sirt1/AMPK signal pathway[J]. Life Sci, 2020, 256: 117990. DOI: 10.1016/j.lfs.2020.117990. [63] ZHAO WW, XIAO M, YANG J, et al. The combination of Ilexhainanoside D and ilexsaponin A1 reduces liver inflammation and improves intestinal barrier function in mice with high-fat diet-induced non-alcoholic fatty liver disease[J]. Phytomedicine, 2019, 63: 153039. DOI: 10.1016/j.phymed.2019.153039. [64] YANG Z, ZHU MZ, ZHANG YB, et al. Coadministration of epigallocatechin-3-gallate(EGCG) and caffeine in low dose ameliorates obesity and nonalcoholic fatty liver disease in obese rats[J]. Phytother Res, 2019, 33( 4): 1019- 1026. DOI: 10.1002/ptr.6295. [65] HE YH, WANG H, LIN SL, et al. Advanced effect of curcumin and resveratrol on mitigating hepatic steatosis in metabolic associated fatty liver disease via the PI3K/AKT/mTOR and HIF-1/VEGF cascade[J]. Biomedecine Pharmacother, 2023, 165: 115279. DOI: 10.1016/j.biopha.2023.115279.
计量
- 文章访问数: 1169
- HTML全文浏览量: 167
- PDF下载量: 125
- 被引次数: 0