中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NLRP3炎症小体在自身免疫性肝炎中的作用机制

王丽菲 罗龙龙 邢国静 卢利霞 李斌 张久聪 于晓辉

王丽菲, 罗龙龙, 邢国静, 等. NLRP3炎症小体在自身免疫性肝炎中的作用机制[J]. 临床肝胆病杂志, 2024, 40(10): 2092-2097. DOI: 10.12449/JCH241027.
引用本文: 王丽菲, 罗龙龙, 邢国静, 等. NLRP3炎症小体在自身免疫性肝炎中的作用机制[J]. 临床肝胆病杂志, 2024, 40(10): 2092-2097. DOI: 10.12449/JCH241027.
WANG LF, LUO LL, XING GJ, et al. Research advances in the mechanism of action of nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome in autoimmune hepatitis[J]. J Clin Hepatol, 2024, 40(10): 2092-2097. DOI: 10.12449/JCH241027.
Citation: WANG LF, LUO LL, XING GJ, et al. Research advances in the mechanism of action of nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome in autoimmune hepatitis[J]. J Clin Hepatol, 2024, 40(10): 2092-2097. DOI: 10.12449/JCH241027.

NLRP3炎症小体在自身免疫性肝炎中的作用机制

DOI: 10.12449/JCH241027
基金项目: 

甘肃省科技计划项目任务书 (22YF7FA105);

甘肃省卫生健康行业科研计划项目合同书 (GSWSKY2021-054);

甘肃省非感染性肝病临床医学研究中心 (21JR7RA017);

联勤保障部队第九四〇医院基金临床医学肝病诊治中心 (2021yxky079)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:王丽菲、罗龙龙负责检索文献,撰写论文;邢国静、卢利霞、李斌参与修改论文;于晓辉、张久聪负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    张久聪, zhangjiucong@163.com (ORCID:0000-0003-4006-3033)

    于晓辉, yuxiaohui528@126.com (ORCID:0000-0002-8633-3281)

Research advances in the mechanism of action of nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome in autoimmune hepatitis

Research funding: 

Gansu Province Science and Technology Plan Project Assignment (22YF7FA105);

Gansu Province Health Industry Scientific Research Plan Project Contract (GSWSKY2021-054);

Gansu Clinical Medical Research Center for Non-infectious Liver Diseases (21JR7RA017);

Liver Disease Diagnosis and Treatment Center, 940th Hospital Foundation, Joint Logistics Support Force (2021yxky079)

More Information
  • 摘要: 自身免疫性肝炎(AIH)是由自身免疫系统攻击肝细胞所致的慢性肝炎,目前关于AIH的发病机制尚不十分明确。炎症小体是先天免疫的重要组成部分,参与多种病理生理学过程。研究表明核苷酸结合寡聚化结构域样受体蛋白3(NLRP3)炎性小体相关的炎性反应在AIH的发病机制中起重要作用,其主要介导促炎因子的释放和细胞焦亡,进而参与AIH的病理生理过程。因此,可以通过抑制NLRP3炎性小体的激活来延缓AIH发生发展,从而为AIH的防治提供新思路。

     

  • 自身免疫性肝炎(AIH)是一种慢性肝脏炎症性疾病,以肝细胞损伤为主要特点,可发展为肝硬化和肝衰竭1。AIH在女性中更常见,其发病率和患病率呈上升趋势2。大部分AIH患者隐匿起病,无明显症状或仅出现乏力、体质量减轻、恶心、瘙痒等非特异性症状。典型的生化特征是血清胆红素、转氨酶、γ-球蛋白和免疫球蛋白G水平升高,以及血清抗核抗体和平滑肌抗体阳性3-5。目前AIH的一线治疗是糖皮质激素加硫唑嘌呤方案6,其目的是改善患者症状及控制炎症,达到生化缓解,此外,霉酚酸酯、他克莫司和环孢素可作为AIH的二线治疗药物,但停药后患者易复发3。因此,深入研究其发病机制意义重大。

    核苷酸结合寡聚化结构域样受体蛋白3(nucleotide-binding oligomerization domain-like receptor protein 3,NLRP3)炎症小体是固有免疫反应的重要组成,参与调控多种自身免疫性疾病7。NLRP3炎症小体被认为可能参与AIH的发病过程,因此,本文现将国内外关于NLRP3炎症小体与AIH的研究进展作一综述。

    NOD样受体(NOD-like receptors,NLR)是一种典型的模式识别受体,其在病原体相关分子模式(pathogen-associated molecular patterns,PAMP)和损伤相关分子模式(damage-associated molecular patterns,DAMP)的识别中发挥着重要作用8。作为NLR家族最具特征性的炎症小体,NLRP3炎症小体的研究最为广泛。NLRP3炎性小体是由核心蛋白NLRP3、凋亡相关斑点样蛋白(apoptosis-associated spot-like proteins,ASC)和半胱氨酸天冬氨酸蛋白酶1(cysteine aspartase-1,caspase-1)组成的大型蛋白复合物9。NLRP由氨基端热蛋白结构域(pyrin domain,PYD)、中心部分的核苷酸寡聚化结构域(nucleoside triphosphatase domain,NACHT)和羧基末端的富含亮氨酸重复结构域组成。ASC的氨基端包括PYD,羧基端包括半胱天冬酶募集结构域(caspase activation and recruitment domain,CARD),它们相互作用激活caspase-110-11

    所有的亚结构在NLRP3炎症小体组装中执行特定的功能。在上游信号的激活下,NLRP3的NACHT结构域相互作用,诱导NLRP3寡聚化,然后,同型PYD-PYD相互作用促进ASC招募和成核螺旋ASC丝的形成。ASC通过同型CARD-CARD相互作用招募和激活caspase-1,最后,成簇的caspase-1裂解到由CARD和P20组成的P33复合体上,形成一种具有蛋白水解活化作用的结构12

    NLRP3炎症小体的激活是宿主抵御病原体入侵的重要机制,NLRP3炎症小体的过度激活会导致炎症,促进疾病的发展,并损害组织和器官功能(图1)。NLRP3炎症小体的经典激活途径涉及启动和激活两个关键步骤。在启动阶段,特异性模式识别受体,如TLR和细胞因子受体识别PAMP和细胞因子,激活NF-κB信号通路,上调NLRP3、pro-IL-1β和pro-IL-18。在激活阶段,NLRP3通过NACHT结构域聚合,然后招募ASC,进而招募和激活前caspase-113-14,这三种蛋白组装成一个多聚体蛋白,称为NLRP3炎症小体。活化的caspase-1将pro-IL-1β和pro-IL-18切割成具有生物活性的形式,从而诱导炎症15。活化的caspase-1也能切割消皮素D,从而触发一种特定形式的细胞死亡,即焦亡16

    注: TLR,Toll样受体;pro-IL-1β,前体IL-1β;pro-IL-18,前体IL-18;NEK7,NIMA相关激酶7;LRR,富亮氨酸重复序列;P2X7R,嘌呤能2X7受体;ROS,活性氧。
    图  1  NLRP3炎症小体激活机制
    Figure  1.  Mechanism of NLRP3 inflammatory activation

    NLRP3炎症小体的激活是由多种上游信号触发的,包括K+外排、Cl-外排、Ca2+内流、溶酶体损伤、线粒体功能障碍和ROS生成17。P2X7R是由细胞外ATP调节的配体门控离子通道,其也可激活NLRP3炎症小体18。此外,NEK7是一种与有丝分裂相关的丝-苏氨酸激酶,NEK7特异性与NLRP3相互作用,形成NEK7-NLRP3复合体,进而诱导ASC斑点信息、caspase-1激活,并最终导致NLRP3炎性小体激活19。NLRP3炎症小体激活后释放促炎细胞因子IL-1β和IL-18。因此,NLRP3/IL-1轴对炎症反应和免疫系统功能至关重要。

    最近研究20发现,炎症小体介导的细胞焦亡和大量细胞因子的产生影响AIH的炎症反应和肝损伤的炎症程度,这是AIH进展的关键因素之一(图2)。研究21表明调节性T淋巴细胞(Treg)、自然杀伤性T淋巴细胞(NKT)和细胞毒性T淋巴细胞(CTL)在AIH发病机制中起重要作用。Th1细胞分泌IL-2和IFN-γ刺激CTL,激活巨噬细胞释放IL-1β、IL-18和TNF-α,从而导致T淋巴细胞的进一步激活和肝损伤。其次,由细胞因子介导的NKT的激活也可以导致AIH的发生22,TNF家族超受体OX40可激活NKT中的caspase-1剪切消皮素D,诱发细胞焦亡,并释放IL-1β产生肝脏炎性损伤23,AIH小鼠模型中的NKT可以表达共刺激OX40和高水平的caspase-124,caspase-1的激活导致IL-1β介导的细胞焦亡的成熟和分泌,OX40/OX40L的激活又能促进CD4+T淋巴细胞的增殖、分化,抑制Treg的活性,Treg的活性降低可以导致炎性细胞因子和IFN-γ大量分泌,进而加重肝脏炎性细胞的浸润,诱导AIH的发生2325

    注: mtROS,线粒体来源的ROS;RhIL-1RA,重组人IL-1受体拮抗剂;PKA,蛋白激酶A;ConA,刀豆蛋白A。
    图  2  NLRP3炎症小体在AIH中的作用及靶向治疗NLRP3炎性小体的机制
    Figure  2.  Role of NLRP3 inflammatory vesicles in AIH and mechanism of targeting NLRP3 inflammatory vesicles for treatment

    ConA诱导的肝炎可导致T淋巴细胞的激活,产生大量的促炎细胞因子,并损伤或杀伤肝细胞,在一定程度上模拟人AIH26。研究27发现,在ConA诱导的AIH模型小鼠的肝脏中NLRP3、caspase-1、IL-1β均高表达,为了进一步探索NLRP3炎症小体在AIH中的作用,研究人员将NLRP3敲除后发现,与野生型小鼠相比,NLRP3敲除小鼠肝细胞损伤明显减轻,且血清AST和ALT水平降低,肝细胞中caspase-1和IL-1β表达下调。Liu等28最新研究表明,嘌呤能使P2X4受体在ConA诱导的AIH模型中高表达,其通过增强促炎细胞因子IL-1β、TNF-α和IL-6和NLRP3炎症小体的表达,进而促进AIH的发生发展。

    三氯乙烯(trichloroethylene,TCE)介导的AIH炎症类似于ConA介导的肝炎,两者都与T淋巴细胞有关。TCE刺激导致氧化应激诱导的炎症小体激活,导致肝脏免疫反应失调,诱导自身免疫性疾病的形成29。研究30表明,TCE可导致ROS生成增加,引发炎性小体激活和疾病。这些研究强烈提示NLRP3炎症小体激活参与了AIH的炎症反应,并在其发病机制中发挥了重要作用。

    越来越多的证据表明,NLRP3炎性小体参与了AIH的发展。抑制NLRP3炎症小体的激活可能减轻AIH的炎症反应,具体机制仍在不断探索中(图2),明确NLRP3炎性小体在不同条件下的激活及致病机制,有助于寻找AIH可能的治疗靶点。

    在ConA诱导的肝炎中,血液中NLRP3炎症小体的表达和活化的caspase-1、IL-1β和乳酸脱氢酶的水平升高,且焦亡是ConA诱导的小鼠肝细胞死亡的主要方式31。此外,NLRP3炎症小体及其下游产物在肝细胞中高表达32。研究33表明重组人IL-1受体拮抗剂(recombinant human IL-1 receptor antagonists,RhIL-1RA)可以抑制NLRP3炎症小体的激活和IL-1β的产生。mtROS可促进微生物相关分子模式(microbe associated molecular patterns,MAMP)和DAMP激活NLRP3炎症小体,RhIL-1RA通过降低ConA诱导小鼠的ROS水平和肝细胞中NLRP3、活性caspase-1和IL-1β的产生可以显著抑制细胞焦亡34。这些结果表明,RhIL-1RA可以降低ROS的产生、减少NLRP3炎症小体生成和防止细胞焦亡,同时可与IL-1β竞争降低ConA诱导的肝炎严重程度。

    miRNA是单链非编码RNA,长度在19~24个核苷酸,其可调节NLRP3炎症小体的形成35。各种miRNA,包括miR-223、miR-22和miR-7,可以控制NLRP3 miRNA的表达36,特别是miR-223结合到NLRP3 mRNA的3'-非翻译区(3'-UTR),并在结合点上阻断蛋白质翻译37。研究证实miR-22和miR-7在炎症期间靶向NLRP3的表达,可抑制炎症反应的过度激活38,miR-211-5p可通过靶向调控免疫细胞及肝细胞TLR4,降低NLRP3的表达,进而减轻肝损伤39。miR-223在骨髓间充质干细胞(bone marrow mesenchymal stem cells,BMSC)中高表达。在小鼠模型中,BMSC来源的外泌体可有效逆转AIH和肝细胞损伤,并下调NLRP3的表达和降低caspase-1的水平40。表明BMSC的外泌体miR-223可抑制NLRP3炎症小体的激活,进而改善AIH。

    实验研究41-42表明,NLRP3炎症小体在持续炎症引起的纤维化和肝损伤中发挥作用,抑制炎症小体和细胞焦亡可能是预防炎症性肝损伤的有效治疗途径。富马酸二甲酯是一种潜在的线粒体保护剂,其可降低血清炎症细胞因子水平,减轻肝损伤43。近期研究44表明,富马酸二甲酯除了可减少线粒体损伤和mtROS生成外,还可调节PKA信号转导,抑制NLRP3炎症小体组装,从而减轻ConA诱导的AIH肝损伤,其机制可能是通过富马酸二甲酯促进PKA信号转导,增加PKA特异性位点上Ser/Thr残基上NLRP3的磷酸化,从而降低NLRP3炎症小体的激活。

    TLR4/NF-κB通路是机体内炎症信号转导的经典通路。TLR4可通过促进其下游的NF-κB磷酸化激活上调NLRP3的表达45,介导自身免疫性疾病的发生和发展。大量研究发现,许多中草药提取物对TLR4/NF-κB/NLRP3介导的AIH有很好的调控作用,可应用于AIH的治疗。

    刺芒柄花素是一种具有多种生物功能的天然草药提取物,研究46表明,在ConA诱导的AIH中,其能显著降低小鼠血清和肝组织中促炎细胞因子水平,可能机制为抑制NF-κB信号通路和NLRP3炎症小体的激活。

    葫芦素E是高氧合的四环三萜类化合物,其具有强大的抗炎、免疫调节和抗肿瘤特性47。研究48发现,葫芦素E对ConA诱导的AIH有明显的肝保护作用,显著减弱了血清肝毒性指标和肝脏病变严重程度,其机制是抑制氧化应激、上调沉默调节蛋白1、核转录因子红系2相关因子2和血红素加氧酶1,进而阻断NF-κB/NLRP3信号通路,抑制NLRP3炎症小体介导的细胞焦亡。

    合生素作为益生菌与益生元结合使用的生物制剂,其可调节肠道菌群和免疫应答,维持肠道屏障的完整性,并且可阻断脂多糖易位,抑制TLR4/NF-κB通路的激活,进而减少炎症因子的产生,缓解AIH49。Kang等50研究表明合生素不仅通过调节肠-肝轴抑制细菌脂多糖进入肝脏,恢复肠道菌群和肠道屏障,而且可抑制肝脏TLR4/NF-κB/NLRP3信号通路减轻AIH小鼠的肝损伤和炎症,进而改善肝功能。

    综上所述,随着对NLRP3炎症小体的深入研究,可以明确NLRP3炎症小体活化在AIH发生发展中具有重要病理机制。抑制炎症小体NLRP3的活性,可抑制AIH炎症反应,进而缓解AIH,但现阶段某些NLRP3炎症小体激活的抑制剂发挥作用的机制和相关靶基因的研究仍停留在基础实验阶段,临床试验是否有效尚未得到验证,因此,了解NLRP3炎性小体在不同条件下的激活及致病机制,有助于为AIH寻找潜在的治疗靶点。

  • 注: TLR,Toll样受体;pro-IL-1β,前体IL-1β;pro-IL-18,前体IL-18;NEK7,NIMA相关激酶7;LRR,富亮氨酸重复序列;P2X7R,嘌呤能2X7受体;ROS,活性氧。

    图  1  NLRP3炎症小体激活机制

    Figure  1.  Mechanism of NLRP3 inflammatory activation

    注: mtROS,线粒体来源的ROS;RhIL-1RA,重组人IL-1受体拮抗剂;PKA,蛋白激酶A;ConA,刀豆蛋白A。

    图  2  NLRP3炎症小体在AIH中的作用及靶向治疗NLRP3炎性小体的机制

    Figure  2.  Role of NLRP3 inflammatory vesicles in AIH and mechanism of targeting NLRP3 inflammatory vesicles for treatment

  • [1] FISCHER HP, GOLTZ D. Autoimmune liver diseases[J]. Pathologe, 2020, 41( 5): 444- 456. DOI: 10.1007/s00292-020-00807-7.
    [2] SHIFFMAN ML. Autoimmune hepatitis: Epidemiology, subtypes, and presentation[J]. Clin Liver Dis, 2024, 28( 1): 1- 14. DOI: 10.1016/j.cld.2023.06.002.
    [3] MURATORI L, LOHSE AW, LENZI M. Diagnosis and management of autoimmune hepatitis[J]. BMJ, 2023, 380: e070201. DOI: 10.1136/bmj-2022-070201.
    [4] KOMORI A. Recent updates on the management of autoimmune hepatitis[J]. Clin Mol Hepatol, 2021, 27( 1): 58- 69. DOI: 10.3350/cmh.2020.0189.
    [5] PAPE S, SNIJDERS RJALM, GEVERS TJG, et al. Systematic review of response criteria and endpoints in autoimmune hepatitis by the International Autoimmune Hepatitis Group[J]. J Hepatol, 2022, 76( 4): 841- 849. DOI: 10.1016/j.jhep.2021.12.041.
    [6] LU Y, SUN FF, ZENG Z, et al. Research advances on autoimmune hepatitis[J/CD]. Chin J Liver Dis(Electronic Version), 2022, 14( 4): 1- 9. DOI: 10.3969/j.issn.1674-7380.2022.04.001.

    路遥, 孙芳芳, 曾湛, 等. 自身免疫性肝炎研究进展[J/CD]. 中国肝脏病杂志(电子版), 2022, 14( 4): 1- 9. DOI: 10.3969/j.issn.1674-7380.2022.04.001.
    [7] LI Z, GUO JL, BI LQ. Role of the NLRP3 inflammasome in autoimmune diseases[J]. Biomed Pharmacother, 2020, 130: 110542. DOI: 10.1016/j.biopha.2020.110542.
    [8] RUMPRET M, von RICHTHOFEN HJ, PEPERZAK V, et al. Inhibitory pattern recognition receptors[J]. J Exp Med, 2022, 219( 1): e20211463. DOI: 10.1084/jem.20211463.
    [9] LEU SY, TSANG YL, HO LC, et al. NLRP3 inflammasome activation, metabolic danger signals, and protein binding partners[J]. J Endocrinol, 2023, 257( 2): e220184. DOI: 10.1530/JOE-22-0184.
    [10] SCHMIDT FI, LU A, CHEN JW, et al. A single domain antibody fragment that recognizes the adaptor ASC defines the role of ASC domains in inflammasome assembly[J]. J Exp Med, 2016, 213( 5): 771- 790. DOI: 10.1084/jem.20151790.
    [11] NAMBAYAN RJT, SANDIN SI, QUINT DA, et al. The inflammasome adapter ASC assembles into filaments with integral participation of its two Death Domains, PYD and CARD[J]. J Biol Chem, 2019, 294( 2): 439- 452. DOI: 10.1074/jbc.RA118.004407.
    [12] MOLLA MD, AYELIGN B, DESSIE G, et al. Caspase-1 as a regulatory molecule of lipid metabolism[J]. Lipids Health Dis, 2020, 19( 1): 34. DOI: 10.1186/s12944-020-01220-y.
    [13] FU JN, WU H. Structural mechanisms of NLRP3 inflammasome assembly and activation[J]. Annu Rev Immunol, 2023, 41: 301- 316. DOI: 10.1146/annurev-immunol-081022-021207.
    [14] BLEVINS HM, XU YM, BIBY S, et al. The NLRP3 inflammasome pathway: A review of mechanisms and inhibitors for the treatment of inflammatory diseases[J]. Front Aging Neurosci, 2022, 14: 879021. DOI: 10.3389/fnagi.2022.879021.
    [15] BOUCHER D, MONTELEONE M, COLL RC, et al. Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity[J]. J Exp Med, 2018, 215( 3): 827- 840. DOI: 10.1084/jem.20172222.
    [16] DUBYAK GR, MILLER BA, PEARLMAN E. Pyroptosis in neutrophils: Multimodal integration of inflammasome and regulated cell death signaling pathways[J]. Immunol Rev, 2023, 314( 1): 229- 249. DOI: 10.1111/imr.13186.
    [17] SWANSON KV, DENG M, TING JPY. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics[J]. Nat Rev Immunol, 2019, 19( 8): 477- 489. DOI: 10.1038/s41577-019-0165-0.
    [18] PELEGRIN P. P2X7 receptor and the NLRP3 inflammasome: Partners in crime[J]. Biochem Pharmacol, 2021, 187: 114385. DOI: 10.1016/j.bcp.2020.114385.
    [19] SHARIF H, WANG L, WANG WL, et al. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome[J]. Nature, 2019, 570( 7761): 338- 343. DOI: 10.1038/s41586-019-1295-z.
    [20] BERINGER A, MIOSSEC P. IL-17 and IL-17-producing cells and liver diseases, with focus on autoimmune liver diseases[J]. Autoimmun Rev, 2018, 17( 12): 1176- 1185. DOI: 10.1016/j.autrev.2018.06.008.
    [21] BUTCHER MJ, ZHU JF. Recent advances in understanding the Th1/Th2 effector choice[J]. Fac Rev, 2021, 10: 30. DOI: 10.12703/r/10-30.
    [22] WU YN, ZHANG R, SONG XC, et al. C6orf120 gene knockout in rats mitigates concanavalin A-induced autoimmune hepatitis via regulating NKT cells[J]. Cell Immunol, 2022, 371: 104467. DOI: 10.1016/j.cellimm.2021.104467.
    [23] LAN PX, FAN YH, ZHAO Y, et al. TNF superfamily receptor OX40 triggers invariant NKT cell pyroptosis and liver injury[J]. J Clin Invest, 2017, 127( 6): 2222- 2234. DOI: 10.1172/JCI91075.
    [24] SMYK DS, MAVROPOULOS A, MIELI-VERGANI G, et al. The role of invariant NKT in autoimmune liver disease: Can vitamin D act as an immunomodulator?[J]. Can J Gastroenterol Hepatol, 2018, 2018: 8197937. DOI: 10.1155/2018/8197937.
    [25] SIRBE C, SIMU GL, SZABO I, et al. Pathogenesis of autoimmune hepatitis-cellular and molecular mechanisms[J]. Int J Mol Sci, 2021, 22( 24): 13578. DOI: 10.3390/ijms222413578.
    [26] CHRISTEN U, HINTERMANN E. Animal models for autoimmune hepatitis: Are current models good enough?[J]. Front Immunol, 2022, 13: 898615. DOI: 10.3389/fimmu.2022.898615.
    [27] LUAN JY, ZHANG XY, WANG SF, et al. NOD-like receptor protein 3 inflammasome-dependent IL-1β accelerated ConA-induced hepatitis[J]. Front Immunol, 2018, 9: 758. DOI: 10.3389/fimmu.2018.00758.
    [28] LIU ZJ, SUN MY, LIU WH, et al. Deficiency of purinergic P2X4 receptor alleviates experimental autoimmune hepatitis in mice[J]. Biochem Pharmacol, 2024, 221: 116033. DOI: 10.1016/j.bcp.2024.116033.
    [29] WANG H, WANG GD, LIANG YJ, et al. Redox regulation of hepatic NLRP3 inflammasome activation and immune dysregulation in trichloroethene-mediated autoimmunity[J]. Free Radic Biol Med, 2019, 143: 223- 231. DOI: 10.1016/j.freeradbiomed.2019.08.014.
    [30] WANG H, WANG GD, ANSARI GAS, et al. Trichloroethene metabolite dichloroacetyl chloride induces apoptosis and compromises phagocytosis in Kupffer cells: Activation of inflammasome and MAPKs[J]. PLoS One, 2018, 13( 12): e0210200. DOI: 10.1371/journal.pone.0210200.
    [31] WANG KC, WU WR, JIANG XW, et al. Multi-omics analysis reveals the protection of gasdermin D in concanavalin A-induced autoimmune hepatitis[J]. Microbiol Spectr, 2022, 10( 5): e0171722. DOI: 10.1128/spectrum.01717-22.
    [32] GUAN YL, GU YY, LI H, et al. NLRP3 inflammasome activation mechanism and its role in autoimmune liver disease[J]. Acta Biochim Biophys Sin, 2022, 54( 11): 1577- 1586. DOI: 10.3724/abbs.2022137.
    [33] HUANG Y, XU W, ZHOU RB. NLRP3 inflammasome activation and cell death[J]. Cell Mol Immunol, 2021, 18( 9): 2114- 2127. DOI: 10.1038/s41423-021-00740-6.
    [34] XIE HB, PENG JL, ZHANG XS, et al. Effects of mitochondrial reactive oxygen species-induced NLRP3 inflammasome activation on trichloroethylene-mediated kidney immune injury[J]. Ecotoxicol Environ Saf, 2022, 244: 114067. DOI: 10.1016/j.ecoenv.2022.114067.
    [35] LU FB, CHEN DZ, CHEN L, et al. Attenuation of experimental autoimmune hepatitis in mice with bone mesenchymal stem cell-derived exosomes carrying microRNA-223-3p[J]. Mol Cells, 2019, 42( 12): 906- 918. DOI: 10.14348/molcells.2019.2283.
    [36] HUANG C, XING X, XIANG XY, et al. MicroRNAs in autoimmune liver diseases: From diagnosis to potential therapeutic targets[J]. Biomed Pharmacother, 2020, 130: 110558. DOI: 10.1016/j.biopha.2020.110558.
    [37] YU YN, DONG H, ZHANG Y, et al. MicroRNA-223 downregulation promotes HBx-induced podocyte pyroptosis by targeting the NLRP3 inflammasome[J]. Arch Virol, 2022, 167( 9): 1841- 1854. DOI: 10.1007/s00705-022-05499-3.
    [38] LA ROSA F, MANCUSO R, AGOSTINI S, et al. Pharmacological and epigenetic regulators of NLRP3 inflammasome activation in Alzheimer’s disease[J]. Pharmaceuticals, 2021, 14( 11): 1187. DOI: 10.3390/ph14111187.
    [39] LIU D, CHENG HL, LUO JF. Exogenous hydrogen sulfide miR-211-5p targeting TLR4 pathway mitigates liver damage in autoimmune hepatitis mice[J]. Immunol J, 2022, 38( 10): 838- 845. DOI: 10.13431/j.cnki.immunol.j.20220117.

    刘丹, 程海林, 罗剑锋. MiR-211-5p靶向TLR4通路减轻自身免疫性肝炎小鼠肝损害[J]. 免疫学杂志, 2022, 38( 10): 838- 845. DOI: 10.13431/j.cnki.immunol.j.20220117.
    [40] CHEN L, LU FB, CHEN DZ, et al. BMSCs-derived miR-223-containing exosomes contribute to liver protection in experimental autoimmune hepatitis[J]. Mol Immunol, 2018, 93: 38- 46. DOI: 10.1016/j.molimm.2017.11.008.
    [41] de CARVALHO RIBEIRO M, SZABO G. Role of the inflammasome in liver disease[J]. Annu Rev Pathol, 2022, 17: 345- 365. DOI: 10.1146/annurev-pathmechdis-032521-102529.
    [42] COLL RC, SCHRODER K, PELEGRÍN P. NLRP3 and pyroptosis blockers for treating inflammatory diseases[J]. Trends Pharmacol Sci, 2022, 43( 8): 653- 668. DOI: 10.1016/j.tips.2022.04.003.
    [43] SHI FL, NI ST, LUO SQ, et al. Dimethyl fumarate ameliorates autoimmune hepatitis in mice by blocking NLRP3 inflammasome activation[J]. Int Immunopharmacol, 2022, 108: 108867. DOI: 10.1016/j.intimp.2022.108867.
    [44] SANGINETO M, GRABHERR F, ADOLPH TE, et al. Dimethyl fumarate ameliorates hepatic inflammation in alcohol related liver disease[J]. Liver Int, 2020, 40( 7): 1610- 1619. DOI: 10.1111/liv.14483.
    [45] RAMOS-TOVAR E, MURIEL P. NLRP3 inflammasome in hepatic diseases: A pharmacological target[J]. Biochem Pharmacol, 2023, 217: 115861. DOI: 10.1016/j.bcp.2023.115861.
    [46] LIU GW, ZHAO WX, BAI JM, et al. Formononetin protects against concanavalin-A-induced autoimmune hepatitis in mice through its anti-apoptotic and anti-inflammatory properties[J]. Biochem Cell Biol, 2021, 99( 2): 231- 240. DOI: 10.1139/bcb-2020-0197.
    [47] SILVESTRE GFG, DE LUCENA RP, SILVA ALVES H DA. Cucurbitacins and the immune system: Update in research on anti- inflammatory, antioxidant, and immunomodulatory mechanisms[J]. Curr Med Chem, 2022, 29( 21): 3774- 3789. DOI: 10.2174/0929867329666220107153253.
    [48] MOHAMED GA, IBRAHIM SRM, EL-AGAMY DS, et al. Cucurbitacin E glucoside alleviates concanavalin A-induced hepatitis through enhancing SIRT1/Nrf2/HO-1 and inhibiting NF-‍κB/NLRP3 signaling pathways[J]. J Ethnopharmacol, 2022, 292: 115223. DOI: 10.1016/j.jep.2022.115223.
    [49] LIU QQ, YANG H, KANG X, et al. A synbiotic ameliorates con A-induced autoimmune hepatitis in mice through modulation of gut microbiota and immune imbalance[J]. Mol Nutr Food Res, 2023, 67( 7): e2200428. DOI: 10.1002/mnfr.202200428.
    [50] KANG YB, KUANG XY, YAN H, et al. A novel synbiotic alleviates autoimmune hepatitis by modulating the gut microbiota-liver axis and inhibiting the hepatic TLR4/NF-κB/NLRP3 signaling pathway[J]. mSystems, 2023, 8( 2): e0112722. DOI: 10.1128/msystems.01127-22.
  • 加载中
图(2)
计量
  • 文章访问数:  314
  • HTML全文浏览量:  181
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-11
  • 录用日期:  2024-03-11
  • 出版日期:  2024-10-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

/

返回文章
返回