中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于孟德尔随机化的肝功能和脂质代谢水平与睡眠障碍的因果关联分析

何威 朱述可 李春雨 杜雪 李佳芮

引用本文:
Citation:

基于孟德尔随机化的肝功能和脂质代谢水平与睡眠障碍的因果关联分析

DOI: 10.12449/JCH241020
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:何威负责拟定写作思路,指导撰写文章并最后定稿;朱述可负责课题设计,资料分析,撰写论文,修改论文;李春雨、杜雪、李佳芮参与检索文献,收集数据。
详细信息
    通信作者:

    何威, 297378127@qq.com (ORCID: 0009-0009-5281-734X)

Causal association of liver function and lipid metabolism levels with sleep disorders based on Mendelian randomization

More Information
    Corresponding author: HE Wei, 297378127@qq.com (ORCID: 0009-0009-5281-734X)
  • 摘要:   目的  采用孟德尔随机化分析肝功能和脂质代谢水平与睡眠障碍的因果关联。  方法  对GWAS进行分析,暴露因素为肝功能和脂质代谢水平[ALT、AST、GGT、Alb、血清总蛋白(TP)、TBil、ALP、TG、TG与磷酸甘油酯的比例(TG/G3P)、TC、HDL-C、LDL-C、多不饱和脂肪酸(PUFA)、总脂肪酸(TFA)、PUFA/TFA],结局因素为睡眠障碍(非器质性)。采用逆方差加权法(IVW)、MR-Egger法、Simple Mode法、加权中位数法和Weighted Mode法等回归模型进行孟德尔随机化分析。  结果  血清Alb(OR=0.728,95%CI:0.535~0.989,P<0.05),HDL-C(OR=0.879,95%CI:0.784~0.986,P<0.05)和PUFA/TFA(OR=0.800,95%CI:0.642~0.998,P<0.05)与睡眠障碍呈负相关。TG/G3P(OR=1.222,95%CI:1.044~1.431,P<0.05)与睡眠障碍呈正相关。孟德尔随机化结果未显示ALT、AST、GGT、TP、TBil、ALP、TG、TC、LDL-C、PUFA、TFA与睡眠障碍有因果关系(P值均>0.05)。ME-Egger截距测试结果表明分析结果不存在多效性(P>0.05),孟德尔随机化在本研究中为因果推断的有效方法。  结论  根据孟德尔随机化分析结果,肝功能和脂质代谢水平与睡眠障碍之间存在显著关联。在预测睡眠障碍的发生风险以及干预方面,可以考虑利用肝功能和脂质代谢水平作为睡眠障碍发生风险以及干预的指标。

     

  • 图  1  肝功能指标孟德尔随机化结果散点图

    注: a,ALT散点图;b,AST散点图;c,GGT散点图;d,Alb散点图;e,TP散点图;f,TBil散点图;g,ALP散点图。

    Figure  1.  Mendelian randomization result scatter plot of liver function indicators

    图  2  脂质代谢指标孟德尔随机化结果散点图

    注: a,TG散点图;b,TG/G3P散点图;c,TC散点图;d,HDL-C散点图;e,LDL-C:低密散点图;f,PUFA散点图;g,TFA散点图;h,PUFA/TFA散点图。

    Figure  2.  Mendelian randomization result scatter plot of lipid metabolism indicators

    表  1  样本数据基本信息

    Table  1.   Basic information of sample data

    数据名称 年份 人群 SNP数量 GWASID
    ALT 2021 欧洲人 4 231 965 ebi-a-GCST90025979
    AST 2021 欧洲人 4 231 525 ebi-a-GCST90025980
    GGT 2018 欧洲人 13 586 026 ukb-d-30730_raw
    Alb 2022 欧洲人 11 590 399 ebi-a-GCST90092807
    TP 2021 欧洲人 4 218 824 ebi-a-GCST90025995
    TBil 2018 欧洲人 13 585 986 ukb-d-30840_irnt
    ALP 2018 欧洲人 13 586 006 ukb-d-30610_raw
    TG 2018 欧洲人 13 586 007 ukb-d-30870_raw
    TG/G3P 2022 欧洲人 11 590 399 ebi-a-GCST90092983
    TC 2022 欧洲人 13 586 006 ebi-a-GCST90092985
    HDL-C 2021 欧洲人 4 218 934 ebi-a-GCST90025956
    LDL-C 2021 欧洲人 19 037 976 ebi-a-GCST90018961
    PUFA 2022 欧洲人 11 590 399 ebi-a-GCST90092939
    TFA 2016 欧洲人 11 412 092 met-c-936
    PUFA/TFA 2022 欧洲人 11 590 399 ebi-a-GCST90092941
    睡眠障碍 2021 欧洲人 16 380 466 Finn-KRA_PSY_SLEEP_NONORG
    下载: 导出CSV

    表  2  孟德尔随机化结果

    Table  2.   Mendelian Randomization Results

    暴露因素 分析方法 B P OR 95%CI P多效性 P异质性
    ALT IVW -0.084 0.388 0.919 0.759~1.113 0.781 0.255
    AST IVW -0.026 0.774 0.974 0.817~1.162 0.926 0.640
    GGT IVW 0.003 0.300 1.003 0.997~1.008 0.614 0.976
    Alb IVW -0.318 0.042 0.728 0.535~0.989 0.721 0.986
    TP IVW -0.043 0.646 0.957 0.795~1.153 0.410 0.551
    TBil IVW 0.051 0.181 1.052 0.998~1.134 0.085 0.859
    ALP IVW <-0.001 0.864 1.005 0.996~1.005 0.598 0.407
    TG IVW <0.001 0.864 1.000 0.996~1.005 0.598 0.407
    TG/G3P IVW 0.201 0.013 1.222 1.044~1.431 0.257 0.865
    TC IVW -0.003 0.976 0.997 0.801~1.241 0.784 0.117
    HDL-C IVW -0.129 0.027 0.879 0.784~0.986 0.696 0.221
    LDL-C IVW -0.034 0.656 0.966 0.831~1.124 0.207 0.446
    PUFA IVW 0.062 0.502 0.940 0.784~1.123 0.901 0.277
    TFA IVW 0.071 0.480 1.073 0.882~1.307 0.348 0.402
    PIFA/TFA IVW -0.223 0.047 0.800 0.642~0.998 0.087 0.757
    下载: 导出CSV
  • [1] SATEIA MJ. International classification of sleep disorders-third edition: Highlights and modifications[J]. Chest, 2014, 146( 5): 1387- 1394. DOI: 10.1378/chest.14-0970.
    [2] ZHANG JH, ZHANG XQ, ZHANG KX, et al. An updated of meta-analysis on the relationship between mobile phone addiction and sleep disorder[J]. J Affect Disord, 2022, 305: 94- 101. DOI: 10.1016/j.jad.2022.02.008.
    [3] JAHRAMI HA, ALHAJ OA, HUMOOD AM, et al. Sleep disturbances during the COVID-19 pandemic: A systematic review, meta-analysis, and meta-regression[J]. Sleep Med Rev, 2022, 62: 101591. DOI: 10.1016/j.smrv.2022.101591.
    [4] NIE QR, SHEN Y, LUO MQ, et al. Analysis of sleep for the American population: Result from NHANES database[J]. J Affect Disord, 2024, 347: 134- 143. DOI: 10.1016/j.jad.2023.11.082.
    [5] CHU XM, LIU L, YE J, et al. Insomnia affects the levels of plasma bilirubin and protein metabolism: An observational study and GWGEIS in UK Biobank cohort[J]. Sleep Med, 2021, 85: 184- 190. DOI: 10.1016/j.sleep.2021.05.040.
    [6] CHEN LD, HUANG JF, CHEN GP, et al. Association and gender difference analysis of obstructive sleep apnea hypopnea syndrome and liver injury[J]. Natl Med J China, 2022, 102( 8): 550- 554. DOI: 10.3760/cma.j.cn112137-20210617-01371.

    陈理达, 黄杰凤, 陈公平, 等. 阻塞性睡眠呼吸暂停低通气综合征与肝损伤的关联及性别差异分析[J]. 中华医学杂志, 2022, 102( 8): 550- 554. DOI: 10.3760/cma.j.cn112137-20210617-01371.
    [7] PAN QY, LI HQ, GAN XY, et al. Relationship between slow-wave sleep and serum γ-glutamine transaminase in non-obese men with obstructive sleep apnea-hypopnea syndrome[J]. Schlaf Atmung, 2023, 27( 5): 1717- 1724. DOI: 10.1007/s11325-022-02775-z.
    [8] PROCHAZKOVA P, SONKA K, ROUBALOVA R, et al. Investigation of anti-neuronal antibodies and disparity in central hypersomnias[J]. Sleep Med, 2024, 113: 220- 231. DOI: 10.1016/j.sleep.2023.11.039.
    [9] SÖKÜCÜ SN, AYDıN Ş, SATıCı C, et al. Triglyceride-glucose index as a predictor of obstructive sleep apnoea severity in the absence of traditional risk factors[J]. Arq Neuropsiquiatr, 2023, 81( 10): 891- 897. DOI: 10.1055/s-0043-1776411.
    [10] LI LM, YOU WY, REN W. The ZJU index is a powerful index for identifying NAFLD in the general Chinese population[J]. Acta Diabetol, 2017, 54( 10): 905- 911. DOI: 10.1007/s00592-017-1024-8.
    [11] WANG LP, NIE GQ, YAN FQ, et al. The ZJU index is associated with the risk of obstructive sleep apnea syndrome in Chinese middle-aged and older people: A cross-sectional study[J]. Lipids Health Dis, 2023, 22( 1): 207. DOI: 10.1186/s12944-023-01974-1.
    [12] YU TQ, XU WT, SU YN, et al. Mendelian randomization: The basic principles, methods and limitations[J]. Chin J Evid Based Med, 2021, 21( 10): 1227- 1234. DOI: 10.7507/1672-2531.202107008.

    于天琦, 徐文涛, 苏雅娜, 等. 孟德尔随机化研究基本原理、方法和局限性[J]. 中国循证医学杂志, 2021, 21( 10): 1227- 1234. DOI: 10.7507/1672-2531.202107008.
    [13] HE SM, ZHANG Y, PENG LQ, et al. Research progress of propensity score and Mendelian randomization in China[J]. Chin J Dis Contr Prev, 2022, 26( 3): 325- 330. DOI: 10.16462/j.cnki.zhjbkz.2022.03.014.

    和思敏, 张雨, 彭刘庆, 等. 倾向性评分与孟德尔随机化国内研究现状[J]. 中华疾病控制杂志, 2022, 26( 3): 325- 330. DOI: 10.16462/j.cnki.zhjbkz.2022.03.014.
    [14] WANG J, ZHANG GY, CHENG S. Good practices in Mendelian randomization: Common designs, key challenges, and optimization in Mendelian randomization analysis[J]. J Cap Med Univ, 2023, 9( 6): 1087- 1094.

    王晶, 张国燕, 程杉. 孟德尔随机化的良好实践: 孟德尔随机化分析的常见设计、关键挑战及优化[J]. 首都医科大学学报, 2023, 9( 6): 1087- 1094.
    [15] PINGAULT JB, O’REILLY PF, SCHOELER T, et al. Using genetic data to strengthen causal inference in observational research[J]. Nat Rev Genet, 2018, 19( 9): 566- 580. DOI: 10.1038/s41576-018-0020-3.
    [16] ELSWORTH B, LYON M, ALEXANDER T, et al. The MRC IEU OpenGWAS data infrastructure[J]. bioRxiv, 2020. DOI: 10.1101/2020.08.10.244293
    [17] HEMANI G, ZHENG J, ELSWORTH B, et al. The MR-Base platform supports systematic causal inference across the human phenome[J]. Elife, 2018, 7: e34408. DOI: 10.7554/eLife.34408.
    [18] BARTON AR, SHERMAN MA, MUKAMEL RE, et al. Whole-exome imputation within UK Biobank powers rare coding variant association and fine-mapping analyses[J]. Nat Genet, 2021, 53( 8): 1260- 1269. DOI: 10.1038/s41588-021-00892-1.
    [19] SAKAUE S, KANAI M, TANIGAWA Y, et al. A cross-population atlas of genetic associations for 220 human phenotypes[J]. Nat Genet, 2021, 53( 10): 1415- 1424. DOI: 10.1038/s41588-021-00931-x.
    [20] RICHARDSON TG, LEYDEN GM, WANG Q, et al. Characterising metabolomic signatures of lipid-modifying therapies through drug target Mendelian randomisation[J]. PLoS Biol, 2022, 20( 2): e3001547. DOI: 10.1371/journal.pbio.3001547.
    [21] Genetics TREHEARNE A., lifestyle and environment. UK Biobank is an open access resource following the lives of 500, 000 participants to improve the health of future generations[J]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz, 2016, 59( 3): 361- 367. DOI: 10.1007/s00103-015-2297-0.
    [22] OLLIER W, SPROSEN T, PEAKMAN T. UK Biobank: From concept to reality[J]. Pharmacogenomics, 2005, 6( 6): 639- 646. DOI: 10.2217/14622416.6.6.639.
    [23] KETTUNEN J, DEMIRKAN A, WÜRTZ P, et al. Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA[J]. Nat Commun, 2016, 7: 11122. DOI: 10.1038/ncomms11122.
    [24] FERINI-STRAMBI L, LIGUORI C, LUCEY BP, et al. Role of sleep in neurodegeneration: The consensus report of the 5th Think Tank World Sleep Forum[J]. Neurol Sci, 2024, 45( 2): 749- 767. DOI: 10.1007/s10072-023-07232-7.
    [25] ZHAI XJ, ZHAO HY, YANG M, et al. Relationship between abnormal lipid metabolism and insomnia in elderly hypertensive patients[J]. Clin J Med Offic, 2022, 50( 9): 972- 974. DOI: 10.16680/j.1671-3826.2022.09.28.

    翟晓君, 赵会颖, 杨萌, 等. 老年高血压患者脂质代谢异常与失眠关系研究[J]. 临床军医杂志, 2022, 50( 9): 972- 974. DOI: 10.16680/j.1671-3826.2022.09.28.
    [26] SANG D, LIN KT, YANG YN, et al. Prolonged sleep deprivation induces a cytokine-storm-like syndrome in mammals[J]. Cell, 2023, 186( 25): 5500- 5516. e 21. DOI: 10.1016/j.cell.2023.10.025.
    [27] MOSTAFA AM, HAFEZ SM, ABDULLAH NM, et al. Fatigue, depression, and sleep disorders are more prevalent in patients with metabolic-associated fatty liver diseases[J]. Eur J Gastroenterol Hepatol, 2024, 36( 5): 665- 673. DOI: 10.1097/MEG.0000000000002752.
    [28] LEE CH, MURRELL CE, CHU A, et al. Circadian regulation of apolipoproteins in the brain: Implications in lipid metabolism and disease[J]. Int J Mol Sci, 2023, 24( 24): 17415. DOI: 10.3390/ijms242417415.
    [29] CHU YX, ZHANG YJ, LIU JX, et al. An integrated liver, hippocampus and serum metabolomics based on UPLC-Q-TOF-MS revealed the therapeutical mechanism of Ziziphi Spinosae Semen in p-chlorophenylalanine-induced insomnia rats[J]. Biomed Chromatogr, 2024, 38( 3): e5796. DOI: 10.1002/bmc.5796.
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  228
  • HTML全文浏览量:  83
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-27
  • 录用日期:  2024-05-23
  • 出版日期:  2024-10-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回