中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动力蛋白相关蛋白1(Drp1)在非酒精性脂肪性肝病中的作用

沈海珊 王数 冯巩

黄玥, 彭虹, 罗新华. 组合型人工肝的研究进展[J]. 临床肝胆病杂志, 2024, 40(2): 233-238. DOI: 10.12449/JCH240203.
引用本文: 黄玥, 彭虹, 罗新华. 组合型人工肝的研究进展[J]. 临床肝胆病杂志, 2024, 40(2): 233-238. DOI: 10.12449/JCH240203.
HUANG Y, PENG H, LUO XH. Research advances in combined artificial liver[J]. J Clin Hepatol, 2024, 40(2): 233-238. DOI: 10.12449/JCH240203.
Citation: HUANG Y, PENG H, LUO XH. Research advances in combined artificial liver[J]. J Clin Hepatol, 2024, 40(2): 233-238. DOI: 10.12449/JCH240203.

动力蛋白相关蛋白1(Drp1)在非酒精性脂肪性肝病中的作用

DOI: 10.12449/JCH250124
基金项目: 

2023年陕西省教育厅课题 (23JK0646)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:沈海珊负责设计论文框架,起草论文;王数负责文献检索及修改文章;冯巩负责论文修改,拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    沈海珊, 1055173553@qq.com (ORCID: 0009-0000-3101-7831)

Role of dynamin-related protein 1 in non-alcoholic fatty liver disease

Research funding: 

2023 Shaanxi Provincial Education Department Project (23JK0646)

More Information
    Corresponding author: SHEN Haishan, 1055173553@qq.com (ORCID: 0009-0000-3101-7831)
  • 摘要: 线粒体的形态变化和功能与非酒精性脂肪性肝病(NAFLD)的发生发展密切相关。动力蛋白相关蛋白1(Drp1)是决定线粒体分裂的最主要蛋白之一,其活性受到严格控制,根据细胞需要确保线粒体动力学的平衡。Drp1可通过促进内质网小管形成,促进线粒体的相互作用和分裂。Drp1的磷酸化状态及去乙酰化也可影响线粒体的形态变化,从而影响NAFLD的疾病状态。本文阐述了Drp1在NAFLD进展中的作用及机制,为靶向治疗NAFLD提供思路。

     

  • 图  1  Drp1经过磷酸化可引起线粒体分裂

    Figure  1.  Drp1 phosphorylation can cause mitochondrial fission

  • [1] WONG VWS, EKSTEDT M, WONG GLH, et al. Changing epidemiology, global trends and implications for outcomes of NAFLD[J]. J Hepatol, 2023, 79( 3): 842- 852. DOI: 10.1016/j.jhep.2023.04.036.
    [2] KOKKORAKIS M, BOUTARI C, HILL MA, et al. Resmetirom, the first approved drug for the management of metabolic dysfunction-associated steatohepatitis: Trials, opportunities, and challenges[J]. Metabolism, 2024, 154: 155835. DOI: 10.1016/j.metabol.2024.155835.
    [3] SHUM M, NGO J, SHIRIHAI OS, et al. Mitochondrial oxidative function in NAFLD: Friend or foe?[J]. Mol Metab, 2021, 50: 101134. DOI: 10.1016/j.molmet.2020.101134.
    [4] WU LW, MO WH, FENG J, et al. Astaxanthin attenuates hepatic damage and mitochondrial dysfunction in non-alcoholic fatty liver disease by up-regulating the FGF21/PGC-1α pathway[J]. Br J Pharmacol, 2020, 177( 16): 3760- 3777. DOI: 10.1111/bph.15099.
    [5] PARADIES G, PARADIES V, RUGGIERO FM, et al. Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease[J]. World J Gastroenterol, 2014, 20( 39): 14205- 14218. DOI: 10.3748/wjg.v20.i39.14205.
    [6] YU LP, LI YJ, WANG T, et al. In vivo recognition of bioactive substances of Polygonum multiflorum for protecting mitochondria against metabolic dysfunction-associated fatty liver disease[J]. World J Gastroenterol, 2023, 29( 1): 171- 189. DOI: 10.3748/wjg.v29.i1.171.
    [7] di CIAULA A, PASSARELLA S, SHANMUGAM H, et al. Nonalcoholic fatty liver disease(NAFLD). Mitochondria as players and targets of therapies?[J]. Int J Mol Sci, 2021, 22( 10): 5375. DOI: 10.3390/ijms22105375.
    [8] MORIO B, PANTHU B, BASSOT A, et al. Role of mitochondria in liver metabolic health and diseases[J]. Cell Calcium, 2021, 94: 102336. DOI: 10.1016/j.ceca.2020.102336.
    [9] KOLIAKI C, SZENDROEDI J, KAUL K, et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis[J]. Cell Metab, 2015, 21( 5): 739- 746. DOI: 10.1016/j.cmet.2015.04.004.
    [10] MANSOURI A, GATTOLLIAT CH, ASSELAH T. Mitochondrial dysfunction and signaling in chronic liver diseases[J]. Gastroenterology, 2018, 155( 3): 629- 647. DOI: 10.1053/j.gastro.2018.06.083.
    [11] IOZZO P, BUCCI M, ROIVAINEN A, et al. Fatty acid metabolism in the liver, measured by positron emission tomography, is increased in obese individuals[J]. Gastroenterology, 2010, 139( 3): 846- 856. e1- e6. DOI: 10.1053/j.gastro.2010.05.039.
    [12] SUNNY NE, PARKS EJ, BROWNING JD, et al. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease[J]. Cell Metab, 2011, 14( 6): 804- 810. DOI: 10.1016/j.cmet.2011.11.004.
    [13] MCGARRY JD, MANNAERTS GP, FOSTER DW. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis[J]. J Clin Invest, 1977, 60( 1): 265- 270. DOI: 10.1172/JCI108764.
    [14] SATAPATI S, KUCEJOVA B, DUARTE JAG, et al. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver[J]. J Clin Invest, 2015, 125( 12): 4447- 4462. DOI: 10.1172/JCI82204.
    [15] COGLIATI S, ENRIQUEZ JA, SCORRANO L. Mitochondrial cristae: Where beauty meets functionality[J]. Trends Biochem Sci, 2016, 41( 3): 261- 273. DOI: 10.1016/j.tibs.2016.01.001.
    [16] FORMOSA LE, RYAN MT. Mitochondrial OXPHOS complex assembly lines[J]. Nat Cell Biol, 2018, 20( 5): 511- 513. DOI: 10.1038/s41556-018-0098-z.
    [17] WAI T, LANGER T. Mitochondrial dynamics and metabolic regulation[J]. Trends Endocrinol Metab, 2016, 27( 2): 105- 117. DOI: 10.1016/j.tem.2015.12.001.
    [18] EISNER V, PICARD M, HAJNÓCZKY G. Mitochondrial dynamics in adaptive and maladaptive cellular stress responses[J]. Nat Cell Biol, 2018, 20( 7): 755- 765. DOI: 10.1038/s41556-018-0133-0.
    [19] SIMULA L, CAMPANELLA M, CAMPELLO S. Targeting Drp1 and mitochondrial fission for therapeutic immune modulation[J]. Pharmacol Res, 2019, 146: 104317. DOI: 10.1016/j.phrs.2019.104317.
    [20] STRACK S, CRIBBS JT. Allosteric modulation of Drp1 mechanoenzyme assembly and mitochondrial fission by the variable domain[J]. J Biol Chem, 2012, 287( 14): 10990- 11001. DOI: 10.1074/jbc.M112.342105.
    [21] FRÖHLICH C, GRABIGER S, SCHWEFEL D, et al. Structural insights into oligomerization and mitochondrial remodelling of dynamin 1-like protein[J]. EMBO J, 2013, 32( 9): 1280- 1292. DOI: 10.1038/emboj.2013.74.
    [22] KISHIDA H, SUGIO S. Crystal structure of GTPase domain fused with minimal stalks from human dynamin-1-like protein(Dlp1) in complex with several nucleotide analogues[J]. Curr Top Pept Protein Res, 2013, 14: 67- 77.
    [23] RAMACHANDRAN R, SCHMID SL. The dynamin superfamily[J]. Curr Biol, 2018, 28( 8): R411- R416. DOI: 10.1016/j.cub.2017.12.013.
    [24] JOSHI AU, SAW NL, SHAMLOO M, et al. Drp1/Fis1 interaction mediates mitochondrial dysfunction, bioenergetic failure and cognitive decline in Alzheimer’s disease[J]. Oncotarget, 2017, 9( 5): 6128- 6143. DOI: 10.18632/oncotarget.23640.
    [25] JIN JY, WEI XX, ZHI XL, et al. Drp1-dependent mitochondrial fission in cardiovascular disease[J]. Acta Pharmacol Sin, 2021, 42( 5): 655- 664. DOI: 10.1038/s41401-020-00518-y.
    [26] YU R, LIU T, JIN SB, et al. MIEF1/2 function as adaptors to recruit Drp1 to mitochondria and regulate the association of Drp1 with Mff[J]. Sci Rep, 2017, 7( 1): 880. DOI: 10.1038/s41598-017-00853-x.
    [27] SOUNDARARAJAN R, HERNÁNDEZ-CUERVO H, STEARNS TM, et al. A-kinase anchor protein 1 deficiency causes mitochondrial dysfunction in mouse model of hyperoxia induced acute lung injury[J]. Front Pharmacol, 2022, 13: 980723. DOI: 10.3389/fphar.2022.980723.
    [28] CRIBBS JT, STRACK S. Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death[J]. EMBO Rep, 2007, 8( 10): 939- 944. DOI: 10.1038/sj.embor.7401062.
    [29] ADACHI Y, KATO T, YAMADA T, et al. Drp1 tubulates the ER in a GTPase-independent manner[J]. Mol Cell, 2020, 80( 4): 621- 632. e 6. DOI: 10.1016/j.molcel.2020.10.013.
    [30] NAVARATNARAJAH T, ANAND R, REICHERT AS, et al. The relevance of mitochondrial morphology for human disease[J]. Int J Biochem Cell Biol, 2021, 134: 105951. DOI: 10.1016/j.biocel.2021.105951.
    [31] WANG LX, ISHIHARA T, IBAYASHI Y, et al. Disruption of mitochondrial fission in the liver protects mice from diet-induced obesity and metabolic deterioration[J]. Diabetologia, 2015, 58( 10): 2371- 2380. DOI: 10.1007/s00125-015-3704-7.
    [32] GALLOWAY CA, LEE H, BROOKES PS, et al. Decreasing mitochondrial fission alleviates hepatic steatosis in a murine model of nonalcoholic fatty liver disease[J]. Am J Physiol Gastrointest Liver Physiol, 2014, 307( 6): G632- G641. DOI: 10.1152/ajpgi.00182.2014.
    [33] HAMMERSCHMIDT P, OSTKOTTE D, NOLTE H, et al. CerS6-derived sphingolipids interact with mff and promote mitochondrial fragmentation in obesity[J]. Cell, 2019, 177( 6): 1536- 1552. e 23. DOI: 10.1016/j.cell.2019.05.008.
    [34] XIA WM, VEERAGANDHAM P, CAO Y, et al. Obesity causes mitochondrial fragmentation and dysfunction in white adipocytes due to RalA activation[J]. Nat Metab, 2024, 6( 2): 273- 289. DOI: 10.1038/s42255-024-00978-0.
    [35] FRIEDMAN JR, LACKNER LL, WEST M, et al. ER tubules mark sites of mitochondrial division[J]. Science, 2011, 334( 6054): 358- 362. DOI: 10.1126/science.1207385.
    [36] BRAVO-SAGUA R, PARRA V, ORTIZ-SANDOVAL C, et al. Caveolin-1 impairs PKA-DRP1-mediated remodelling of ER-mitochondria communication during the early phase of ER stress[J]. Cell Death Differ, 2019, 26( 7): 1195- 1212. DOI: 10.1038/s41418-018-0197-1.
    [37] STEFFEN J, NGO J, WANG SP, et al. The mitochondrial fission protein Drp1 in liver is required to mitigate NASH and prevents the activation of the mitochondrial ISR[J]. Mol Metab, 2022, 64: 101566. DOI: 10.1016/j.molmet.2022.101566.
    [38] WANG J, YANG Y, SUN F, et al. ALKBH5 attenuates mitochondrial fission and ameliorates liver fibrosis by reducing Drp1 methylation[J]. Pharmacol Res, 2023, 187: 106608. DOI: 10.1016/j.phrs.2022.106608.
    [39] HU ZQ, ZHANG HY, WANG YT, et al. Exercise activates Sirt1-mediated Drp1 acetylation and inhibits hepatocyte apoptosis to improve nonalcoholic fatty liver disease[J]. Lipids Health Dis, 2023, 22( 1): 33. DOI: 10.1186/s12944-023-01798-z.
    [40] LEMOS V, DE OLIVEIRA RM, NAIA LA, et al. The NAD+-dependent deacetylase SIRT2 attenuates oxidative stress and mitochondrial dysfunction and improves insulin sensitivity in hepatocytes[J]. Hum Mol Genet, 2017, 26( 21): 4105- 4117. DOI: 10.1093/hmg/ddx298.
    [41] ZHANG LW, XIE XX, TAO JX, et al. Mystery of bisphenol F-induced nonalcoholic fatty liver disease-like changes: Roles of Drp1-mediated abnormal mitochondrial fission in lipid droplet deposition[J]. Sci Total Environ, 2023, 904: 166831. DOI: 10.1016/j.scitotenv.2023.166831.
    [42] QUAN Y, SHOU DW, YANG SQ, et al. Mdivi1 ameliorates mitochondrial dysfunction in non-alcoholic steatohepatitis by inhibiting JNK/MFF signaling[J]. J Gastroenterol Hepatol, 2023, 38( 12): 2215- 2227. DOI: 10.1111/jgh.16372.
    [43] ZHONG YJ, LI ZM, JIN RY, et al. Diosgenin ameliorated type II diabetes-associated nonalcoholic fatty liver disease through inhibiting de novo lipogenesis and improving fatty acid oxidation and mitochondrial function in rats[J]. Nutrients, 2022, 14( 23): 4994. DOI: 10.3390/nu14234994.
    [44] DU JX, WANG TT, XIAO CY, et al. Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates hepatic steatosis In vitro[J]. Curr Mol Med, 2024, 24( 12): 1506- 1517. DOI: 10.2174/0115665240275594231229121030.
  • 加载中
图(1)
计量
  • 文章访问数:  218
  • HTML全文浏览量:  127
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-23
  • 录用日期:  2024-06-17
  • 出版日期:  2025-01-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回