中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胆汁淤积性肝病精准诊疗与前沿探索

张樑君 潘琼 柴进

引用本文:
Citation:

胆汁淤积性肝病精准诊疗与前沿探索

DOI: 10.12449/JCH250701
基金项目: 

国家自然科学基金杰出青年基金 (82325008);

国家自然科学基金原创探索计划项目 (82450104)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:张樑君负责查阅和归纳文献并撰写论文;潘琼、柴进负责指导撰写并修改论文。
详细信息
    通信作者:

    柴进, jin.chai@cldcsw.org (ORCID: 0000-0002-8543-4566)

Precision diagnosis and treatment of cholestatic liver disease and frontier exploration

Research funding: 

National Natural Science Foundation of China for Outstanding Young Scholars (82325008);

Original Exploration Program of the National Science Foundation of China (82450104)

More Information
  • 摘要: 胆汁淤积性肝病(CLD)包括一系列急性和慢性疾病,其特征是胆汁形成和/或流动受损,若未及时治疗可能进展为肝硬化甚至肝衰竭。近年来,随着分子生物学和组学技术的发展,CLD的诊断与治疗正向精准医学迈进。本文综述了CLD在基因检测、多组学生物标志物等方面的诊断进展,系统梳理了亲水胆汁酸、FXR激动剂、PPAR激动剂、抗生素与新兴分子靶向治疗的最新研究与临床试验。未来,整合多维组学数据、推动个体化诊疗模式将是CLD精准医学发展的关键方向。本文旨在为该领域的基础研究与临床转化提供前瞻性参考。

     

  • 表  1  CLD的当前和新兴药物治疗

    Table  1.   Current and emerging drug therapies for CLD​

    药物名称 治疗靶点/机制 适应证 研发阶段/状态 备注
    现有药物
    UDCA 亲水性胆汁酸,替代细胞毒性胆
    汁酸,保护胆管细胞
    PBC(一线) 已批准(1997年
    FDA)
    长期使用,需监测生化反应
    OCA FXR激动剂,调节胆汁酸代谢 PBC(二线) 加速批准(2016年
    FDA)
    临床获益未完全证实(COBALT试
    验失败),于2024年在欧洲撤市
    SAMe 转甲基/转硫基作用 ICP和药物性
    胆汁淤积
    已批准
    贝特类(非诺贝
    特、苯扎贝特)
    非诺贝特为PPARα激动剂,苯扎
    贝特为泛PPAR激动剂(α/δ/γ),调
    控胆汁代谢和抗炎通路
    PBC(二线) 部分国家批准(如日
    本、欧洲)
    美国仅非诺贝特可用,需监测肝
    酶水平
    布地奈德 糖皮质激素,抗炎作用 PBC(辅助) 临床试验/超适应证
    使用
    疗效存疑,可能用于PBC-AIH
    重叠
    考来烯胺 胆汁酸螯合剂,减少胆汁酸肠肝
    循环
    PBC瘙痒 已批准 需与其他药物间隔服用
    利福平 PXR激动剂,调节胆汁酸代谢 PBC瘙痒
    (二线)
    超适应证使用 可能引起肝毒性
    纳曲酮 阿片受体拮抗剂,缓解瘙痒 PBC瘙痒
    (三线)
    超适应证使用 需逐步增加剂量以避免戒断
    反应
    新兴疗法
    Elafibranor 双重PPARα/δ激动剂,调节胆汁
    酸代谢和抗炎
    PBC 已批准(联合UDCA)
    (2024年FDA)
    改善ALP水平和瘙痒,副作用包
    括腹泻
    Seladelpar 选择性PPARδ激动剂,抑制胆汁
    酸合成和炎症因子
    PBC 加速批准(2024年
    FDA)
    显著降低ALP水平,改善瘙痒和
    睡眠
    Saroglitazar PPARα/γ双重激动剂,可抗胆汁
    淤积、抗炎与抗纤维化
    PBC Ⅲ期临床试验
    (NCT05133336)
    部分患者出现肝酶水平升高,需
    优化剂量
    Setanaxib NOX1/4抑制剂,减少活性氧的产
    生,可抗纤维化
    PBC Ⅱ期临床试验
    (NCT05014672)
    显著降低ALP水平,改善疲劳
    评分
    Nor-UDCA C23同源UDCA,具有抗炎与抗纤
    维化作用,且可促进胆酸分流
    PSC Ⅲ期试验
    (NCT02872921)
    降低ALP水平
    Cilofexor 非胆汁酸类FXR激动剂,调节胆
    汁酸代谢
    PSC Ⅲ期终止 无效
    Berberine Ursode‑
    oxycholate
    (HTD1801)
    UDCA+小檗碱复合物,具有抗菌
    和抗炎的作用
    PSC Ⅱ期试验 降低ALP水平,安全性较好
    Bexotegrast αvβ6/αvβ1整合素抑制剂,通过抑
    制TGF-β抗纤维化
    PSC Ⅱa期试验
    (INTEGRIS-PSC)
    改善纤维化标志物
    Linerixibat/
    Maralixibat
    回肠胆汁酸转运体抑制剂,抑制
    回肠对胆汁酸的重吸收
    PBC/PSC
    瘙痒
    Ⅱ/Ⅲ期试验
    (GLIMMER试验)
    改善瘙痒和睡眠障碍
    辛伐他汀
    (Simvastatin)
    HMG-CoA还原酶抑制剂,具有潜
    在抗炎和抗纤维化的作用
    PSC Ⅲ期试验
    (NCT04133792)
    可能降低肝移植或死亡风险
    FGF19类似物
    (NGM282)
    FGF19类似物,抑制CYP7A1,减
    少胆汁酸合成
    PBC/PSC Ⅱ期试验 降低ALP水平,但需关注肝细胞
    癌风险
    粪菌移植/口服
    万古霉素
    调节肠道菌群 PSC 证据不足 粪菌移植缺乏大样本证据;万古
    霉素为小样本研究

    注:FDA,美国食品药品监督管理局;SAMe,S-腺苷蛋氨酸。

    下载: 导出CSV
  • [1] European Association for the Study of the Liver. EASL clinical practice guidelines: Management of cholestatic liver diseases[J]. J Hepatol, 2009, 51( 2): 237- 267. DOI: 10.1016/j.jhep.2009.04.009.
    [2] POLLOCK G, MINUK GY. Diagnostic considerations for cholestatic liver disease[J]. J Gastroenterol Hepatol, 2017, 32( 7): 1303- 1309. DOI: 10.1111/jgh.13738.
    [3] PIETERS A, GIJBELS E, COGLIATI B, et al. Biomarkers of cholestasis[J]. Biomark Med, 2021, 15( 6): 437- 454. DOI: 10.2217/bmm-2020-0691.
    [4] CAO XX, GAO YQ, ZHANG WH, et al. Cholestasis morbidity rate in first-hospitalized patients with chronic liver disease in Shanghai[J]. Chin J Hepatol, 2015, 23( 8): 569- 573. DOI: 10.3760/cma.j.issn.1007-3418.2015.08.003.

    曹旬旬, 高月求, 张文宏, 等. 基于上海市住院慢性肝病患者胆汁淤积患病率的调查研究[J]. 中华肝脏病杂志, 2015, 23( 8): 569- 573. DOI: 10.3760/cma.j.issn.1007-3418.2015.08.003.
    [5] BORTOLINI M, ALMASIO P, BRAY G, et al. Multicentre survey of the prevalence of intrahepatic cholestasis in 2520 consecutive patients with newly diagnosed chronic liver disease[J]. Drug Invest, 1992, 4( Suppl 4): 83- 89. DOI: 10.1007/BF03258368.
    [6] Chinese Society of Hepatology, Chinese Medical Association. Guideline on the management of cholestasis liver diseases(2021)[J]. J Clin Hepatol, 2022, 38( 1): 62- 69. DOI: 10.3760/cma.j.cn112138-20211112-00795.

    中华医学会肝病学分会. 胆汁淤积性肝病管理指南(2021年)[J]. 临床肝胆病杂志, 2022, 38( 1): 62- 69. DOI: 10.3760/cma.j.cn112138-20211112-00795.
    [7] LLEO A, JEPSEN P, MORENGHI E, et al. Evolving trends in female to male incidence and male mortality of primary biliary cholangitis[J]. Sci Rep, 2016, 6: 25906. DOI: 10.1038/srep25906.
    [8] LU M, ZHOU YR, HALLER IV, et al. Increasing prevalence of primary biliary cholangitis and reduced mortality with treatment[J]. Clin Gastroenterol Hepatol, 2018, 16( 8): 1342- 1350. e 1. DOI: 10.1016/j.cgh.2017.12.033.
    [9] LV TT, CHEN S, LI M, et al. Regional variation and temporal trend of primary biliary cholangitis epidemiology: A systematic review and meta-analysis[J]. J Gastroenterol Hepatol, 2021, 36( 6): 1423- 1434. DOI: 10.1111/jgh.15329.
    [10] ZENG N, DUAN WJ, CHEN S, et al. Epidemiology and clinical course of primary biliary cholangitis in the Asia-Pacific region: A systematic review and meta-analysis[J]. Hepatol Int, 2019, 13( 6): 788- 799. DOI: 10.1007/s12072-019-09984-x.
    [11] LINDOR KD, KOWDLEY KV, HARRISON ME, et al. ACG clinical guideline: Primary sclerosing cholangitis[J]. Am J Gastroenterol, 2015, 110( 5): 646- 659; quiz660. DOI: 10.1038/ajg.2015.112.
    [12] JOO M, ABREU-E-LIMA P, FARRAYE F, et al. Pathologic features of ulcerative colitis in patients with primary sclerosing cholangitis: A case-control study[J]. Am J Surg Pathol, 2009, 33( 6): 854- 862. DOI: 10.1097/PAS.0b013e318196d018.
    [13] TANAKA A, MA X, TAKAHASHI A, et al. Primary biliary cholangitis[J]. Lancet, 2024, 404( 10457): 1053- 1066. DOI: 10.1016/S0140-6736(24)01303-5.
    [14] LI X, LI Y, XIAO JT, et al. Unique DUOX2+ACE2+ small cholangiocytes are pathogenic targets for primary biliary cholangitis[J]. Nat Commun, 2023, 14( 1): 29. DOI: 10.1038/s41467-022-34606-w.
    [15] TRZOS K, PYDYN N, JURA J, et al. Selected transgenic murine models of human autoimmune liver diseases[J]. Pharmacol Rep, 2022, 74( 2): 263- 272. DOI: 10.1007/s43440-021-00351-y.
    [16] DURAZZO M, FERRO A, NAVARRO-TABLEROS VM, et al. Current treatment regimens and promising molecular therapies for chronic hepatobiliary diseases[J]. Biomolecules, 2025, 15( 1): 121. DOI: 10.3390/biom15010121.
    [17] LANKISCH TO, METZGER J, NEGM AA, et al. Bile proteomic profiles differentiate cholangiocarcinoma from primary sclerosing cholangitis and choledocholithiasis[J]. Hepatology, 2011, 53( 3): 875- 884. DOI: 10.1002/hep.24103.
    [18] VARGA T, CZIMMERER Z, NAGY L. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation[J]. Biochim Biophys Acta, 2011, 1812( 8): 1007- 1022. DOI: 10.1016/j.bbadis.2011.02.014.
    [19] SCHRAMM C, WEDEMEYER H, MASON A, et al. Farnesoid X receptor agonist tropifexor attenuates cholestasis in a randomised trial in patients with primary biliary cholangitis[J]. JHEP Rep, 2022, 4( 11): 100544. DOI: 10.1016/j.jhepr.2022.100544.
    [20] YOU H, MA X, EFE C, et al. APASL clinical practice guidance: The diagnosis and management of patients with primary biliary cholangitis[J]. Hepatol Int, 2022, 16( 1): 1- 23. DOI: 10.1007/s12072-021-10276-6.
    [21] BOWLUS CL, GALAMBOS MR, ASPINALL RJ, et al. A phase II, randomized, open-label, 52-week study of seladelpar in patients with primary biliary cholangitis[J]. J Hepatol, 2022, 77( 2): 353- 364. DOI: 10.1016/j.jhep.2022.02.033.
    [22] SCHATTENBERG JM, PARES A, KOWDLEY KV, et al. A randomized placebo-controlled trial of elafibranor in patients with primary biliary cholangitis and incomplete response to UDCA[J]. J Hepatol, 2021, 74( 6): 1344- 1354. DOI: 10.1016/j.jhep.2021.01.013.
    [23] VUPPALANCHI R, CALDWELL SH, PYRSOPOULOS N, et al. Proof-of-concept study to evaluate the safety and efficacy of saroglitazar in patients with primary biliary cholangitis[J]. J Hepatol, 2022, 76( 1): 75- 85. DOI: 10.1016/j.jhep.2021.08.025.
    [24] ZHANG YL, LI ZJ, GOU HZ, et al. The gut microbiota-bile acid axis: A potential therapeutic target for liver fibrosis[J]. Front Cell Infect Microbiol, 2022, 12: 945368. DOI: 10.3389/fcimb.2022.945368.
    [25] ALLEGRETTI JR, KASSAM Z, CARRELLAS M, et al. Fecal microbiota transplantation in patients with primary sclerosing cholangitis: A pilot clinical trial[J]. Am J Gastroenterol, 2019, 114( 7): 1071- 1079. DOI: 10.14309/ajg.0000000000000115.
    [26] MAYO MJ, WIGG AJ, LEGGETT BA, et al. NGM282 for treatment of patients with primary biliary cholangitis: A multicenter, randomized, double-blind, placebo-controlled trial[J]. Hepatol Commun, 2018, 2( 9): 1037- 1050. DOI: 10.1002/hep4.1209.
    [27] van der WOERD WL, HOUWEN RH, van de GRAAF SF. Current and future therapies for inherited cholestatic liver diseases[J]. World J Gastroenterol, 2017, 23( 5): 763- 775. DOI: 10.3748/wjg.v23.i5.763.
    [28] ZHANG LJ, PAN Q, ZHANG L, et al. Runt-related transcription factor-1 ameliorates bile acid-induced hepatic inflammation in cholestasis through JAK/STAT3 signaling[J]. Hepatology, 2023, 77( 6): 1866- 1881. DOI: 10.1097/HEP.0000000000000041.
  • 加载中
表(1)
计量
  • 文章访问数:  620
  • HTML全文浏览量:  191
  • PDF下载量:  265
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-19
  • 录用日期:  2025-05-31
  • 出版日期:  2025-07-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回