中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CT图像的腹部肌肉内部分层分析对原位肝移植术后并发症的预测价值

石鑫 梁重霄 张蓓 王继萍

黄玥, 彭虹, 罗新华. 组合型人工肝的研究进展[J]. 临床肝胆病杂志, 2024, 40(2): 233-238. DOI: 10.12449/JCH240203.
引用本文: 黄玥, 彭虹, 罗新华. 组合型人工肝的研究进展[J]. 临床肝胆病杂志, 2024, 40(2): 233-238. DOI: 10.12449/JCH240203.
HUANG Y, PENG H, LUO XH. Research advances in combined artificial liver[J]. J Clin Hepatol, 2024, 40(2): 233-238. DOI: 10.12449/JCH240203.
Citation: HUANG Y, PENG H, LUO XH. Research advances in combined artificial liver[J]. J Clin Hepatol, 2024, 40(2): 233-238. DOI: 10.12449/JCH240203.

基于CT图像的腹部肌肉内部分层分析对原位肝移植术后并发症的预测价值

DOI: 10.12449/JCH250218
基金项目: 

吉林省科技发展计划基金 (20220505017ZP)

伦理学声明:本研究方案于2021年1月8日经由吉林大学第一医院伦理委员会审批,批号:2022-164,临床试验注册机构注册号:ChiCTR2200059026。
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:石鑫、张蓓负责设计论文框架,起草论文;石鑫、梁重霄负责实验操作,研究过程的实施;石鑫、张蓓、梁重霄负责数据收集,统计学分析、绘制图表;王继萍、石鑫负责论文修改;王继萍负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    王继萍, jiping@jlu.edu.cn (ORCID: 0000-0003-1991-4104)

Value of internal stratification analysis of abdominal wall muscles in predicting complications after orthotopic liver transplantation

Research funding: 

Science and Technology Development Plan Fund of Jilin Province (20220505017ZP)

More Information
    Corresponding author: WANG Jiping, jiping@jlu.edu.cn (ORCID: 0000-0003-1991-4104)
  • 摘要:   目的  本文旨在肌肉脂肪浸润的基础上,利用分层分析的方法将肌肉内部按照不同的密度范围划分成不同的亚分区,进一步研究肌肉密度改变对原位肝移植术(OLT)后并发症(Clavien-Dindo≥Ⅲ)的影响。  方法  回顾性分析2013年5月—2020年9月于吉林大学第一医院行OLT的145例患者,以患者腰3椎体水平最大层面的CT平扫图像作为原始数据,利用Neusoft Fatanalysis软件对图像进行相关肌肉参数的测量。符合正态分布的计量资料组间比较采用成组t检验;不符合正态分布的组间比较采用Mann-Whitney U秩和检验。计数资料组间比较采用χ2或Fisher检验。利用RIAS软件进行临床特征提取及分析建模,分别建立逻辑回归(LR)、支持向量机(SVM)、随机森林(RFC)3种机器学习模型,并绘制不同模型的受试者操作特征曲线(ROC曲线)、校正曲线、决策分析曲线,计算ROC曲线下面积(AUC)、灵敏度、特异度、精确率、F1分数、准确率。  结果  采用肌肉分层分析前的7种临床特征建立LR-C、SVM-C、RFC-C 3种机器学习模型,其中RFC-C模型测试集的AUC值为0.803、灵敏度0.588,特异度0.778。采用肌肉分层分析后的16种临床特征建立的LR-CS、SVM-CS、RFC-CS模型中,LR-CS及SVM-CS模型测试集的AUC值较高,均为0.852,灵敏度分别为0.765、0.706,特异度分别为0.889、0.926,通过对比肌肉分层分析前后各模型测试集的AUC、灵敏度、特异度、精确率、F1分数、准确率后发现,肌肉分层分析后预测模型的参数均有所提升。通过对比各预测模型的决策分析曲线和校正曲线,发现LR-CS及SVM-CS模型对于预测OLT患者术后并发症(Clavien-Dindo≥Ⅲ)具有良好效能。  结论  在肌肉脂肪浸润的基础上,利用分层分析的方法将肌肉内部按照不同的密度划分成不同子区,对于OLT患者术后并发症有一定预测价值。

     

  • 注: 红色区域为全腹壁肌肉,粉色区域为腹腔脂肪,深黄色区域为皮下脂肪。

    图  1  Neusoft Fatanalysis软件处理后的L3椎体水平最大层面腹部CT平扫图像

    Figure  1.  Neusoft Fatanalysis software processing of L3 vertebrae level of the largest abdominal CT scan images

    注: 红色区域为NAMA,绿色区域为LAMA,蓝色区域为HAMA,深黄色区域为皮下脂肪。

    图  2  肌肉分层分析后Neusoft Fatanalysis软件处理后的L3椎体水平最大层面腹部CT平扫图像

    Figure  2.  The L3 vertebrae level of the largest abdominal plain CT scan image processed by Neusoft Fatanalysis software after muscle stratification analysis

    图  3  测试集中RFC-C模型的ROC曲线

    Figure  3.  The ROC curve of test set of RFC-C

    图  4  测试集中LR-CS模型的ROC曲线

    Figure  4.  The ROC curve of test set of LR-CS

    图  5  测试集中SVM-CS模型的ROC曲线

    Figure  5.  The ROC curve of test set of SVM-CS

    注: a,肌肉分层分析前;b,肌肉分层分析后。

    图  6  预测模型的决策分析曲线

    Figure  6.  The decision curve of predictive models

    注: a,肌肉分层分析前;b,肌肉分层分析后。

    图  7  预测模型的校正曲线

    Figure  7.  The calibration curve of predictive models

    表  1  训练集和测试集中并发症组和非并发症组患者的人口学信息及临床特征比较

    Table  1.   Comparison of group differences in demographic and clinical information of patients in the complication group and non-complication group of the training and test sets

    指标 训练集(n=101) 测试集(n=44) P1)
    并发症组(n=32) 非并发症组(n=69) P 并发症组(n=17) 非并发症组(n=27) P
    性别[例(%)] 0.648 0.837
    22(68.7) 52(75.4) 10(58.8) 18(66.7)
    10(31.3) 17(24.6) 7(41.2) 9(33.3)
    年龄(岁) 52.5(45.5~59.5) 50.0(42.0~57.0) 0.326 51.2±2.4 49.7±2.3 0.666 0.825
    身高(cm) 170.0(162.0~175.0) 170.0(170.0~175.0) 0.768 168.2±1.9 168.8±1.3 0.780 0.114
    体质量(kg) 65.0(57.5~77.5) 70.0(60.0~80.0) 0.377 61.0(59.0~76.0) 67.0(56.5~73.0) 0.987 0.209
    BMI(kg/m2 23.55±0.81 3.46±0.42 0.443 23.92±1.02 23.13±0.72 0.604 0.392
    肌肉脂肪浸润[例(%)] 0.002 0.053 0.073
    24(75.0) 27(39.1) 15(88.2) 15(55.6)
    8(25.0) 42(60.9) 2(11.8) 12(44.4)
    MELD评分(分) 17.5(13.5~22.5) 14.0(10.0~19.0) 0.046 15.0(11.0~16.0) 16.0(10.5~20.5) 0.333 0.640
    Child-Pugh评分 9.0(8.0~10.0) 8.0(7.0~9.0) 0.026 9.0(8.0~10.0) 8.0(6.0~9.0) 0.251 0.379
    腹部手术史[例(%)] 0.881 0.965 0.458
    10(31.3) 21(30.4) 6(35.3) 11(40.7)
    22(68.7) 48(69.6) 11(64.7) 16(59.3)
    糖尿病[例(%)] 0.047 0.501 0.343
    6(18.8) 3(4.3) 4(23.5) 3(11.1)
    26(81.2) 66(95.7) 13(76.5) 24(88.9)
    肝细胞癌射频消融[例(%)] 0.712 0.675 0.751
    1(3.1) 5(7.2) 2(11.8) 1(3.7)
    31(96.9) 64(92.8) 15(88.2) 26(96.3)
    肝细胞癌动脉栓塞治疗[例(%)] 0.712 0.675 0.863
    1(3.1) 5(7.2) 2(11.8) 1(3.7)
    31(96.9) 64(92.8) 15(88.2) 26(96.3)
    难以控制的静脉曲张出血[例(%)] 0.948 0.308 0.916
    6(18.8) 13(18.8) 1(5.9) 6(22.2)
    26(81.2) 56(81.2) 16(94.1) 21(77.8)
    肝性脑病[例(%)] 0.992 0.258 0.353
    4(12.5) 7(10.1) 5(29.4) 3(11.1)
    28(87.5) 62(89.9) 12(70.6) 24(88.9)
    移植前感染[例(%)] 0.570 0.675 0.538
    1(3.1) 2(2.9) 2(11.8) 1(3.7)
    31(96.9) 67(97.1) 15(88.2) 26(96.3)
    AST(U/L) 64.4(37.9~209.0) 48.4(33.6~87.7) 0.037 51.7(36.3~70.8) 53.8(38.7~124.5) 0.406 0.946
    ALT(U/L) 57.1(28.8~219.8) 37.5(21.1~72.1) 0.086 31.4(25.0~59.3) 34.7(22.1~168.0) >0.05 0.650
    总胆红素(μmol/L) 74.7(49.0~150.6) 62.0(23.3~145.6) 0.154 67.0(20.0~105.0) 50.5(30.1~175.4) 0.782 0.631
    直接胆红素(μmol/L) 52.6(18.6~96.8) 19.4(9.1~93.7) 0.056 36.6(12.7~49.9) 21.4(11.3~111.8) 0.847 0.551
    白蛋白(g/L) 31.50(26.85~35.20) 33.40(30.00~37.80) 0.029 33.04±1.70 34.24±1.03 0.523 0.484
    WBC(×109 5.00(2.89~9.60) 3.58(2.46~6.05) 0.053 3.52(2.85~6.35) 3.60(2.78~7.95) 0.838 0.824
    PLT(×109 75.0(52.0~111.0) 59.0(42.0~96.0) 0.140 75.0(46.0~126.0) 72.0(51.5~138.5) 0.952 0.192
    下载: 导出CSV
    指标 训练集(n=101) 测试集(n=44) P1)
    并发症组(n=32) 非并发症组(n=69) P 并发症组(n=17) 非并发症组(n=27) P
    PT(s) 17.80(14.70~22.35) 16.10(13.90~19.80) 0.141 14.90(12.20~16.70) 16.20(14.35~18.40)) 0.169 0.290
    INR 1.57(1.26~1.96) 1.40(1.18~1.71) 0.119 1.33(1.02~1.49) 1.38(1.22~1.66) 0.189 0.337
    Na+(mmol/L) 137.6(133.2~140.1) 135.8(134.2~139.2) 0.951 137.3(131.3~137.8) 137.4(134.4~140.0) 0.219 0.949
    肌酐(umol/L) 58.2(46.5~70.9) 62.8(53.1~74.9) 0.196 63.4(51.5~85.7) 55.3(48.8~65.6) 0.219 0.230
    SFA(cm2 124.06±13.21 132.04±8.52 0.605 150.95±22.95 122.67±14.79 0.360 0.766
    VFA(cm2 100.43±9.95 115.25±7.45 0.403 90.95(77.43~120.87) 89.14(42.30~116.07) 0.531 0.076
    TFA(cm2 224.52±19.98 247.72±13.94 0.347 248.32±28.38 211.79±22.66 0.321 0.490
    VFA/TFA 0.49±0.03 0.47±0.01 0.965 0.42±0.03 0.42±0.02 0.945 0.107
    腰围(cm) 88.63(82.10~96.60) 88.85(82.05~98.55) 0.729 88.93±2.71 86.18±2.00 0.411 0.153
    脂肪平均阈值(HU) -81.0(-90.2~-75.7) -83.7(-93.9~-75.6) 0.198 -82.8±3.2 -83.0±3.3 0.958 0.772
    SMI(cm2/m2 40.05±1.56 40.99±0.87 0.570 41.66(35.56~44.98) 40.50(33.23~44.43) 0.720 0.544
    SMRA(HU) 29.16±1.52 39.02±0.61 <0.001 28.03±2.52 38.49±1.13 0.001 0.386

    注:1)训练集与测试集比较。

    下载: 导出CSV

    表  2  肌肉分层分析后测量得到的影像学相关参数

    Table  2.   Radiographic parameters measured after muscle stratification

    指标 训练集(n=101) 测试集(n=44) P1)
    并发症组(n=32) 非并发症组(n=69) P 并发症组(n=17) 非并发症组(n=27) P
    NAMA-SMI(cm2/m2 23.44±1.40 30.04±0.89 <0.001 22.02(17.62~26.70) 28.73(20.13~36.41) 0.038 0.594
    NAMA百分比 0.58±0.02 0.73±0.01 <0.001 0.58±0.04 0.73±0.02 0.001 0.703
    NAMA-SMRA(HU) 47.52±0.75 49.10±0.40 0.044 47.70±0.83 48.36±0.70 0.548 0.452
    LAMA-SMI(cm2/m2 11.09±0.59 8.60±0.40 0.002 11.60(6.95~12.58) 8.38(6.12~9.51) 0.047 0.456
    LAMA百分比 0.28±0.01 0.21±0.01 0.002 0.59(0.46~0.65) 0.74(0.66~0.81) 0.025 0.909
    LAMA-SMRA(HU) 17.68(17.02~18.10) 18.02(17.78~18.56) 0.003 17.34±0.22 18.02±0.15 0.011 0.293
    HAMA-SMI(cm2/m2 4.76(3.77~7.39) 2.10(1.74~2.15) <0.001 6.60(3.59~7.94) 1.87(1.70~2.60) <0.001 0.834
    HAMA百分比 0.13(0.11~0.17) 0.05(0.04~0.07) <0.001 0.16(0.09~0.20) 0.05(0.04~0.08) <0.001 0.707
    HAMA-SMRA(HU) -23.0(-30.2~-15.4) -13.0(-13.8~-10.0) <0.001 -28.0(-31.3~-13.5) -12.4(-13.6~-9.7) <0.001 0.896

    注:1)训练集与测试集比较。

    下载: 导出CSV

    表  3  测试集中各预测模型相关参数的比较

    Table  3.   Comparison of correlation parameters of test sets of prediction models

    预测模型 AUC 灵敏度 特异度 精确率 F1_分数 准确率
    LR-C 0.743 0.588 0.778 0.625 0.606 0.705
    RFC-C 0.803 0.588 0.778 0.625 0.606 0.705
    SVM-C 0.791 0.647 0.778 0.647 0.647 0.727
    LR-CS 0.852 0.765 0.889 0.813 0.788 0.841
    RFC-CS 0.825 0.647 0.889 0.786 0.710 0.795
    SVM-CS 0.852 0.706 0.926 0.857 0.774 0.841
    下载: 导出CSV
  • [1] CORREA-DE-ARAUJO R, ADDISON O, MILJKOVIC I, et al. Myosteatosis in the context of skeletal muscle function deficit: An interdisciplinary workshop at the national institute on aging[J]. Front Physiol, 2020, 11: 963. DOI: 10.3389/fphys.2020.00963.
    [2] KOTEISH A, DIEHL AM. Animal models of steatosis[J]. Semin Liver Dis, 2001, 21( 1): 89- 104. DOI: 10.1055/s-2001-12932.
    [3] KIRKLAND JL, TCHKONIA T, PIRTSKHALAVA T, et al. Adipogenesis and aging: Does aging make fat go MAD?[J]. Exp Gerontol, 2002, 37( 6): 757- 767. DOI: 10.1016/s0531-5565(02)00014-1.
    [4] FARUP J, MADARO L, PURI PL, et al. Interactions between muscle stem cells, mesenchymal-derived cells and immune cells in muscle homeostasis, regeneration and disease[J]. Cell Death Dis, 2015, 6( 7): e1830. DOI: 10.1038/cddis.2015.198.
    [5] SCHRAUWEN-HINDERLING VB, KOOI ME, HESSELINK MC, et al. Impaired in vivo mitochondrial function but similar intramyocellular lipid content in patients with type 2 diabetes mellitus and BMI-matched control subjects[J]. Diabetologia, 2007, 50( 1): 113- 120. DOI: 10.1007/s00125-006-0475-1.
    [6] HIBI T, WEI CHIEH AK, CHAN AC, et al. Current status of liver transplantation in Asia[J]. Int J Surg, 2020, 82S: 4- 8. DOI: 10.1016/j.ijsu.2020.05.071.
    [7] KAIDO T. Recent evolution of living donor liver transplantation at Kyoto University: How to achieve a one-year overall survival rate of 99%?[J]. Hepatobiliary Pancreat Dis Int, 2020, 19( 4): 328- 333. DOI: 10.1016/j.hbpd.2020.06.006.
    [8] DUTKOWSKI P, OBERKOFLER CE, SLANKAMENAC K, et al. Are there better guidelines for allocation in liver transplantation? A novel score targeting justice and utility in the model for end-stage liver disease era[J]. Ann Surg, 2011, 254( 5): 745-753; discussion753. DOI: 10.1097/SLA.0b013e3182365081.
    [9] BRAAT AE, BLOK JJ, PUTTER H, et al. The Eurotransplant donor risk index in liver transplantation: ET-DRI[J]. Am J Transplant, 2012, 12( 10): 2789- 2796. DOI: 10.1111/j.1600-6143.2012.04195.x.
    [10] RANA A, JIE T, PORUBSKY M, et al. The survival outcomes following liver transplantation(SOFT) score: Validation with contemporaneous data and stratification of high-risk cohorts[J]. Clin Transplant, 2013, 27( 4): 627- 632. DOI: 10.1111/ctr.12181.
    [11] POMMERGAARD HC, DAUGAARD TR, ROSTVED AA, et al. Model for end-stage liver disease score predicts complications after liver transplantation[J]. Langenbecks Arch Surg, 2021, 406( 1): 55- 65. DOI: 10.1007/s00423-020-02018-3.
    [12] SCHLEGEL A, LINECKER M, KRON P, et al. Risk assessment in high- and low-MELD liver transplantation[J]. Am J Transplant, 2017, 17( 4): 1050- 1063. DOI: 10.1111/ajt.14065.
    [13] CZIGANY Z, KRAMP W, BEDNARSCH J, et al. Myosteatosis to predict inferior perioperative outcome in patients undergoing orthotopic liver transplantation[J]. Am J Transplant, 2020, 20( 2): 493- 503. DOI: 10.1111/ajt.15577.
    [14] CZIGANY Z, KRAMP W, LURJE I, et al. The role of recipient myosteatosis in graft and patient survival after deceased donor liver transplantation[J]. J Cachexia Sarcopenia Muscle, 2021, 12( 2): 358- 367. DOI: 10.1002/jcsm.12669.
    [15] MEISTER FA, BEDNARSCH J, AMYGDALOS I, et al. Various myosteatosis selection criteria and their value in the assessment of short- and long-term outcomes following liver transplantation[J]. Sci Rep, 2021, 11( 1): 13368. DOI: 10.1038/s41598-021-92798-5.
    [16] SHENVI SD, TABER DJ, HARDIE AD, et al. Assessment of magnetic resonance imaging derived fat fraction as a sensitive and reliable predictor of myosteatosis in liver transplant recipients[J]. HPB(Oxford), 2020, 22( 1): 102- 108. DOI: 10.1016/j.hpb.2019.06.006.
    [17] AHN H, KIM DW, KO Y, et al. Updated systematic review and meta-analysis on diagnostic issues and the prognostic impact of myosteatosis: A new paradigm beyond sarcopenia[J]. Ageing Res Rev, 2021, 70: 101398. DOI: 10.1016/j.arr.2021.101398.
    [18] FARON A, SPRINKART AM, KUETTING DLR, et al. Body composition analysis using CT and MRI: Intra-individual intermodal comparison of muscle mass and myosteatosis[J]. Sci Rep, 2020, 10( 1): 11765. DOI: 10.1038/s41598-020-68797-3.
    [19] DINDO D, DEMARTINES N, CLAVIEN PA. Classification of surgical complications: A new proposal with evaluation in a cohort of 6 336 patients and results of a survey[J]. Ann Surg, 2004, 240( 2): 205- 213. DOI: 10.1097/01.sla.0000133083.54934.ae.
    [20] XU X, YANG JY, ZHONG L, et al. The clinical value of“Hangzhou Criteria” in the selection of patients with hepatocellular carcinoma for liver transplantation: A report of 1 163 cases on a multi-center basis[J]. Chin J Organ Transplant, 2013, 34( 9): 524- 527. DOI: 10.3760/cma.j.issn.0254-1785.2013.09.004.

    徐骁, 杨家印, 钟林, 等. 肝癌肝移植“杭州标准”的多中心应用研究: 1 163例报道[J]. 中华器官移植杂志, 2013, 34( 9): 524- 527. DOI: 10.3760/cma.j.issn.0254-1785.2013.09.004.
    [21] MARTIN L, BIRDSELL L, MACDONALD N, et al. Cancer Cachexia in the age of obesity: Skeletal muscle depletion is a powerful prognostic factor, independent of body mass index[J]. J Clin Oncol, 2013, 31( 12): 1539- 1547. DOI: 10.1200/JCO.2012.45.2722.
    [22] LI MY, LI XY, GUO Y, et al. Development and assessment of an individualized nomogram to predict colorectal cancer liver metastases[J]. Quant Imaging Med Surg, 2020, 10( 2): 397- 414. DOI: 10.21037/qims.2019.12.16.
    [23] van GRIETHUYSEN JJM, FEDOROV A, PARMAR C, et al. Computational radiomics system to decode the radiographic phenotype[J]. Cancer Res, 2017, 77( 21): e104- e107. DOI: 10.1158/0008-5472.CAN-17-0339.
    [24] HAMAGUCHI Y, KAIDO T, OKUMURA S, et al. Impact of quality as well as quantity of skeletal muscle on outcomes after liver transplantation[J]. Liver Transpl, 2014, 20( 11): 1413- 1419. DOI: 10.1002/lt.23970.
    [25] HAMAGUCHI Y, KAIDO T, OKUMURA S, et al. Proposal for new selection criteria considering pre-transplant muscularity and visceral adiposity in living donor liver transplantation[J]. J Cachexia Sarcopenia Muscle, 2018, 9( 2): 246- 254. DOI: 10.1002/jcsm.12276.
    [26] ZHUANG CL, SHEN X, HUANG YY, et al. Myosteatosis predicts prognosis after radical gastrectomy for gastric cancer: A propensity score-matched analysis from a large-scale cohort[J]. Surgery, 2019, 166( 3): 297- 304. DOI: 10.1016/j.surg.2019.03.020.
    [27] KIM DW, KIM KW, KO Y, et al. Assessment of myosteatosis on computed tomography by automatic generation of a muscle quality map using a web-based toolkit: Feasibility study[J]. JMIR Med Inform, 2020, 8( 10): e23049. DOI: 10.2196/23049.
    [28] SJØBLOM B, GRØNBERG BH, WENTZEL-LARSEN T, et al. Skeletal muscle radiodensity is prognostic for survival in patients with advanced non-small cell lung cancer[J]. Clin Nutr, 2016, 35( 6): 1386- 1393. DOI: 10.1016/j.clnu.2016.03.010.
    [29] BOWDEN JS, WILLIAMS LJ, SIMMS A, et al. Prediction of 90 day and overall survival after chemoradiotherapy for lung cancer: Role of performance status and body composition[J]. Clin Oncol(R Coll Radiol), 2017, 29( 9): 576- 584. DOI: 10.1016/j.clon.2017.06.005.
    [30] KUMAR A, MOYNAGH MR, MULTINU F, et al. Muscle composition measured by CT scan is a measurable predictor of overall survival in advanced ovarian cancer[J]. Gynecol Oncol, 2016, 142( 2): 311- 316. DOI: 10.1016/j.ygyno.2016.05.027.
    [31] AUST S, KNOGLER T, PILS D, et al. Skeletal muscle depletion and markers for cancer Cachexia are strong prognostic factors in epithelial ovarian cancer[J]. PLoS One, 2015, 10( 10): e0140403. DOI: 10.1371/journal.pone.0140403.
    [32] van RIJSSEN LB, van HUIJGEVOORT NM, COELEN RS, et al. Skeletal muscle quality is associated with worse survival after pancreatoduodenectomy for periampullary, nonpancreatic cancer[J]. Ann Surg Oncol, 2017, 24( 1): 272- 280. DOI: 10.1245/s10434-016-5495-6.
    [33] OKUMURA S, KAIDO T, HAMAGUCHI Y, et al. Visceral adiposity and sarcopenic visceral obesity are associated with poor prognosis after resection of pancreatic cancer[J]. Ann Surg Oncol, 2017, 24( 12): 3732- 3740. DOI: 10.1245/s10434-017-6077-y.
    [34] TAMANDL D, PAIREDER M, ASARI R, et al. Markers of sarcopenia quantified by computed tomography predict adverse long-term outcome in patients with resected oesophageal or gastro-oesophageal junction cancer[J]. Eur Radiol, 2016, 26( 5): 1359- 1367. DOI: 10.1007/s00330-015-3963-1.
    [35] CHU MP, LIEFFERS J, GHOSH S, et al. Skeletal muscle density is an independent predictor of diffuse large B-cell lymphoma outcomes treated with rituximab-based chemoimmunotherapy[J]. J Cachexia Sarcopenia Muscle, 2017, 8( 2): 298- 304. DOI: 10.1002/jcsm.12161.
    [36] BOER BC, de GRAAFF F, BRUSSE-KEIZER M, et al. Skeletal muscle mass and quality as risk factors for postoperative outcome after open colon resection for cancer[J]. Int J Colorectal Dis, 2016, 31( 6): 1117- 1124. DOI: 10.1007/s00384-016-2538-1.
    [37] van DIJK DPJ, BAKENS MJAM, COOLSEN MME, et al. Low skeletal muscle radiation attenuation and visceral adiposity are associated with overall survival and surgical site infections in patients with pancreatic cancer[J]. J Cachexia Sarcopenia Muscle, 2017, 8( 2): 317- 326. DOI: 10.1002/jcsm.12155.
    [38] AKAHORI T, SHO M, KINOSHITA S, et al. Prognostic significance of muscle attenuation in pancreatic cancer patients treated with neoadjuvant chemoradiotherapy[J]. World J Surg, 2015, 39( 12): 2975- 2982. DOI: 10.1007/s00268-015-3205-3.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  141
  • HTML全文浏览量:  73
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-21
  • 录用日期:  2024-07-26
  • 出版日期:  2025-02-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回