中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铜死亡的发生机制及在肝脏疾病中的作用

朱明强 谢星 廖启成 何晓 丁佑铭 王小华

姜婷婷, 张群, 王宪波, 等. 基于代谢组学探讨益气养阴解毒化瘀方对肝硬化轻微型肝性脑病肠道代谢物的影响[J]. 临床肝胆病杂志, 2025, 41(3): 469-477. DOI: 10.12449/JCH250312.
引用本文: 姜婷婷, 张群, 王宪波, 等. 基于代谢组学探讨益气养阴解毒化瘀方对肝硬化轻微型肝性脑病肠道代谢物的影响[J]. 临床肝胆病杂志, 2025, 41(3): 469-477. DOI: 10.12449/JCH250312.
JIANG TT, ZHANG Q, WANG XB, et al. Effect of Yiqi Yangyin Jiedu Huayu prescription on intestinal metabolites in liver cirrhosis with minimal hepatic encephalopathy: A study based on metabolomics[J]. J Clin Hepatol, 2025, 41(3): 469-477. DOI: 10.12449/JCH250312.
Citation: JIANG TT, ZHANG Q, WANG XB, et al. Effect of Yiqi Yangyin Jiedu Huayu prescription on intestinal metabolites in liver cirrhosis with minimal hepatic encephalopathy: A study based on metabolomics[J]. J Clin Hepatol, 2025, 41(3): 469-477. DOI: 10.12449/JCH250312.

铜死亡的发生机制及在肝脏疾病中的作用

DOI: 10.12449/JCH241131
基金项目: 

国家重点研发计划 (2022YFC2407304)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:朱明强、谢星、廖启成负责撰写论文;丁佑铭、王小华指导撰写文章并最后定稿。
详细信息
    通信作者:

    王小华, 15856404@qq.com (ORCID: 0009-0006-4722-0942)

Mechanism of cuproptosis and its role in liver diseases

Research funding: 

National Key Research and Development Program (2022YFC2407304)

More Information
    Corresponding author: WANG Xiaohua, 15856404@qq.com (ORCID: 0009-0006-4722-0942)
  • 摘要: 铜死亡是依赖于细胞内铜积累触发线粒体脂酰化蛋白的聚集和铁硫簇蛋白不稳定的新型细胞死亡方式,其作用机制不同于自噬、铁死亡、细胞焦亡、坏死性凋亡等。铜死亡与肝癌发生及抗肿瘤药物耐药、遗传性肝脏疾病、非酒精性脂肪性肝病、病毒性肝炎和肝硬化等多种肝脏疾病的进展密切相关。本文总结了铜死亡的发生机制及在肝脏疾病中的作用和进展,旨在为肝脏疾病的进一步研究与治疗提供参考。

     

  • 肝性脑病(HE)是肝硬化失代偿期最严重的并发症之一,严重HE一旦发生,则预后不良,病死率高1。轻微型肝性脑病(minimal hepatic encephalopathy,MHE)是HE的早期阶段,因此,尽早控制MHE是防止严重HE发生的关键。目前MHE的西医治疗2与HE的治疗方法相似,中医则主要是以“醒脑通腑开窍”3作为理论基础治疗MHE,既往临床研究证实了灌肠方对于MHE患者降低血氨、改善神志方面显示了良好的疗效4;也证明了口服益气养阴解毒化瘀方可以明显改善MHE患者的神经智能测试评分并降低血氨5,但是关于中药治疗MHE的作用机制研究很少。根据“肠-肝轴”理论6,肝硬化HE与肠道菌群关系密切,肠道菌群的结构和功能改变、肠屏障受损以及小肠细菌过度生长均可以导致血氨及肠道毒素增加,系统性炎症加重,这些毒素通过肠肝循环再次造成肝损伤,肝脏解毒功能下降,更多的血氨及肠道毒素通过血脑屏障入脑,加重了神经炎症和脑水肿。因此,探讨益气养阴扶正解毒化瘀方对于肠道代谢的影响,有助于探索中医药治疗MHE的作用机制。本研究拟通过探索益气养阴解毒化瘀方对于MHE肠道代谢的影响,探讨中药治疗MHE的可能作用机制。

    本研究选取2024年3月—2024年5月于本院住院且经肝性脑病心理测量评分(psychometric hepatic encephalopathy score,PHES)诊断为MHE的11例肝硬化患者(MHE组)作为研究对象,同时招募11例健康患者家属(无基础肝病及各种高血压、糖尿病、冠心病、肠道疾病等且BMI正常)作为对照组。

    参考《肝硬化肝性脑病诊疗指南》2及2014年美国肝病学会和欧洲肝病学会指南7,使用PHES测试作为诊断MHE的金标准:PHES测试中的数字连接试验(NCT-A)、数字符号试验(DST)同时阳性可诊断MHE8

    (1)结合生化学、影像学及临床症状,除酒精性肝硬化及肝豆状核变性以外的肝硬化患者;(2)经PHES测试诊断为MHE患者;(3)中医辨证为气阴两虚血瘀证者;(4)BMI在正常范围内;(5)之前未经过MHE的营养治疗和药物治疗。

    (1)5年内有过胃肠道大手术及肠道切除手术者;(2)炎症性肠病,肠易激综合征者;(3)持久性、传染性胃肠炎,结肠炎,慢性腹泻原因不明者;(4)慢性便秘者;(5)胃肠道出血及存在历史性胃肠道疾病者;(6)近期使用含碱式水杨酸铋或其他类似药物成分的药物者;(7)取样前1个月内使用过抗生素者;(8)生理期女性。

    1.5.1   试剂

    益气养阴解毒化瘀方(超纯水浓缩至42%;沙参15 g,麦冬15 g,大黄15 g,厚朴15 g,枳实15 g,赤芍15 g,石菖蒲15 g)(北京康仁堂药业有限公司);高纯度盐酸甲氧胺、脂肪酸甲酯、无水吡啶、无水硫酸钠(美国圣路易斯公司);MSTFA(1% TMCS)、甲醇、氯仿、二氯甲烷、己烷、丙酮、乙腈(美国费尔劳恩公司)。

    1.5.2   粪便采集方法

    分别采集对照组患者、MHE组患者及其经益气养阴解毒化瘀方治疗12周后的粪便。尽量在同一时间采样(考虑人肠道微生物的节律性变化),按照以下程序进行粪便样本的采集:(1)排尽尿液;(2)排便;(3)取样;(4)转运和冷藏。

    1.5.3   代谢组学检测的样本制备

    采集的粪便样本标记后冻存于-80 ℃的低温冰箱中,将样品在冰浴上解冻,取50 mg粪便样品到1.5 mL离心管中,加入10 μL内标,轻微混匀,加入175 μL预冷的甲醇/氯仿(3∶1混合液)进行提取。将混合物在14 000×g和4 ℃下离心20 min,并在-20 ℃的冰箱中静置20 min,将上清液小心地转移至自动进样玻璃瓶中。放到真空离心浓缩仪中浓缩5 min以除去氯仿,然后转移入低温冷冻干燥机完全冻干。加入50 μL的甲氧胺吡啶溶液,在30 ℃孵育2 h之后,加入50 μL的MSTFA于37.5 ℃孵育1 h。

    1.5.4   代谢组学检测

    本项目在委托上海麦特绘普公司基于气相色谱飞行时间质谱(GC-TOF/MS)的非靶向代谢学的技术平台XploreMET上检测,采用了Agilent 7890B气相色谱仪,飞行时间质谱系统(美国力可公司)。

    1.5.6   GC-TOF/MS 代谢组学数据分析

    应用XploreMET软件(V3.0,Metabo-Profile,China)对GC-MS的原始数据进行处理,然后用JiaLab代谢物库进行定性。(1)单变量统计分析,包括t检验、Wilcoxon检验等。(2)多元统计分析,如主成分分析(principal component analysis, PCA)、偏最小二乘判别分析(partial least squares discriminant analysis, PLS-DA)、正交偏最小二乘判别分析(orthogonal partial least squares discriminant analysis, OPLS-DA)法等。

    使用SPSS 23.0软件进行统计分析。计数资料两组间比较采用Fisher精确检验;符合正态分布的计量资料以x¯±s表示,两组间比较采用成组t检验,同组内治疗前后比较采用配对t检验;非正态分布的计量资料以MP25P75)表示,两组间及同组内治疗前后比较采用Wilcoxon秩和检验。P<0.05为差异有统计学意义。

    表1所示,对照组均为患者家属(生活及饮食习惯基本相同),与MHE组相比,年龄、性别和BMI差异均无统计学意义(P值均>0.05);与对照组相比,MHE组的NCT-A用时明显延长(P<0.05),DST得分明显减少(P<0.05)。MHE组患者病因为HBV感染6例,HCV感染2例,自身免疫相关肝病3例;Child-Pugh分级为B级3例和C级8例;MELD评分(18.90±5.36)分。

    表  1  MHE组和对照组的基线资料
    Table  1.  Baseline characteristics of patients with MHE and control groups
    项目 MHE组(n=11) 对照组(n=11) 统计值 P
    男/女(例) 8/3 7/4 0.833
    年龄(岁) 61.00±11.17 60.00±8.44 t=0.237 0.815
    BMI(kg/m2 20.73±5.26 21.90±5.53 t=-0.513 0.613
    NCT-A(s) 68.90±23.00 36.82±15.80 t=3.506 0.002
    DST(分) 17.80±4.50 49.18±16.35 t=-6.101 <0.05
    下载: 导出CSV 
    | 显示表格
    2.2.1   MHE患者肠道微生物代谢分类

    MHE组和对照组肠道代谢物共检测出235种。MHE组主要组成有氨基酸类41.79%,脂肪酸类15.70%,碳水化合物类16.24%,有机胺类8.96%,有机酸类8.58%,脂类4.00%,其他9.69%。对照组主要组成有氨基酸类36.64%,脂肪酸类22.72%,碳水化合物类16.88%,有机胺类8.29%,有机酸类3.02%,脂类5.8%,其他1.57%。Wilcoxon秩和检验结果显示,MHE组肠道代谢物中的有机酸类明显上升,类苯基丙烷酸类、酚类、维生素类、咪唑类、胆汁酸类明显下降(P值均<0.05)(图1)。

    注:*P<0.05,**P<0.01,***P<0.001。
    图  1  MHE组与对照组的主要代谢物分类组成
    Figure  1.  Classification and composition of major metabolites in MHE and control groups
    2.2.2   MHE患者肠道差异性代谢物分析
    2.2.2.1   肠道差异性代谢物单维统计分析

    通过Wilcoxon秩和检验来比较两组的差异代谢物,基于单维统计分析筛选出的41种差异代谢物通过火山图显示[阈值设定:log2FC>0(FC,组间变化倍数)],与对照组相比,MHE组上调代谢物19种,下调代谢物22种(P值均<0.05)(图2)。

    图  2  肠道差异性代谢物的单维统计分析
    Figure  2.  Unidimensional statistical analysis of intestinal differential metabolites
    2.2.2.2   肠道差异性代谢多维统计分析

    基于OPLS-DA模型对MHE组和对照组的差异代谢物进行多维统计分析,采用火山图[阈值设定:代谢物对样本分类的贡献(variable importance in projection,VIP>1)]来展示筛选的差异性代谢物,总共筛到差异代谢物87种(图3)。

    注: Corr.Coeffs,代谢物与第一主成分相关性的相关系数。
    图  3  肠道差异性代谢物的多维统计分析
    Figure  3.  Multidimensional statistical analysis of intestinal differential metabolites
    2.2.2.3   潜在差异性代谢物的筛选

    通过对肠道差异性代谢单维统计分析和多维统计分析结果取交集,对MHE组患者潜在代谢产物进行筛选,筛选标准如下:(1)单维分析P<0.05,log2FC>0;(2)多维分析VIP>1,共筛选了29种潜在的代谢标志物。如表2所示,MHE组明显上调的代谢物有核糖核酸、乳果糖、乳酸、尿素、柠苹酸、木糖内酯、鸟氨酸、酪胺、甲基丙二酸、异麦芽糖和苯基乙胺、2,3-丁二醇12种;如表3所示,下调的代谢物有咪唑丙烯酸、甘油酸、酮亮氨酸、2-油酸单甘油酯、肌氨酸、二氯乙酸、核糖、神经酸、烟酸、己二酸、亚精胺、3-(3-羟基苯基)- 3-羟基丙酸、亚油酸、油酸、α-生育酚、δ-生育醇和γ-生育酚17种,主要为氨基酸类、有机酸类、有机胺类、碳水化合物类、脂肪酸类、维生素类。

    表  2  12种上调的代谢物
    Table  2.  12 up-regulated metabolites
    代谢物分类 代谢物
    脂肪酸类 柠苹酸
    有机胺类 尿素、酪胺
    有机酸类 乳酸、甲基丙二酸
    氨基酸类 鸟氨酸
    碳水化合物类 乳果糖、核糖核酸、木糖内酯、异麦芽糖
    苯类 苯基乙胺
    醇类 2,3-丁二醇
    下载: 导出CSV 
    | 显示表格
    表  3  17种下调的代谢物
    Table  3.  17 down-regulated metabolites
    代谢物分类 代谢物
    脂肪酸类 油酸、亚油酸、己二酸、神经酸
    有机酸类 酮亮氨酸
    有机胺类 亚精胺
    氨基酸类 肌氨酸
    碳水化合物类 甘油酸、核糖
    苯丙酸类 3-(3-羟基苯基)-3-羟基丙酸
    维生素类 δ-生育醇、α-生育酚、γ-生育酚
    胆汁酸类 二氯乙酸
    内脂类 2-油酸单甘油酯
    吡啶类 烟酸
    咪唑类 咪唑丙烯酸
    下载: 导出CSV 
    | 显示表格
    2.2.2.4   差异性代谢物通路富集分析

    对29种差异代谢物进行通路分析,最主要的代谢通路包括:亚精胺和精胺生物合成、尿素循环、甘氨酸和丝氨酸代谢、D-精氨酸和D-鸟氨酸代谢、蛋氨酸代谢、维生素K代谢、a亚麻酸和亚油酸、精氨酸和脯氨酸代谢、缬氨酸、亮氨酸和异亮氨酸降解、甘油酯代谢、磷酸戊糖通路、氨循环通路、糖原异生、烟酸和烟酰胺代谢、丙酸代谢、组氨酸代谢、丙酮酸代谢、瓦格纳效应、胆汁酸生物合成、酪氨酸代谢。进一步分析发现这些通路主要富集在鸟氨酸循环、支链氨基酸和芳香氨基酸代谢通路中,提示上述通路是MHE患者最重要的代谢通路(图4)。

    图  4  MHE患者的差异代谢通路
    Figure  4.  Differential metabolic pathways in MHE patients
    2.3.1   益气养阴解毒化瘀方治疗前后肝功能比较

    11例MHE患者经益气养阴解毒化瘀方治疗后肝功能指标(ALT、AST、TBil)、血氨指标(NH3)、Child-Pugh评分和MELD评分均较治疗前有明显好转(P值均<0.05)。益气养阴解毒化瘀方治疗前MHE患者的NCT-A用时较治疗后明显缩短(P<0.05),MHE患者的DST得分较治疗前明显增加(P<0.05)(表4)。

    表  4  益气养阴解毒化瘀方治疗前后肝功能的变化
    Table  4.  Changes in liver function before and after treatment with Yiqi Yangyin Jiedu Huayu prescription
    指标 治疗前(n=11) 治疗后(n=11) 统计值 P
    ALT(U/L) 69.65±56.66 17.50±10.87 t=-3.532 0.005
    AST(U/L) 53.80(31.90~87.50) 15.70(9.70~21.50) t=-3.513 <0.001
    TBil(μmol/L) 72.70(39.90~78.95) 25.50(19.28~30.43) Z=-2.856 0.004
    NH3(μmol/L) 43.70±10.96 21.74±6.97 t=5.608 <0.001
    Child-Pugh评分(分) 11.36±2.25 6.73±1.62 t=5.551 <0.001
    MELD评分(分) 12.50(10.63~17.38) 5.00(2.83~9.67) Z=-3.034 0.002
    NCT-A(s) 68.90±23.00 46.18±16.48 t=2.093 0.049
    DST(分) 17.80±4.50 23.45±5.43 t=-2.572 0.018
    下载: 导出CSV 
    | 显示表格
    2.3.2   益气养阴解毒化瘀方治疗前后肠道代谢物组成的比较

    MHE患者治疗前后共检测出164种肠道代谢物,从PCA分析(图5)及PLS-DA分析(图6)可见两组代谢物分离良好,提示两组治疗前后代谢物存在明显差异。治疗前代谢物的主要组成为氨基酸类52.89%,有机酸类20.8%,碳水化合物类0.88%、有机胺类14.46%,无机氧化类6.58%,脂肪酸2.81%,其他1.9%;治疗后代谢物的主要组成为氨基酸类20.48%,有机酸类 28.09%,碳水化合物类34.17%、有机胺类3.22%,无机氧化类6.11%,醇类5.22%,其他2.71%。Wilcoxon秩和检验结果显示,与治疗前相比,治疗后MHE患者的醇类、碳水化合物类、内酯类、核苷酸类、有机酸类、酚类、苯丙酸类、吡啶类明显上升,而有机胺类、氨基酸类、苯类、脂肪酸类、吲哚类、多肽类、吡咯烷类明显下降(图7)。

    图  5  益气养阴解毒化瘀方治疗前后代谢物的PCA分析
    Figure  5.  PCA analysis of metabolites before and after Yiqi Yangyin Jidu Huayu prescription
    图  6  益气养阴解毒化瘀方治疗前后代谢物的PLS-DA分析
    Figure  6.  PLS-DA analysis of metabolites before and after Yiqi Yangyin Jidu Huayu prescription
    图  7  益气养阴解毒化瘀方治疗前后的主要代谢物分类组成
    Figure  7.  Classification and composition of main metabolites before and after treatment with Yiqi Yangyin Jiedu Huayu prescription
    2.3.3   益气养阴解毒化瘀方治疗前后肠道差异性代谢物分析

    通过Wilcoxon秩和检验来比较两组的差异代谢物,基于单维统计分析总共筛选出的126种差异代谢物,通过火山图可见,与治疗前相比,治疗后MHE上调代谢物85种,下调代谢物41种(阈值设定:log2FC>0)(图8)。基于OPLS-DA模型对MHE患者治疗前后的差异代谢物进行多维统计分析,共筛选到差异代谢物81种(图9)。

    图  8  益气养阴解毒化瘀方治疗前后肠道差异性代谢物的单维统计分析
    Figure  8.  Unidimensional statistical analysis of intestinal differential metabolices before and after treatment with Yiqi Yangyin Jiedu Huayu prescription
    图  9  益气养阴解毒化瘀方治疗前后肠道差异性代谢物的多维统计分析
    Figure  9.  Multidimensional statistical analysis of intestinal differential metabolites before and after treatment with Yiqi Yangyin Jiedu Huayu prescription
    2.3.4   益气养阴解毒化瘀方治疗的潜在代谢标志物筛选

    通过对益气养阴解毒化瘀方治疗前后肠道差异性代谢物的单维统计和多维统计分析结果取交集,对MHE潜在代谢产物进行筛选(筛选标准同2.3.4)。共筛选了80种潜在的代谢标志物,经过益气养阴解毒化瘀方治疗后56种代谢物上调,而24种代谢物下调。应用热图(图10)对两组差异性代谢物进行对比分析显示碳水化合物类、有机酸类明显上升,氨基酸类明显下降。而散点图具体展示了经益气养阴解毒化瘀方治疗后上调的56种差异性代谢物和24种下调的差异性代谢物(图11)。

    图  10  益气养阴解毒化瘀方治疗前后的差异性代谢物种类热图
    Figure  10.  Heat map of different metabolites before and after treatment of Yiqi Yangyin Jiedu Huayu prescription
    图  11  益气养阴解毒化瘀方治疗前后的差异性代谢物散点图
    Figure  11.  Scatter diagram of differential metabolites before and after treatment of Yiqi Yangyin Jiedu Huayu prescription
    2.3.5   益气养阴解毒化瘀方治疗前后的差异性代谢物通路分析

    对80种益气养阴解毒化瘀方治疗前后的差异代谢通路进行分析,益气养阴解毒化瘀方代谢通路主要富集在半乳糖代谢、谷胱甘肽代谢、同型半胱氨酸降解、乳糖降解、甘氨酸和丝氨酸代谢、丙氨酸循环、甲基组氨酸代谢、尿素循环、蛋氨酸代谢、丙氨酸代谢、淀粉和蔗糖代谢、谷氨酸代谢、甜菜碱代谢、甘油酯代谢、苹果酸-天门冬酸穿梭、半胱氨酸代谢、丙酸代谢、海藻糖降解、缬氨酸、亮氨酸和异亮氨酸降解、苯丙氨酸、酪氨酸代谢等通路(图12),这些通路主要富集在鸟氨酸代谢、支链和芳香氨基酸代谢通路中,与MHE患者特异性代谢通路相似,故益气养阴解毒化瘀方很有可能通过改善鸟氨酸代谢及支链氨基酸和芳香氨基酸代谢等途径达到治疗MHE的作用。

    图  12  益气养阴解毒化瘀方治疗前后的差异性代谢通路分析
    Figure  12.  Analysis of different metabolic pathways before and after treatment with Yiqi Yangyin Jiedu Huayu prescription

    HE是发生在严重肝病基础上,以代谢紊乱为主要病理基础的神经精神异常综合征,是肝疾病常见的并发症及死亡原因之一9,严重影响了肝病患者及监护人的生活质量10,认知功能损害造成的医疗相关资源消耗远远超过了其他肝硬化并发症11。近些年来,中医药治疗MHE取得了良好的疗效12-14,然而机制目前尚不明确,本试验开展了中医药对于MHE肠道代谢作用的研究,旨在探索中医药治疗MHE的可能作用机制,为更好地发挥中医药治疗MHE的作用奠定理论基础。

    肠道微生态系统是由肠道菌群和肠道微环境构成的庞大复杂的微生态系统15。肠道菌群的结构和功能常常会受到肠道微环境等因素的影响,因此本试验在临床中选取了MHE患者服用中药前后的粪便样本进行对比研究。研究发现,MHE患者的肠道代谢物与正常人相比具有明显异常。经过单维和多维统计分析,MHE组和对照组共筛选出29种潜在的代谢标志物,这些差异性代谢物的主要代谢通路富集在鸟氨酸循环、支链氨基酸和芳香氨基酸中。肝脏是鸟氨酸循环重要的代谢器官,在肝损伤严重引起肝功能明显下降时,肝脏无法正常通过鸟氨酸循环进行解毒,故导致血氨增高,使星状胶质细胞合成谷氨酰胺增加,导致细胞变性、肿胀及退行性变,同时可直接影响假性神经递质,引发神经认知功能障碍16。肝功能严重受损时,肝脏代谢芳香氨基酸的能力下降,芳香氨基酸主要包括酪氨酸、苯丙氨酸和色氨酸,增多的苯丙氨酸和酪氨酸生成苯乙醇胺和羟苯乙醇胺即假性递质,也是导致HE发生的机制之一。支链氨基酸包括亮氨酸、缬氨酸和异亮氨酸,是人体必需的氨基酸,这几种氨基酸可以通过血流进入大脑,降低大脑5-羟色胺的产生,支链氨基酸支持大脑合成谷氨酰胺,促进氨的解毒代谢,而且还可以减少过多的芳香族氨基酸进入大脑17-18。通过对益气养阴解毒化瘀方治疗前后的肠道代谢物通路分析,发现MHE患者治疗前后差异性代谢物通路与MHE患者特异性代谢通路在鸟氨酸、支链氨基酸、芳香氨基酸代谢方面有交集,说明益气养阴解毒化瘀方有可能是通过鸟氨酸、支链氨基酸和芳香氨基酸代谢通路发挥了改善MHE的作用。

    MHE由于起病隐匿,临床中往往不易发现,然而一旦进展为显性HE,则预后不良,因此早期诊断、早期治疗MHE至关重要。中医药在MHE的治疗中发挥了良好的作用,肠道微生态与MHE有着密不可分的联系,通过探索肠道代谢物的变化有助于探讨中医药治疗MHE的作用机制,更好地发挥中医药治疗MHE的作用。本研究首次通过人群队列验证了益气养阴解毒化瘀方可能通过调节MHE患者的相关代谢发挥了治疗作用,但是研究仍然具有一定的局限性,代谢组学研究在统计学上无固定的样本量计算公式,本研究属于小规模的探索性研究,实验样本量仍然较少,目前基于样本量限制,无法进一步针对病因进行分层分析,肠道菌群仍可能受到食物、药物及环境等多种因素的影响,MHE的肠道机制仍需要开展大规模的临床试验和动物实验探索诊断及治疗MHE的肠道生物标记,为早期诊断及治疗MHE提供思路。

  • 注: Glucose,葡萄糖;Pyruvate,丙酮酸;Ac-CoA,乙酰辅酶A;TCA Cycle,三羧酸循环;ETC,电子呼吸链;Elesclomol,伊利司莫;DSF,双硫仑;STEAP,前列腺六段跨膜上皮抗原;CTR1,铜转运蛋白1;ATP7A/B,铜转运ATP酶7A/B;H2O2,过氧化氢;ROS,活性氧;GSH,谷胱甘肽;Fe-S,Fe-S簇蛋白;FDX1,铁氧还蛋白1;DLAT,二氢硫辛酰S-乙酰转移酶;LIAS,硫辛酸合成酶;Lipoylation,脂酰化;Aggregation,寡聚化;Decrease,降解;ETC dys function,电子呼吸链紊乱。

    图  1  铜死亡的分子机制

    Figure  1.  Schematic diagram of cuproptosis mechanism

  • [1] RUIZ LM, LIBEDINSKY A, ELORZA AA. Role of copper on mitochondrial function and metabolism[J]. Front Mol Biosci, 2021, 8: 711227. DOI: 10.3389/fmolb.2021.711227.
    [2] MICHNIEWICZ F, SALETTA F, ROUAEN JRC, et al. Copper: An intracellular Achilles’ heel allowing the targeting of epigenetics, kinase pathways, and cell metabolism in cancer therapeutics[J]. ChemMedChem, 2021, 16( 15): 2315- 2329. DOI: 10.1002/cmdc.202100172.
    [3] TSVETKOV P, COY S, PETROVA B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science, 2022, 375( 6586): 1254- 1261. DOI: 10.1126/science.abf0529.
    [4] SALEH SAK, ADLY HM, ABDELKHALIQ AA, et al. Serum levels of selenium, zinc, copper, manganese, and iron in prostate cancer patients[J]. Curr Urol, 2020, 14( 1): 44- 49. DOI: 10.1159/000499261.
    [5] CHEN J, JIANG YH, SHI H, et al. The molecular mechanisms of copper metabolism and its roles in human diseases[J]. Pflugers Arch, 2020, 472( 10): 1415- 1429. DOI: 10.1007/s00424-020-02412-2.
    [6] BRADY DC, CROWE MS, TURSKI ML, et al. Copper is required for oncogenic BRAF signalling and tumorigenesis[J]. Nature, 2014, 509( 7501): 492- 496. DOI: 10.1038/nature13180.
    [7] TURSKI ML, BRADY DC, KIM HJ, et al. A novel role for copper in Ras/mitogen-activated protein kinase signaling[J]. Mol Cell Biol, 2012, 32( 7): 1284- 1295. DOI: 10.1128/MCB.05722-11.
    [8] XU WJ, BARRIENTOS T, ANDREWS NC. Iron and copper in mitochondrial diseases[J]. Cell Metab, 2013, 17( 3): 319- 328. DOI: 10.1016/j.cmet.2013.02.004.
    [9] LILL R, FREIBERT SA. Mechanisms of mitochondrial iron-sulfur protein biogenesis[J]. Annu Rev Biochem, 2020, 89: 471- 499. DOI: 10.1146/annurev-biochem-013118-111540.
    [10] TANG DL, CHEN X, KROEMER G. Cuproptosis: A copper-triggered modality of mitochondrial cell death[J]. Cell Res, 2022, 32( 5): 417- 418. DOI: 10.1038/s41422-022-00653-7.
    [11] LI SR, BU LL, CAI LL. Cuproptosis: Lipoylated TCA cycle proteins-mediated novel cell death pathway[J]. Signal Transduct Target Ther, 2022, 7( 1): 158. DOI: 10.1038/s41392-022-01014-x.
    [12] FESTA RA, THIELE DJ. Copper: An essential metal in biology[J]. Curr Biol, 2011, 21( 21): R877- R883. DOI: 10.1016/j.cub.2011.09.040.
    [13] SAPORITO-MAGRIÑÁ CM, MUSACCO-SEBIO RN, ANDRIEUX G, et al. Copper-induced cell death and the protective role of glutathione: The implication of impaired protein folding rather than oxidative stress[J]. Metallomics, 2018, 10( 12): 1743- 1754. DOI: 10.1039/c8mt00182k.
    [14] XU JJ, JI L, RUAN YL, et al. UBQLN1 mediates sorafenib resistance through regulating mitochondrial biogenesis and ROS homeostasis by targeting PGC1β in hepatocellular carcinoma[J]. Signal Transduct Target Ther, 2021, 6( 1): 190. DOI: 10.1038/s41392-021-00594-4.
    [15] LELIÈVRE P, SANCEY L, COLL JL, et al. The multifaceted roles of copper in cancer: A trace metal element with dysregulated metabolism, but also a target or a bullet for therapy[J]. Cancers, 2020, 12( 12): 3594. DOI: 10.3390/cancers12123594.
    [16] LIAN WB, YANG PD, LI LQ, et al. A ceRNA network-mediated over-expression of cuproptosis-related gene SLC31A1 correlates with poor prognosis and positive immune infiltration in breast cancer[J]. Front Med, 2023, 10: 1194046. DOI: 10.3389/fmed.2023.1194046.
    [17] SHANBHAG VC, GUDEKAR N, JASMER K, et al. Copper metabolism as a unique vulnerability in cancer[J]. Biochim Biophys Acta Mol Cell Res, 2021, 1868( 2): 118893. DOI: 10.1016/j.bbamcr.2020.118893.
    [18] OLIVERI V. Selective targeting of cancer cells by copper ionophores: An overview[J]. Front Mol Biosci, 2022, 9: 841814. DOI: 10.3389/fmolb.2022.841814.
    [19] HUNSAKER EW, FRANZ KJ. Emerging opportunities to manipulate metal trafficking for therapeutic benefit[J]. Inorg Chem, 2019, 58( 20): 13528- 13545. DOI: 10.1021/acs.inorgchem.9b01029.
    [20] KANNAPPAN V, ALI MS, SMALL B, et al. Recent advances in repurposing disulfiram and disulfiram derivatives as copper-dependent anticancer agents[J]. Front Mol Biosci, 2021, 8: 741316. DOI: 10.3389/fmolb.2021.741316.
    [21] SKROTT Z, MISTRIK M, ANDERSEN KK, et al. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4[J]. Nature, 2017, 552( 7684): 194- 199. DOI: 10.1038/nature25016.
    [22] CHEN LY, MIN JX, WANG FD. Copper homeostasis and cuproptosis in health and disease[J]. Signal Transduct Target Ther, 2022, 7( 1): 378. DOI: 10.1038/s41392-022-01229-y.
    [23] BALDARI S, di ROCCO G, TOIETTA G. Current biomedical use of copper chelation therapy[J]. Int J Mol Sci, 2020, 21( 3): 1069. DOI: 10.3390/ijms21031069.
    [24] WANG YX, ZHU W, JIAO Y, et al. Research progress in regulatory effect of copper transporters on radiation injury and its mechanism[J]. J Jilin Univ Med Ed, 2023, 49( 4): 1076- 1082. DOI: 10.13481/j.1671-587X.20230432.

    王议贤, 朱巍, 焦旸, 等. 铜离子转运蛋白参与辐射损伤的调控作用及其机制的研究进展[J]. 吉林大学学报(医学版), 2023, 49( 4): 1076- 1082. DOI: 10.13481/j.1671-587X.20230432.
    [25] SCHILSKY ML. Wilson disease: Diagnosis, treatment, and follow-up[J]. Clin Liver Dis, 2017, 21( 4): 755- 767. DOI: 10.1016/j.cld.2017.06.011.
    [26] CHEN LJ, LIU DL, TAN YY. Research progress in cuproptosis in liver cancer[J]. J Cent South Univ Med Sci, 2023, 48( 9): 1368- 1376. DOI: 10.11817/j.issn.1672-7347.2023.230083.

    陈蕾洁, 刘德良, 谭玉勇. 铜死亡在肝癌中的研究进展[J]. 中南大学学报(医学版), 2023, 48( 9): 1368- 1376. DOI: 10.11817/j.issn.1672-7347.2023.230083.
    [27] SHAO SQ, SI JX, SHEN YQ. Copper as the target for anticancer nanomedicine[J]. Adv Ther, 2019, 2( 5): 1800147. DOI: 10.1002/adtp.201800147.
    [28] DAVIS CI, GU XX, KIEFER RM, et al. Altered copper homeostasis underlies sensitivity of hepatocellular carcinoma to copper chelation[J]. Metallomics, 2020, 12( 12): 1995- 2008. DOI: 10.1039/d0mt00156b.
    [29] GE EJ, BUSH AI, CASINI A, et al. Connecting copper and cancer: From transition metal signalling to metalloplasia[J]. Nat Rev Cancer, 2022, 22( 2): 102- 113. DOI: 10.1038/s41568-021-00417-2.
    [30] LI J. The molecular mechanism of Disulfiram/Copper complex(CuET) inhibiting proliferation and inducing apoptosis in hepatocellular carcinoma cells[D]. Chongqing: Army Medical University, 2021.

    黎婕. 双硫仑/铜复合物(CuET)抑制肝癌细胞增殖诱导细胞凋亡的分子机制研究[D]. 重庆: 中国人民解放军陆军军医大学, 2021.
    [31] LI Y, WANG LH, ZHANG HT, et al. Disulfiram combined with copper inhibits metastasis and epithelial-mesenchymal transition in hepatocellular carcinoma through the NF-κB and TGF-β pathways[J]. J Cell Mol Med, 2018, 22( 1): 439- 451. DOI: 10.1111/jcmm.13334.
    [32] CHIBA T, SUZUKI E, YUKI K, et al. Disulfiram eradicates tumor-initiating hepatocellular carcinoma cells in ROS-p38 MAPK pathway-dependent and-independent manners[J]. PLoS One, 2014, 9( 1): e84807. DOI: 10.1371/journal.pone.0084807.
    [33] REN XY, LI YC, ZHOU Y, et al. Overcoming the compensatory elevation of NRF2 renders hepatocellular carcinoma cells more vulnerable to disulfiram/copper-induced ferroptosis[J]. Redox Biol, 2021, 46: 102122. DOI: 10.1016/j.redox.2021.102122.
    [34] YANG M, WU XX, HU JL, et al. COMMD10 inhibits HIF1α/CP loop to enhance ferroptosis and radiosensitivity by disrupting Cu-Fe balance in hepatocellular carcinoma[J]. J Hepatol, 2022, 76( 5): 1138- 1150. DOI: 10.1016/j.jhep.2022.01.009.
    [35] GUTTMANN S, CHANDHOK G, GROBA SR, et al. Organic cation transporter 3 mediates cisplatin and copper cross-resistance in hepatoma cells[J]. Oncotarget, 2018, 9( 1): 743- 754. DOI: 10.18632/oncotarget.23142.
    [36] KELLAND L. The resurgence of platinum-based cancer chemotherapy[J]. Nat Rev Cancer, 2007, 7( 8): 573- 584. DOI: 10.1038/nrc2167.
    [37] SHANG YX, LUO MY, YAO FP, et al. Ceruloplasmin suppresses ferroptosis by regulating iron homeostasis in hepatocellular carcinoma cells[J]. Cell Signal, 2020, 72: 109633. DOI: 10.1016/j.cellsig.2020.109633.
    [38] SHAO JJ, LI MM, GUO ZJ, et al. TPP-related mitochondrial targeting copper(II) complex induces p53-dependent apoptosis in hepatoma cells through ROS-mediated activation of Drp1[J]. Cell Commun Signal, 2019, 17( 1): 149. DOI: 10.1186/s12964-019-0468-6.
    [39] JIN C, LI YJ, SU Y, et al. Novel copper complex CTB regulates methionine cycle induced TERT hypomethylation to promote HCC cells senescence via mitochondrial SLC25A26[J]. Cell Death Dis, 2020, 11( 10): 844. DOI: 10.1038/s41419-020-03048-x.
    [40] MENG Y, DONG BL, DONG XH, et al. Expressions of cuproptosis-related genes in hepatocellular carcinoma and their clinical significance[J]. Chin J Gen Surg, 2023, 32( 1): 74- 86. DOI: 10.7659/j.issn.1005-6947.2023.01.006.

    孟云, 董保龙, 董晓骅, 等. 铜死亡相关基因在肝细胞癌中的表达及其临床意义[J]. 中国普通外科杂志, 2023, 32( 1): 74- 86. DOI: 10.7659/j.issn.1005-6947.2023.01.006.
    [41] MA JJ, XIONG YQ, WANG B, et al. Construction and evaluation of prognostic model with cuproptosis-related lncRNA in hepatocellular carcinoma[J]. J Evid Based Med, 2023, 23( 3): 156- 168. DOI: 10.12019/j.issn.1671-5144.2023.03.004.

    马健钧, 熊永强, 王博, 等. 肝细胞癌铜死亡相关lncRNA预后模型的构建及评估[J]. 循证医学, 2023, 23( 3): 156- 168. DOI: 10.12019/j.issn.1671-5144.2023.03.004.
    [42] SHRIBMAN S, MARJOT T, SHARIF A, et al. Investigation and management of Wilson's disease: A practical guide from the British Association for the Study of the Liver[J]. Lancet Gastroenterol Hepatol, 2022, 7( 6): 560- 575. DOI: 10.1016/S2468-1253(22)00004-8.
    [43] GEROSA C, FANNI D, CONGIU T, et al. Liver pathology in Wilson’s disease: From copper overload to cirrhosis[J]. J Inorg Biochem, 2019, 193: 106- 111. DOI: 10.1016/j.jinorgbio.2019.01.008.
    [44] SANDAHL TD, LAURSEN TL, MUNK DE, et al. The prevalence of Wilson’s disease: An update[J]. Hepatology, 2020, 71( 2): 722- 732. DOI: 10.1002/hep.30911.
    [45] GUNJAN D, SHALIMAR, NADDA N, et al. Hepatocellular carcinoma: An unusual complication of longstanding Wilson disease[J]. J Clin Exp Hepatol, 2017, 7( 2): 152- 154. DOI: 10.1016/j.jceh.2016.09.012.
    [46] GU M, COOPER JM, BUTLER P, et al. Oxidative-phosphorylation defects in liver of patients with Wilson's disease[J]. Lancet, 2000, 356( 9228): 469- 474. DOI: 10.1016/s0140-6736(00)02556-3.
    [47] CHEN Y, JIANG YP. Metabolism of ceruloplasmin and clinical manifestation of hypoceruloplasminemia[J]. Chin J Clin Neurosci, 2006, 14( 1): 86- 89. DOI: 10.3969/j.issn.1008-0678.2006.01.020.

    陈嬿, 蒋雨平. 铜蓝蛋白的代谢和低铜蓝蛋白血症的临床表现[J]. 中国临床神经科学, 2006, 14( 1): 86- 89. DOI: 10.3969/j.issn.1008-0678.2006.01.020.
    [48] CHEN SR, CHONG YT, LI XH. Pathogenic mechanism and clinical diagnosis of hereditary abnormal copper metabolism[J]. J Clin Hepatol, 2019, 35( 8): 1667- 1672. DOI: 10.3969/j.issn.1001-5256.2019.08.003.

    陈淑如, 崇雨田, 李新华. 遗传性铜代谢异常的致病机制及临床诊断[J]. 临床肝胆病杂志, 2019, 35( 8): 1667- 1672. DOI: 10.3969/j.issn.1001-5256.2019.08.003.
    [49] OKAMOTO N, WADA S, OGA T, et al. Hereditary ceruloplasmin deficiency with hemosiderosis[J]. Hum Genet, 1996, 97( 6): 755- 758. DOI: 10.1007/BF02346185.
    [50] AIGNER E, STRASSER M, HAUFE H, et al. A role for low hepatic copper concentrations in nonalcoholic fatty liver disease[J]. Am J Gastroenterol, 2010, 105( 9): 1978- 1985. DOI: 10.1038/ajg.2010.170.
    [51] LIU T, LIU YL, ZHANG FY, et al. Association of copper metabolism disorder with cell damage and liver diseases[J]. J Clin Hepatol, 2023, 39( 9): 2244- 2251. DOI: 10.3969/j.issn.1001-5256.2023.09.032.

    柳涛, 刘雅丽, 张飞宇, 等. 铜代谢失调与细胞损伤及肝病的关系[J]. 临床肝胆病杂志, 2023, 39( 9): 2244- 2251. DOI: 10.3969/j.issn.1001-5256.2023.09.032.
    [52] ZHANG CY, YANG M. Current options and future directions for NAFLD and NASH treatment[J]. Int J Mol Sci, 2021, 22( 14): 7571. DOI: 10.3390/ijms22147571.
    [53] DEV S, MUCHENDITSI A, GOTTLIEB A, et al. Oxysterol misbalance critically contributes to Wilson disease pathogenesis[J]. Sci Adv, 2022, 8( 42): eadc9022. DOI: 10.1126/sciadv.adc9022.
    [54] TOSCO A, FONTANELLA B, DANISE R, et al. Molecular bases of copper and iron deficiency-associated dyslipidemia: A microarray analysis of the rat intestinal transcriptome[J]. Genes Nutr, 2010, 5( 1): 1- 8. DOI: 10.1007/s12263-009-0153-2.
    [55] LAN YQ, WU SL, WANG YH, et al. Association between blood copper and nonalcoholic fatty liver disease according to sex[J]. Clin Nutr, 2021, 40( 4): 2045- 2052. DOI: 10.1016/j.clnu.2020.09.026.
    [56] WU CT, LIU XX, ZHONG LX, et al. Identification of cuproptosis-related genes in nonalcoholic fatty liver disease[J]. Oxid Med Cell Longev, 2023, 2023: 9245667. DOI: 10.1155/2023/9245667.
    [57] MERAM I, SIRMATEL F, AHI S, et al. Plasma copper and zinc levels in chronic viral hepatitis[J]. Saudi Med J, 2004, 25( 8): 1066- 1069.
    [58] CESUR S, CEBECI SA, KAVAS GO, et al. Serum copper and zinc concentrations in patients with chronic hepatitis B[J]. J Infect, 2005, 51( 1): 38- 40. DOI: 10.1016/j.jinf.2004.08.012.
    [59] POZNAŃSKI J, SOŁDACKI D, CZARKOWSKA-PĄCZEK B, et al. Cirrhotic liver of liver transplant recipients accumulate silver and co-accumulate copper[J]. Int J Mol Sci, 2021, 22( 4): 1782. DOI: 10.3390/ijms22041782.
    [60] DASTYCH M, HUSOVÁ L, AIGLOVÁ K, et al. Manganese and copper levels in patients with primary biliary cirrhosis and primary sclerosing cholangitis[J]. Scand J Clin Lab Invest, 2021, 81( 2): 116- 120. DOI: 10.1080/00365513.2020.1864835.
    [61] WANG YQ, ZHOU Q, SHAO JG, et al. Bioinformatics analysis of Acute-on-chronic liver failure based on the expression of cuproptosis-related genes[J]. Mod Dig Interv, 2023, 28( 1): 50- 56. DOI: 10.3969/j.issn.1672-2159.2023.01.011.

    王艳秋, 周倩, 邵建国, 等. 基于铜死亡相关基因的慢加急性肝衰竭的机制研究[J]. 现代消化及介入诊疗, 2023, 28( 1): 50- 56. DOI: 10.3969/j.issn.1672-2159.2023.01.011.
  • 加载中
图(1)
计量
  • 文章访问数:  404
  • HTML全文浏览量:  199
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-24
  • 录用日期:  2024-05-20
  • 出版日期:  2024-11-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

/

返回文章
返回