索拉非尼和多纳非尼对大鼠体内艾托格列净药代动力学的影响
DOI: 10.12449/JCH250114
-
摘要:
目的 探究索拉非尼、多纳非尼对艾托格列净在大鼠体内药代动力学的影响,为临床联合用药提供参考。 方法 24只雄性SD大鼠随机分为4组,每组6只。A、B组大鼠分别连续7天灌胃索拉非尼对照溶剂和索拉非尼(100 mg/kg),第7天均灌胃艾托格列净(1.5 mg/kg);C、D组大鼠分别连续7天灌胃多纳非尼对照溶剂和多纳非尼(40 mg/kg),第7天均灌胃艾托格列净(1.5 mg/kg)。于不同时间点从大鼠眼内眦静脉丛取血,采用超高效液相色谱-串联质谱法测定艾托格列净质量浓度并绘制药-时曲线,应用DAS 2.1.1软件非房室模型计算药代动力学参数。符合正态分布的计量资料两组间比较采用成组t检验,非正态分布的计量资料两组间比较采用Mann-Whitney U秩和检验。 结果 与A组比较,B组艾托格列净药-时曲线下面积(AUC0-t )和AUC0-∞均明显增加(P值均<0.05),半衰期(t1/2)、平均滞留时间(MRT0-t )、MRT0-∞均显著延长(P值均<0.05),清除率(CLZ/F)显著降低(P<0.05);与C组比较,D组艾托格列净的AUC0-t 、AUC0-∞均显著增加(P值均<0.01),达峰时间(Tmax)、t1/2、MRT0-t 、MRT0-∞均显著延长(P值均<0.01),表观分布容积(VZ/F)和CLZ/F均显著降低(P值均<0.05)。 结论 索拉非尼和多纳非尼均能影响艾托格列净在大鼠体内的药代动力学过程,明显增加艾托格列净的体内暴露量,临床联合用药时应密切监测疗效及药物不良反应,必要时给予剂量调整,避免潜在的药物相互作用风险。 Abstract:Objective To investigate the effect of sorafenib and donafenib on the pharmacokinetics of ertugliflozin in rats, and to provide a theoretical basis for drug combination in clinical practice. Methods A total of 24 male Sprague-Dawley rats were randomly divided into groups A, B, C, and D, with 6 rats in each group. The rats in groups A and B were given sorafenib control solvent and sorafenib (100 mg/kg), respectively, by gavage for 7 consecutive days, followed by ertugliflozin (1.5 mg/kg) by gavage on day 7. Blood samples were collected from the angular vein plexus at different time points, and ultra-performance liquid chromatography-tandem mass spectrometry was used to determine the mass concentration of ertugliflozin and plot the plasma concentration-time curves, while the non-compartment model in DAS 2.1.1 software was used to calculate related pharmacokinetic parameters. The independent-samples t test was used for comparison of normally distributed continuous data between two groups, and the Mann-Whitney U test was used for comparison of non-normally distributed continuous data between two groups. Results Compared with group A, group B had significant increases in the AUC0-t and AUC0-∞ of the plasma concentration-time curve of ertugliflozin (both P<0.05), significant prolongation of t1/2, MRT0-t, and MRT0-∞ (all P<0.05), and a significant reduction in CLZ/F (P<0.05). Compared with group C, group D had significant increases in the AUC0-t and AUC0-∞ of ertugliflozin (both P<0.05), significant prolongation of Tmax, t1/2, MRT0-t, and MRT0-∞ (all P<0.01), and significant reductions in VZ/F and CLZ/F (both P<0.05). Conclusion Both sorafenib and donafenib can affect the pharmacokinetics of ertugliflozin in rats and significantly increase the plasma exposure of ertugliflozin. The efficacy and adverse drug reactions of ertugliflozin should be closely monitored during combined use in clinical practice and the dose should be adjusted when necessary to avoid the potential risk of drug interaction. -
Key words:
- Sorafenib /
- Donafenib /
- Ertugliflozin /
- Rats, Sprague-Dawley /
- Pharmacokinetics /
- Drug Interactions
-
表 1 大鼠血浆中艾托格列净的精密度和准确度
Table 1. Precision and accuracy of ertugliflozin in rat plasma
理论质量浓度 日内(n=6) 日间(n=6) 实测质量浓度(ng/mL) RSD(%) RE(%) 实测质量浓度(ng/mL) RSD(%) RE(%) 5 ng/mL 5.12±0.09 1.68 2.47 5.04±0.24 4.82 0.82 15 ng/mL 14.43±0.18 1.21 -3.78 14.83±1.06 7.15 -1.15 800 ng/mL 809.50±17.81 2.20 1.19 802.50±42.67 5.32 0.31 1 500 ng/mL 1 508.33±70.83 4.70 0.56 1 524.44±64.46 4.23 1.63 表 2 大鼠血浆中艾托格列净的基质效应和提取回收率
Table 2. Matrix effect and extraction recovery of ertugliflozin in rat plasma
理论质量浓度 基质效应(%) RSD(%) 提取回收率(%) RSD(%) 15 ng/mL 105.44±5.32 5.05 91.09±6.07 6.67 800 ng/mL 108.06±2.98 2.75 94.35±5.75 6.09 1 500 ng/mL 103.42±3.64 3.52 94.62±3.52 3.72 表 3 大鼠血浆中艾托格列净的稳定性
Table 3. Stability of ertugliflozin in rat plasma
考察条件 理论质量浓度(ng/mL) 实际质量浓度(ng/mL) RSD(%) RE(%) 室温放置8 h 15 13.97±0.56 4.00 -6.89 800 761.50±26.91 3.53 -4.81 1 500 1 531.67±39.20 2.56 2.11 进样器放置12 h 15 15.73±0.34 2.15 4.89 800 810.33±28.70 3.54 1.29 1 500 1 558.33±21.37 1.37 3.89 -80 ℃冻存1个月 15 14.98±0.62 4.12 -0.11 800 809.17±25.36 3.14 1.15 1 500 1 543.33±65.01 4.21 2.89 -80 ℃冻融3次 15 15.37±0.65 4.21 2.44 800 814.17±35.13 4.32 1.78 1 500 1 615.00±10.49 0.65 7.67 表 4 A、B组大鼠体内艾托格列净药代动力学参数
Table 4. Pharmacokinetic parameters of ertugliflozin in rats of group A and B
参数 A组(n=6) B组(n=6) 统计值 P值 AUC0-t (μg/L·h) 5 582.90(3 797.77~5 977.69) 8 663.44(7 501.49~9 770.85) Z=-2.242 0.025 AUC0-∞(μg/L·h) 5 593.76(3 808.07~5 989.96) 8 739.88(7 612.66~9 955.02) Z=-2.242 0.025 Cmax(ng/mL) 384.17±80.01 448.83±115.35 t=-1.128 0.286 Tmax(h) 1.75±0.69 5.42±3.83 t=-2.310 0.066 t1/2(h) 4.96(4.77~5.81) 7.49(6.52~10.01) Z=-2.242 0.025 CLZ/F(L·h-1·kg-1) 0.27(0.25~0.40) 0.17(0.15~0.21) Z=-2.246 0.025 VZ/F(L/kg) 1.99(1.75~3.24) 1.75(1.59~2.86) Z=-1.121 0.262 MRT0-t (h) 9.62±2.18 13.01±2.16 t=-2.704 0.022 MRT0-∞(h) 9.76±2.18 14.12±2.34 t=-3.339 0.008 注:AUC,药-时曲线下面积;Cmax,最大血药浓度;Tmax,达峰时间;t1/2,半衰期;CLZ/F,清除率;VZ/F,表观分布容积;MRT,平均滞留时间。
表 5 C、D组大鼠体内艾托格列净药代动力学参数
Table 5. Pharmacokinetic parameters of ertugliflozin in rats of group C and D
参数 C组(n=6) D组(n=6) 统计值 P值 AUC0-t (μg/L·h) 2 992.56±889.47 9 388.57±2 830.96 t=-5.280 0.002 AUC0-∞(μg/L·h) 2 992.61±889.50 9 449.61±2 855.28 t=-5.289 0.002 Cmax(ng/mL) 478.50(419.50~600.25) 539.50(512.50~678.00) Z=-1.441 0.150 Tmax(h) 0.75±0.22 4.83±2.04 t=-4.871 0.004 t1/2(h) 2.96±0.22 6.18±0.47 t=-15.224 <0.001 CLZ/F(L·h-1·kg-1) 0.54±0.16 0.17±0.05 t=5.510 0.002 VZ/F(L/kg) 2.31±0.73 1.50±0.35 t=2.454 0.043 MRT0-t (h) 5.48±1.16 10.79±0.98 t=-8.552 <0.001 MRT0-∞(h) 5.48±1.16 11.07±1.09 t=-8.626 <0.001 -
[1] National Health Commission of the People’s Republic of China. Standard for diagnosis and treatment of primary liver cancer(2024 edition)[J]. J Clin Hepatol, 2024, 40( 5): 893- 918. DOI: 10.12449/JCH240508.中华人民共和国国家卫生健康委员会. 原发性肝癌诊疗指南(2024年版)[J]. 临床肝胆病杂志, 2024, 40( 5): 893- 918. DOI: 10.12449/JCH240508. [2] ZHENG RS, CHEN R, HAN BF, et al. Cancer incidence and mortality in China, 2022[J]. Chin J Oncol, 2024, 46( 3): 221- 231. DOI: 10.3760/cma.j.cn112152-20240119-00035.郑荣寿, 陈茹, 韩冰峰, 等. 2022年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2024, 46( 3): 221- 231. DOI: 10.3760/cma.j.cn112152-20240119-00035. [3] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68( 6): 394- 424. DOI: 10.3322/caac.21492. [4] TILG H, MOSCHEN AR, RODEN M. NAFLD and diabetes mellitus[J]. Nat Rev Gastroenterol Hepatol, 2017, 14( 1): 32- 42. DOI: 10.1038/nrgastro.2016.147. [5] AJMERA V, CEPIN S, TESFAI K, et al. A prospective study on the prevalence of NAFLD, advanced fibrosis, cirrhosis and hepatocellular carcinoma in people with type 2 diabetes[J]. J Hepatol, 2023, 78( 3): 471- 478. DOI: 10.1016/j.jhep.2022.11.010. [6] RAOUL JL, KUDO M, FINN RS, et al. Systemic therapy for intermediate and advanced hepatocellular carcinoma: Sorafenib and beyond[J]. Cancer Treat Rev, 2018, 68: 16- 24. DOI: 10.1016/j.ctrv.2018.05.006. [7] DENG N, LI XM, DING XY, et al. Current status and progress of second-line treatment for hepatocellular carcinoma[J/CD]. Chin J Liver Dis(Electronic Edition), 2024, 16( 1): 1- 6. DOI: 10.3969/j.issn.1674-7380.2024.01.001.邓娜, 栗晓咪, 丁晓燕, 等. 肝细胞癌二线治疗的现状和进展[J/CD]. 中国肝脏病杂志(电子版), 2024, 16( 1): 1- 6. DOI: 10.3969/j.issn.1674-7380.2024.01.001. [8] KEAM SJ, DUGGAN S. Donafenib: First approval[J]. Drugs, 2021, 81( 16): 1915- 1920. DOI: 10.1007/s40265-021-01603-0. [9] Expert Committee on Liver Cancer, Chinese Society of Clinical Oncology; Expert Committee on Safety Management of Antitumor Drugs of Chinese Society of Clinical Oncology. Consensus of experts on the clinical application of donafenib in the treatment of hepatocellular carcinoma[J]. Chin Clin Oncol, 2022, 27( 8): 749- 757. DOI: 10.3969/j.issn.1009-0460.2022.08.013.中国临床肿瘤学会肝癌专家委员会, 中国临床肿瘤学会抗肿瘤药物安全管理专家委员会. 多纳非尼治疗肝细胞癌临床应用专家共识[J]. 临床肿瘤学杂志, 2022, 27( 8): 749- 757. DOI: 10.3969/j.issn.1009-0460.2022.08.013. [10] HE XR, LI Y, MA YL, et al. Development of UPLC-MS/MS method to study the pharmacokinetic interaction between sorafenib and dapagliflozin in rats[J]. Molecules, 2022, 27( 19): 6190. DOI: 10.3390/molecules27196190. [11] HE XR, LI Y, LI YJ, et al. In vivo assessment of the pharmacokinetic interactions between donafenib and dapagliflozin, donafenib and canagliflozin in rats[J]. Biomed Pharmacother, 2023, 162: 114663. DOI: 10.1016/j.biopha.2023.114663. [12] GONG L, GIACOMINI MM, GIACOMINI C, et al. PharmGKB summary: Sorafenib pathways[J]. Pharmacogenet Genomics, 2017, 27( 6): 240- 246. DOI: 10.1097/FPC.0000000000000279. [13] WOJCIK C, WARDEN BA. Mechanisms and evidence for heart failure benefits from SGLT2 inhibitors[J]. Curr Cardiol Rep, 2019, 21( 10): 130. DOI: 10.1007/s11886-019-1219-4. [14] VALLON V. The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus[J]. Annu Rev Med, 2015, 66: 255- 270. DOI: 10.1146/annurev-med-051013-110046. [15] Chinese Diabetes Society. Guidelines for the prevention and treatment of type 2 diabetes mellitus in China(2020 edition)[J]. Chin J Diabetes Mellitus, 2021, 13( 4): 315- 409. DOI: 10.3760/cma.j.cn115791-20210221-00095.中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)[J]. 中华糖尿病杂志, 2021, 13( 4): 315- 409. DOI: 10.3760/cma.j.cn115791-20210221-00095. [16] COSENTINO F, CANNON CP, CHERNEY DZI, et al. Efficacy of ertugliflozin on heart failure-related events in patients with type 2 diabetes mellitus and established atherosclerotic cardiovascular disease: Results of the VERTIS CV trial[J]. Circulation, 2020, 142( 23): 2205- 2215. DOI: 10.1161/CIRCULATIONAHA.120.050255. [17] CHENG Q, ZOU SP, SUN MH. Clinical therapeutic value of a new generation of sodium-glucose cotransporter-2 inhibitor ertugliflozin in patients with diabetes and special populations[J]. Chin J New Drugs, 2023, 32( 11): 1099- 1107. DOI: 10.3969/j.issn.1003-3734.2023.11.004.程钱, 邹舒鹏, 孙明辉. 新一代钠-葡萄糖共转运体-2抑制剂艾托格列净在糖尿病及特殊人群中的治疗价值[J]. 中国新药杂志, 2023, 32( 11): 1099- 1107. DOI: 10.3969/j.issn.1003-3734.2023.11.004. [18] MARKHAM A. Ertugliflozin: First global approval[J]. Drugs, 2018, 78( 4): 513- 519. DOI: 10.1007/s40265-018-0878-6. [19] FEDIUK DJ, NUCCI G, DAWRA VK, et al. Overview of the clinical pharmacology of ertugliflozin, a novel sodium-glucose cotransporter 2(SGLT2) inhibitor[J]. Clin Pharmacokinet, 2020, 59( 8): 949- 965. DOI: 10.1007/s40262-020-00875-1. [20] ZHOU N, LI TT, CHEN XJ. Research progress of regulation of UDP-glucuronosyltransferases and herb-drug interaction[J]. J Pharm Res, 2022, 41( 6): 394- 399. DOI: 10.13506/j.cnki.jpr.2022.06.010.周楠, 李婷婷, 陈西敬. 尿苷二磷酸葡萄糖醛酸转移酶的调控及其介导的中药-药物相互作用研究进展[J]. 药学研究, 2022, 41( 6): 394- 399. DOI: 10.13506/j.cnki.jpr.2022.06.010. [21] EMI Y, IKUSHIRO S, IYANAGI T. Drug-responsive and tissue-specific alternative expression of multiple first exons in rat UDP-glucuronosyltransferase family 1(UGT1) gene complex[J]. J Biochem, 1995, 117( 2): 392- 399. DOI: 10.1093/jb/117.2.392. [22] WEBB LJ, MILES KK, AUYEUNG DJ, et al. Analysis of substrate specificities and tissue expression of rat UDP-glucuronosyltransferases UGT1A7 and UGT1A8[J]. Drug Metab Dispos, 2005, 33( 1): 77- 82. DOI: 10.1124/dmd.104.001321. [23] KARBOWNIK A, MIEDZIASZCZYK M, GRABOWSKI T, et al. In vivo assessment of potential for UGT-inhibition-based drug-drug interaction between sorafenib and tapentadol[J]. Biomed Pharmacother, 2020, 130: 110530. DOI: 10.1016/j.biopha.2020.110530. [24] DAWRA VK, SAHASRABUDHE V, LIANG YL, et al. Effect of rifampin on the pharmacokinetics of ertugliflozin in healthy subjects[J]. Clin Ther, 2018, 40( 9): 1538- 1547. DOI: 10.1016/j.clinthera.2018.07.014. [25] HAN DG, YUN H, YOON IS. A novel high-performance liquid chromatographic method combined with fluorescence detection for determination of ertugliflozin in rat plasma: Assessment of pharmacokinetic drug interaction potential of ertugliflozin with mefenamic acid and ketoconazole[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2019, 1122-1123: 49- 57. DOI: 10.1016/j.jchromb.2019.05.023. -

PDF下载 ( 1361 KB)
下载:
