中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

灵芝酸A对刀豆球蛋白A诱导的急性免疫性肝损伤小鼠模型的影响及其作用机制

崔怡 乔凤杰 邱嘉昊 刘羽飞 高竺君 尚志 高月求

引用本文:
Citation:

灵芝酸A对刀豆球蛋白A诱导的急性免疫性肝损伤小鼠模型的影响及其作用机制

DOI: 10.12449/JCH241211
基金项目: 

国家自然科学基金 (82104606);

国家自然科学基金 (81874436)

伦理学声明:本研究方案于2020年10月30日经由上海中医药大学实验动物伦理委员会审批通过,批号:PZSHUTCM201030021,符合实验室动物管理与使用准则。
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:崔怡进行实验及数据的分析整理和文章撰写;高月求和尚志提供指导、经费、技术支持;乔凤杰、邱嘉昊、刘羽飞、高竺君提供技术支持。
详细信息
    通信作者:

    高月求, gaoyueqiu@hotmail.com (ORCID: 0000-0001-7276-9810)

Effect of ganoderic acid A on a mouse model of concanavalin A-induced acute immune liver injury and its mechanism

Research funding: 

National Natural Science Foundation of China (82104606);

National Natural Science Foundation of China (81874436)

More Information
  • 摘要:   目的  观察灵芝酸A(GA-A)对刀豆球蛋白A(ConA)诱导的小鼠自身免疫性肝炎(AIH)模型的治疗作用。  方法  将35只小鼠随机分为空白组(NC组)、模型组(ConA组)和GA-A低、中、高剂量治疗组(GA-A-L组、GA-A-M组、GA-A-H组),每组各7只小鼠。通过尾静脉注射ConA建立经典AIH小鼠模型,1 h后通过腹腔注射不同剂量GA-A治疗。应用蛋白质组学技术探究GA-A对肝细胞的保护机制,另外在体外用全反式维甲酸(ATRA)将HL-60细胞分化为dHL-60中性粒细胞来验证GA-A的作用机制。检测炎症(血清ALT和AST活性、HE染色及炎症相关基因)、凋亡(TUNEL染色)、中性粒细胞和中性粒细胞胞外陷阱(NET)标志物[髓过氧化物酶(MPO)、瓜氨酸化组蛋白3(CitH3)、Ly6G、游离双链DNA(dsDNA)]及p38磷酸化指标。计量资料两组间比较采用成组t检验;多组间比较采用单因素方差分析,进一步两两比较采用LSD-t检验。  结果  与NC组相比,ConA组小鼠血清ALT和AST水平显著增加(P值均<0.001)。与ConA组相比,GA-A治疗显著降低ALT和AST水平(P值均<0.01)。HE染色结果表明,ConA组小鼠肝脏发生明显坏死。GA-A治疗后显著减少肝坏死面积和TUNEL阳性肝细胞的数量(P值均<0.05)。另外,与ConA组相比,GA-A治疗后血清和肝组织中炎症因子IL-6、TNF-α和IFN-γ表达水平显著降低(P值均<0.05)。蛋白质组学分析提示,GA-A通过抑制NET的释放和p38 MAPK通路来减轻ConA诱导的急性免疫性肝损伤。小鼠肝组织免疫荧光染色结果显示,与ConA组相比,GA-A治疗组MPO阳性中性粒细胞的数量及Ly6G和CitH3阳性细胞的数量显著降低(P值均<0.01)。Western Blot及dsDNA结果显示,GA-A显著抑制小鼠肝组织及dHL-60细胞中的NET标志物dsDNA、CitH3以及p38磷酸化水平(P值均<0.05)。  结论  GA-A抑制p38 MAPK通路和NET释放减轻肝脏炎症反应和肝细胞死亡,从而减轻ConA诱导的急性免疫性肝损伤。 本研究为GA-A通过调节嗜中性粒细胞功能治疗免疫性肝损伤提供了理论依据。

     

  • 图  1  GA-A 减轻ConA 诱导的AIH小鼠肝损伤

    注: a,小鼠肝组织HE染色;b,小鼠肝组织坏死区域定量;c,小鼠肝组织TUNEL 染色;d,小鼠肝组织累积光密度值(IOD)定量;e,小鼠血清ALT水平;f,小鼠血清AST 水平;g,ConA 诱导的 AIH 小鼠血清IL-6、TNF-α 和IFN-γ水平;h,ConA 诱导的 AIH 小鼠肝脏中IL-6、TNF-α 和 IFN-γ mRNA水平。

    Figure  1.  GA-A alleviates liver injury in a ConA induced AIH mouse model

    图  2  NC组、Con-A 组和GA-A-M组肝组织的蛋白质组学分析

    注: a,NC组和ConA组中DEP的火山图;b,ConA和GA-A-M组中DEP的火山图;c,3组 DEP的热图;d,ConA 和 GA-A-M 组中 DEP 的细胞组分;e,分子功能类别;f,生物过程富集分析;g,IPA对DEP进行通路富集分析;h,利用IPA构建的上游调控因子和生物过程相互作用网络;i,IPA构建的蛋白质-蛋白质相互作用网络。

    Figure  2.  Proteome profiling of liver tissues from control, Con-A, and GA-A-M groups

    图  3  GA-A 抑制 ConA 诱导的 AIH 小鼠中性粒细胞活化和NET形成

    注: a,3组小鼠肝组织中MPO、CitH3和Ly6G 的免疫荧光染色;b,3 组小鼠肝脏中 MPO、CitH3 和Ly6G 的定量 IOD(平均值);c,3 组小鼠肝脏中 MPO、CitH3 和Ly6G 荧光染色共定位;d,3 组小鼠肝脏中 MPO、CitH3 和Ly6G 荧光共定位的定量 IOD(平均值)。

    Figure  3.  GA-A suppresses neutrophil activation and NET formation in ConA-induced AIH mice

    图  4  GA-A 通过抑制 p38 磷酸化来抑制 NET 形成

    注: a,Western Blot检测3组小鼠肝脏p-p38、p38、CitH3和GAPDH的蛋白表达;b, p-p38/p38 和 CitH3/GAPPH 的蛋白表达水平定量;c,3组小鼠血清dsDNA水平;d,HL-60和dHL-60细胞中CD11b的相对mRNA表达水平;e,Western Blot检测4组中dHL-60细胞的p-p38、p38、CitH3和GAPDH的蛋白表达;f,4组p-p38/p38 和 CitH3/GAPPH 的蛋白表达水平定量;g,4组中dHL-60细胞上清液中dsDNA 水平。

    Figure  4.  GA-A inhibits NET formation by inhibiting p38 phosphorylation

    图  5  GA-A抑制NET释放和p38 MAPK通路减轻ConA诱导的急性免疫性肝损伤机制图

    Figure  5.  The mechanism diagram of GA-A inhibits NET release and p38 MAPK pathway activation to protect against concanavalin A-induced acute immune liver injury

    表  1  引物序列

    Table  1.   Primer sequences

    基因 正向(5'-3') 反向(5'-3')
    β-actin GTGCTATGTTGCTCTAGACTTCG ATGCCACAGGATTCCATACC
    GAPDH CCTCTATGCCAACACAGT AGCCACCAATCCACACAG
    IL-6 GCTACCAAACTGGATATAATCAGGA CCAGGTAGCTATGGTACTCCAGAA
    TNF-α CTGAACTTCGGGGTGATCGG GGCTTGTCACTCGAATTTTGAGA
    IFN-γ ATGAACGCTACACACTGCATC CCATCCTTTTGCCAGTTCCTC
    CD11b ATGGACGCTGATGGCAATACC TCCCCATTCACGTCTCCCA
    下载: 导出CSV
  • [1] CHUNG YY, RAHIM MN, HENEGHAN MA. Autoimmune hepatitis and pregnancy: Considerations for the clinician[J]. Expert Rev Clin Immunol, 2022, 18( 4): 325- 333. DOI: 10.1080/1744666X.2022.2044307.
    [2] SMOLKA V, TKACHYK O, EHRMANN J, et al. Acute onset of autoimmune hepatitis in children and adolescents[J]. Hepatobiliary Pancreat Dis Int, 2020, 19( 1): 17- 21. DOI: 10.1016/j.hbpd.2019.08.004.
    [3] SHARMA R, VERNA EC, SÖDERLING J, et al. Increased mortality risk in autoimmune hepatitis: A nationwide population-based cohort study with histopathology[J]. Clin Gastroenterol Hepatol, 2021, 19( 12): 2636- 2647. DOI: 10.1016/j.cgh.2020.10.006.
    [4] TRIVEDI PJ, HIRSCHFIELD GM. Recent advances in clinical practice: Epidemiology of autoimmune liver diseases[J]. Gut, 2021, 70( 10): 1989- 2003. DOI: 10.1136/gutjnl-2020-322362.
    [5] SIRBE C, SIMU GL, SZABO I, et al. Pathogenesis of autoimmune hepatitis-cellular and molecular mechanisms[J]. Int J Mol Sci, 2021, 22( 24): 13578. DOI: 10.3390/ijms222413578.
    [6] WEI YR, LI YM, YAN L, et al. Alterations of gut microbiome in autoimmune hepatitis[J]. Gut, 2020, 69( 3): 569- 577. DOI: 10.1136/gutjnl-2018-317836.
    [7] DYSON JK, DE MARTIN E, DALEKOS GN, et al. Review article: Unanswered clinical and research questions in autoimmune hepatitis-conclusions of the International Autoimmune Hepatitis Group Research Workshop[J]. Aliment Pharmacol Ther, 2019, 49( 5): 528- 536. DOI: 10.1111/apt.15111.
    [8] BRINKMANN V, REICHARD U, GOOSMANN C, et al. Neutrophil extracellular traps kill bacteria[J]. Science, 2004, 303( 5663): 1532- 1535. DOI: 10.1126/science.1092385.
    [9] CASTANHEIRA FVS, KUBES P. Neutrophils and NET in modulating acute and chronic inflammation[J]. Blood, 2019, 133( 20): 2178- 2185. DOI: 10.1182/blood-2018-11-844530.
    [10] MASUDA S, NAKAZAWA D, SHIDA H, et al. NETosis markers: Quest for specific, objective, and quantitative markers[J]. Clin Chim Acta, 2016, 459: 89- 93. DOI: 10.1016/j.cca.2016.05.029.
    [11] TANAKA K, KOIKE Y, SHIMURA T, et al. In vivo characterization of neutrophil extracellular traps in various organs of a murine sepsis model[J]. PLoS One, 2014, 9( 11): e111888. DOI: 10.1371/journal.pone.0111888.
    [12] YIPP BG, KUBES P. NETosis: How vital is it?[J]. Blood, 2013, 122( 16): 2784- 2794. DOI: 10.1182/blood-2013-04-457671.
    [13] LOOD C, BLANCO LP, PURMALEK MM, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease[J]. Nat Med, 2016, 22( 2): 146- 153. DOI: 10.1038/nm.4027.
    [14] HAN F, DING ZF, SHI XL, et al. Irisin inhibits neutrophil extracellular traps formation and protects against acute pancreatitis in mice[J]. Redox Biol, 2023, 64: 102787. DOI: 10.1016/j.redox.2023.102787.
    [15] KESHARI RS, VERMA A, BARTHWAL MK, et al. Reactive oxygen species-induced activation of ERK and p38 MAPK mediates PMA-induced NET release from human neutrophils[J]. J Cell Biochem, 2013, 114( 3): 532- 540. DOI: 10.1002/jcb.24391.
    [16] ZHAO XH, YANG L, CHANG N, et al. Neutrophils undergo switch of apoptosis to NETosis during murine fatty liver injury via S1P receptor 2 signaling[J]. Cell Death Dis, 2020, 11( 5): 379. DOI: 10.1038/s41419-020-2582-1.
    [17] RADWAN FFY, HOSSAIN A, GOD JM, et al. Reduction of myeloid-derived suppressor cells and lymphoma growth by a natural triterpenoid[J]. J Cell Biochem, 2015, 116( 1): 102- 114. DOI: 10.1002/jcb.24946.
    [18] CHI BJ, WANG SQ, BI S, et al. Effects of ganoderic acid A on lipopolysaccharide-induced proinflammatory cytokine release from primary mouse microglia cultures[J]. Exp Ther Med, 2018, 15( 1): 847- 853. DOI: 10.3892/etm.2017.5472.
    [19] CHENG Y, XIE P. Ganoderic acid A holds promising cytotoxicity on human glioblastoma mediated by incurring apoptosis and autophagy and inactivating PI3K/AKT signaling pathway[J]. J Biochem Mol Toxicol, 2019, 33( 11): e22392. DOI: 10.1002/jbt.22392.
    [20] XU LX, YAN LJ, HUANG SP. Ganoderic acid A against cyclophosphamide-induced hepatic toxicity in mice[J]. J Biochem Mol Toxicol, 2019, 33( 4): e22271. DOI: 10.1002/jbt.22271.
    [21] MA JQ, ZHANG YJ, TIAN ZK. Anti-oxidant, anti-inflammatory and anti-fibrosis effects of ganoderic acid A on carbon tetrachloride induced nephrotoxicity by regulating the Trx/TrxR and JAK/ROCK pathway[J]. Chem Biol Interact, 2021, 344: 109529. DOI: 10.1016/j.cbi.2021.109529.
    [22] TADOKORO T, MORISHITA A, SAKAMOTO T, et al. Galectin-9 ameliorates fulminant liver injury[J]. Mol Med Rep, 2017, 16( 1): 36- 42. DOI: 10.3892/mmr.2017.6606.
    [23] RANI R, TANDON A, WANG J, et al. Stellate cells orchestrate concanavalin A-induced acute liver damage[J]. Am J Pathol, 2017, 187( 9): 2008- 2019. DOI: 10.1016/j.ajpath.2017.05.015.
    [24] WANG KC, WU WR, JIANG XW, et al. Multi-omics analysis reveals the protection of gasdermin D in concanavalin A-induced autoimmune hepatitis[J]. Microbiol Spectr, 2022, 10( 5): e0171722. DOI: 10.1128/spectrum.01717-22.
    [25] XU HL, LIU LL, CHEN YX, et al. The chemical character of polysaccharides from processed Morindae officinalis and their effects on anti-liver damage[J]. Int J Biol Macromol, 2019, 141: 410- 421. DOI: 10.1016/j.ijbiomac.2019.08.213.
    [26] HE GW, GÜNTHER C, KREMER AE, et al. PGAM5-mediated programmed necrosis of hepatocytes drives acute liver injury[J]. Gut, 2017, 66( 4): 716- 723. DOI: 10.1136/gutjnl-2015-311247.
    [27] LI XH, ZHANG YT, WANG JP, et al. zVAD alleviates experimental autoimmune hepatitis in mice by increasing the sensitivity of macrophage to TNFR1-dependent necroptosis[J]. J Autoimmun, 2022, 133: 102904. DOI: 10.1016/j.jaut.2022.102904.
    [28] LIU FL, SHI KJ, DONG JJ, et al. Ganoderic acid A attenuates high-fat-diet-induced liver injury in rats by regulating the lipid oxidation and liver inflammation[J]. Arch Pharm Res, 2020, 43( 7): 744- 754. DOI: 10.1007/s12272-020-01256-9.
    [29] SAFFARZADEH M, JUENEMANN C, QUEISSER MA, et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: A predominant role of histones[J]. PLoS One, 2012, 7( 2): e32366. DOI: 10.1371/journal.pone.0032366.
    [30] REN AH, DONG YB, MIAO RZ, et al. Effect of ganoderic acid A on glycolysis and its key rate-limiting enzymes of non-small cell lung cancer PC9 cells[J]. J Jilin Univ(Med Ed), 2024, 50( 3): 682- 688. DOI: 10.13481/j.1671-587X.20240312.

    任爱华, 董彦伯, 苗润芝, 等. 灵芝酸A对非小细胞肺癌PC9细胞糖酵解及其关键限速酶的影响[J]. 吉林大学学报(医学版), 2024, 50( 3): 682- 688. DOI: 10.13481/j.1671-587X.20240312.
    [31] LV XC, WU Q, CAO YJ, et al. Ganoderic acid A from Ganoderma lucidum protects against alcoholic liver injury through ameliorating the lipid metabolism and modulating the intestinal microbial composition[J]. Food Funct, 2022, 13( 10): 5820- 5837. DOI: 10.1039/d1fo03219d.
    [32] ZHU J, DING JX, LI SY, et al. Ganoderic acid A ameliorates non-alcoholic streatohepatitis(NASH) induced by high-fat high-cholesterol diet in mice[J]. Exp Ther Med, 2022, 23( 4): 308. DOI: 10.3892/etm.2022.11237.
    [33] MA F, CHANG XJ, WANG GY, et al. Streptococcus suis serotype 2 stimulates neutrophil extracellular traps formation via activation of p38 MAPK and ERK1/2[J]. Front Immunol, 2018, 9: 2854. DOI: 10.3389/fimmu.2018.02854.
    [34] MIELI-VERGANI G, VERGANI D, CZAJA AJ, et al. Autoimmune hepatitis[J]. Nat Rev Dis Primers, 2018, 4: 18017. DOI: 10.1038/nrdp.2018.17.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  1580
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-28
  • 录用日期:  2024-06-18
  • 出版日期:  2024-12-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回