肝癌局部治疗策略
DOI: 10.12449/JCH250804
-
摘要: 原发性肝癌在我国发病率与死亡率居高不下,因多数患者确诊时已属晚期,外科手术适用受限。本文通过综述现有常用及先进的肝癌局部治疗技术,全面整合局部消融(射频消融、微波消融、不可逆电穿孔和冷冻消融等)、血管内介入(经导管动脉栓塞化疗、肝动脉灌注化疗和钇-90放射栓塞)及放疗(射波刀、质子治疗、重离子治疗)等主流技术进展,通过对比各项治疗技术的治疗原理、适应证与局限性、临床数据等,构建基于多维度的肝癌局部治疗决策框架。本文旨在为目前仍存在的临床决策困境提供循证依据,推动局部治疗在临床实践中的角色升级,并提出未来研究与实践的变革方向。本文旨在为肝癌局部治疗绘制的一张临床路线图,既解决“当前如何选技术”的实践问题,更指引“未来往何处突破”的研究方向,目的是通过技术整合与模式创新,重塑肝癌治疗格局。Abstract: The incidence and mortality rates of hepatocellular carcinoma (HCC) remain high in China, and the application of surgical resection is often limited due to the fact that most patients are in the advanced stage at the time of confirmed diagnosis. This article reviews commonly used advanced locoregional therapies for HCC and the advances in mainstream techniques such as local ablation (radiofrequency ablation, microwave ablation, irreversible electroporation, and cryoablation), intravascular intervention (transcatheter arterial chemoembolization, hepatic arterial infusion chemotherapy, and Y90 hepatic arterial infusion chemotherapy), and radiotherapy (CyberKnife, proton therapy, and heavy-ion therapy), and a multidimensional decision-making framework is constructed for HCC locoregional therapy by comparing treatment principles, indications, limitations, and clinical data of these techniques. This article aims to provide evidence-based support for persistent dilemmas in clinical decision-making, promote the role of locoregional therapies in clinical practice, and propose the directions for future research and clinical application. This article also establishes a comprehensive clinical roadmap for HCC locoregional therapy, which helps to address current challenges regarding technique selection and delineate future directions for innovation, in order to reshape the treatment of HCC through technological integration and paradigm innovation.
-
Key words:
- Liver Neoplasms /
- Antineoplastic Protocols /
- Precision Medicine
-
表 1 局部消融治疗技术的比较
Table 1. Comparison of local ablation treatment techniques
技术名称 核心原理 适用人群/病灶特征 优势 局限性 RFA 高频交流电(400~900 kHz)
通过电极针产生焦耳热,使
组织温度>60 ℃致凝固坏死≤3 cm小肝癌,尤其远离
大血管微创、成本低、5年生存率
40%~70%热沉效应明显;单点消融直
径≤3 cm;组织碳化限制能
量扩散MWA 微波电磁场(915/2 450 MHz)
驱动水分子旋转生热,快速升
温至60~150 ℃致凝固坏死>3 cm肝癌、富血供肿瘤,
邻近大血管(如肝门区)穿透深(>5 cm),抗热沉效应强,
消融时间比RFA缩短30%~
50%成本较高;需规避金属植入
物(如心脏起搏器)IRE 高压脉冲电场在细胞膜上形
成永久性微孔,非热性破坏细
胞稳态肿瘤紧邻血管、胆管、膈
肌、肝门、胃肠道等危险
部位非热消融、选择性杀伤肿瘤细
胞、保护血管/胆管结构操作复杂、成本高、肿瘤大
小受限、并发症风险较高CRA 重复冷冻和复温的过程对组
织产生即时物理性损伤;冷冻
引起微血管收缩、血栓形成导
致微循环进行性衰竭;肿瘤微
环境的改变和肿瘤的坏死及
凋亡可激活抗肿瘤免疫反应位置特殊、临近高风险部
位的体积相对较小的肝癌术中疼痛轻;激活抗肿瘤免疫
应答(T细胞活化、远隔效应);
冰球可视化(CT/MRI实时监测)消融效率与RFA、MWA相
当,但操作稍复杂PEI 无水酒精致肿瘤细胞脱水、蛋
白变性及坏死高风险部位(如紧贴重要
结构);辅助热消融治疗无热损伤、安全性高、对周围组
织损伤小需多点、多次穿刺;药物弥
散不均;单用效率低 -
[1] National Health Commission of the People’s Republic of China. Standard for diagnosis and treatment of primary liver cancer(2024 edition)[J]. J Clin Hepatol, 2024, 40( 5): 893- 918. DOI: 10.12449/JCH240508.中华人民共和国国家卫生健康委员会. 原发性肝癌诊疗指南(2024年版)[J]. 临床肝胆病杂志, 2024, 40( 5): 893- 918. DOI: 10.12449/JCH240508. [2] LI X. The transformation of thinking patterns brought about by the application of the MDT model in the diagnosis and treatment of liver cancer[J]. Chin Med News, 2021, 36( 18): 13. DOI: 10.3760/cma.j.issn.1000-8039.2021.18.125.李汛. MDT模式应用于肝癌诊疗带来的思维模式变革[J]. 中华医学信息导报, 2021, 36( 18): 13. DOI: 10.3760/cma.j.issn.1000-8039.2021.18.125. [3] Chinese Society of Liver Cancer, Chinese Anti-Cancer Association; Chinese Society of Clinical Oncology, Chinese Anti-Cancer Association; Liver Cancer Study Group, Chinese Society of Hepatology, Chinese Medical Association. Experts consensus on local ablation therapy for liver cancer[J]. Chin Hepatol, 2011, 16( 3): 242- 244. DOI: 10.3969/j.issn.1008-1704.2011.03.023.中国抗癌协会肝癌专业委员会, 中国抗癌协会临床肿瘤学协作专业委员会, 中华医学会肝病学分会肝癌学组. 肝癌局部消融治疗规范的专家共识[J]. 肝脏, 2011, 16( 3): 242- 244. DOI: 10.3969/j.issn.1008-1704.2011.03.023. [4] SLOVAK R, LUDWIG JM, GETTINGER SN, et al. Immuno-thermal ablations-boosting the anticancer immune response[J]. J Immunother Cancer, 2017, 5( 1): 78. DOI: 10.1186/s40425-017-0284-8. [5] MA CY, FU YL, ZHANG ZL, et al. Study on the efficacy evaluation of microwave ablation for hepatocellular carcinoma by contrast-enhanced ultrasound and its predictive value for local recurrence[J]. Chin J Med Offic, 2023, 51( 8): 850- 853. DOI: 10.16680/j.1671-3826.2023.08.21.马春燕, 符叶柳, 张植兰, 等. 超声造影对肝细胞癌微波消融疗效评估及对局部复发预测价值研究[J]. 临床军医杂志, 2023, 51( 8): 850- 853. DOI: 10.16680/j.1671-3826.2023.08.21. [6] MA JQ, YANG MJ, YAN ZP. The therapeutic goals and embolization endpoints of fine TACE[J]. J Surg Concep Pract, 2022, 27( 2): 131- 133. DOI: 10.16139/j.1007-9610.2022.02.009.马婧嶔, 杨敏捷, 颜志平. 精细TACE的治疗目标与栓塞终点[J]. 外科理论与实践, 2022, 27( 2): 131- 133. DOI: 10.16139/j.1007-9610.2022.02.009. [7] TINKLE CL, HAAS-KOGAN D. Hepatocellular carcinoma: Natural history, current management, and emerging tools[J]. Biologics, 2012, 6: 207- 219. DOI: 10.2147/BTT.S23907. [8] CHEN P, YUAN P, CHEN B, et al. Evaluation of drug-eluting beads versus conventional transcatheter arterial chemoembolization in patients with unresectable hepatocellular carcinoma: A systematic review and meta-analysis[J]. Clin Res Hepatol Gastroenterol, 2017, 41( 1): 75- 85. DOI: 10.1016/j.clinre.2016.05.013. [9] FORNER A, GILABERT M, BRUIX J, et al. Treatment of intermediate-stage hepatocellular carcinoma[J]. Nat Rev Clin Oncol, 2014, 11( 9): 525- 535. DOI: 10.1038/nrclinonc.2014.122. [10] EL-SERAG HB. Hepatocellular carcinoma[J]. N Engl J Med, 2011, 365( 12): 1118- 27. DOI: 10.1056/NEJMra1001683. [11] WU ST, FAN K, YANG Q, et al. Smart nanoparticles and microbeads for interventional embolization therapy of liver cancer: State of the art[J]. J Nanobiotechnology, 2023, 21( 1): 42. DOI: 10.1186/s12951-023-01804-7. [12] POURSAID A, JENSEN MM, HUO E, et al. Polymeric materials for embolic and chemoembolic applications[J]. J Control Release, 2016, 240: 414- 433. DOI: 10.1016/j.jconrel.2016.02.033. [13] CHAN LL, CHAN SL. Drug development for hepatocellular carcinoma[J]. Lancet Oncol, 2023, 24( 12): 1292- 1294. DOI: 10.1016/S1470-2045(23)00523-5. [14] CHO Y, CHOI JW, KWON H, et al. Transarterial chemoembolization for hepatocellular carcinoma: 2023 expert consensus-based practical recommendations of the Korean liver cancer association[J]. Clin Mol Hepatol, 2023, 29( 3): 521- 541. DOI: 10.3350/cmh.2023.0202. [15] YANG XL, YU HP, GUO Z. New Progress in the application research of drug-loaded microspheres in transarterial chemoembolization for liver cancer[J]. National Med J Chin, 2016( 7): 589- 592. DOI: 10.3760/cma.j.issn.0376-2491.2016.07.023.杨雪玲, 于海鹏, 郭志. 载药微球在肝癌经动脉化疗栓塞治疗中的应用研究新进展[J]. 中华医学杂志, 2016( 7): 589- 592. DOI: 10.3760/cma.j.issn.0376-2491.2016.07.023. [16] LI L, HE J, XIE YX, et al. A retrospective controlled study of TACE-HAIC-targeted-immune quadruple therapy for intermediate and advanced-stage hepatocellular carcinoma[J]. Chin J Hepatol, 2022, 30( 9): 939- 946. DOI: 10.3760/cma.j.cn501113-20220823-00432.李灵, 贺剑, 谢义星, 等. TACE-HAIC-靶向-免疫四联治疗中晚期肝细胞癌的回顾性对照研究[J]. 中华肝脏病杂志, 2022, 30( 9): 939- 946. DOI: 10.3760/cma.j.cn501113-20220823-00432. [17] CHANG X, LI XG, SUN P, et al. HAIC Combined with lenvatinib plus PD-1 versus lenvatinib Plus PD-1 in patients with high-risk advanced HCC: A real-world study[J]. BMC Cancer, 2024, 24( 1): 480. DOI: 10.1186/s12885-024-12233-6. [18] LI BS, LI Q, PENG L, et al. A randomized comparison of transradial and transfemoral approach in hepatic arterial infusion chemotherapy[J]. Curr Med Imaging, 2023. DOI: 10.2174/1573405620666230511094840. [19] XU SR. Research advances in the treatment of hepatic arterial infusion chemotherapy(HAIC) for hepatocellular carcinoma(HCC)[J]. Fudan Univ J Med Sci, 2019, 46( 6): 814- 818, 823. DOI: 10.3969/j.issn.1672-8467.2019.06.016.许书榕. 肝动脉灌注化疗(HAIC)治疗肝细胞癌(HCC)的研究进展[J]. 复旦学报(医学版), 2019, 46( 6): 814- 818, 823. DOI: 10.3969/j.issn.1672-8467.2019.06.016. [20] MEMON K, KULIK L, LEWANDOWSKI RJ, et al. Radioembolization for hepatocellular carcinoma with portal vein thrombosis: Impact of liver function on systemic treatment options at disease progression[J]. J Hepatol, 2013, 58( 1): 73- 80. DOI: 10.1016/j.jhep.2012.09.003. [21] SALEM R, GORDON AC, MOULI S, et al. Y90 radioembolization significantly prolongs time to progression compared with chemoembolization in patients with hepatocellular carcinoma[J]. Gastroenterology, 2016, 151( 6): 1155- 1163. e 2. DOI: 10.1053/j.gastro.2016.08.029. [22] MAZZAFERRO V, SPOSITO C, BHOORI S, et al. Yttrium-90 radioembolization for intermediate-advanced hepatocellular carcinoma: A phase 2 study[J]. Hepatology, 2013, 57( 5): 1826- 1837. DOI: 10.1002/hep.26014. [23] KULIK LM, CARR BI, MULCAHY MF, et al. Safety and efficacy of 90Y radiotherapy for hepatocellular carcinoma with and without portal vein thrombosis[J]. Hepatology, 2008, 47( 1): 71- 81. DOI: 10.1002/hep.21980. [24] LOBO L, YAKOUB D, PICADO O, et al. Unresectable hepatocellular carcinoma: Radioembolization versus chemoembolization: A systematic review and meta-analysis[J]. Cardiovasc Intervent Radiol, 2016, 39( 11): 1580- 1588. DOI: 10.1007/s00270-016-1426-y. [25] ZHANG JP, WANG L, XIE CY, et al. Novel utilization and quantification of Xsight diaphragm tracking for respiratory motion compensation in Cyberknife Synchrony treatment of liver tumors[J]. J Appl Clin Med Phys, 2024, 25( 7): e14341. DOI: 10.1002/acm2.14341. [26] OHRI N, TOMÉ WA, MÉNDEZ ROMERO A, et al. Local control after stereotactic body radiation therapy for liver tumors[J]. Int J Radiat Oncol Biol Phys, 2021, 110( 1): 188- 195. DOI: 10.1016/j.ijrobp.2017.12.288. [27] KOBEISSI JM, HILAL L, SIMONE CB 2nd, et al. Proton therapy in the management of hepatocellular carcinoma[J]. Cancers(Basel), 2022, 14( 12): 2900. DOI: 10.3390/cancers14122900. [28] KIM TH, PARK JW, KIM BH, et al. Phase II study of hypofractionated proton beam therapy for hepatocellular carcinoma[J]. Front Oncol, 2020, 10: 542. DOI: 10.3389/fonc.2020.00542. [29] SHIBUYA K, OHNO T, TERASHIMA K, et al. Short-course carbon-ion radiotherapy for hepatocellular carcinoma: A multi-institutional retrospective study[J]. Liver Int, 2018, 38( 12): 2239- 2247. DOI: 10.1111/liv.13969. [30] ZAKI P, CHUONG MD, SCHAUB SK, et al. Proton beam therapy and photon-based magnetic resonance image-guided radiation therapy: The next frontiers of radiation therapy for hepatocellular carcinoma[J]. Technol Cancer Res Treat, 2023, 22: 15330338231206335. DOI: 10.1177/15330338231206335. [31] SEGAWA K, NAGATA S. An apoptotic‘eat me’ signal: Phosphatidylserine exposure[J]. Trends Cell Biol, 2015, 25( 11): 639- 650. DOI: 10.1016/j.tcb.2015.08.003. [32] MIZUKOSHI E, YAMASHITA T, ARAI K, et al. Enhancement of tumor-associated antigen-specific T cell responses by radiofrequency ablation of hepatocellular carcinoma[J]. Hepatology, 2013, 57( 4): 1448- 1457. DOI: 10.1002/hep.26153. [33] DAI ZH, WANG ZR, LEI K, et al. Irreversible electroporation induces CD8+ T cell immune response against post-ablation hepatocellular carcinoma growth[J]. Cancer Lett, 2021, 503: 1- 10. DOI: 10.1016/j.canlet.2021.01.001. [34] LEUCHTE K, STAIB E, THELEN M, et al. Microwave ablation enhances tumor-specific immune response in patients with hepatocellular carcinoma[J]. Cancer Immunol Immunother, 2021, 70( 4): 893- 907. DOI: 10.1007/s00262-020-02734-1. [35] LUO T, MA KP, ZHANG Y, et al. Nanostrategies synergize with locoregional interventional therapies for boosting antitumor immunity[J]. Bioact Mater, 2025, 51: 634- 649. DOI: 10.1016/j.bioactmat.2025.05.016. [36] DROMI SA, WALSH MP, HERBY S, et al. Radiofrequency ablation induces antigen-presenting cell infiltration and amplification of weak tumor-induced immunity[J]. Radiology, 2009, 251( 1): 58- 66. DOI: 10.1148/radiol.2511072175. [37] ZHONG BY, FAN WZ, GUAN JJ, et al. Combination locoregional and systemic therapies in hepatocellular carcinoma[J]. Lancet Gastroenterol Hepatol, 2025, 10( 4): 369- 386. DOI: 10.1016/S2468-1253(24)00247-4. [38] CHIANG CL, CHIU KWH, CHAN KSK, et al. Sequential transarterial chemoembolisation and stereotactic body radiotherapy followed by immunotherapy as conversion therapy for patients with locally advanced, unresectable hepatocellular carcinoma(START-FIT): A single-arm, phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2023, 8( 2): 169- 178. DOI: 10.1016/S2468-1253(22)00339-9. [39] TIAN Z, HU QT, SUN ZY, et al. A booster for radiofrequency ablation: Advanced adjuvant therapy via in situ nanovaccine synergized with anti-programmed death ligand 1 immunotherapy for systemically constraining hepatocellular carcinoma[J]. ACS Nano, 2023, 17( 19): 19441- 19458. DOI: 10.1021/acsnano.3c08064. [40] ZHU XQ, LI TH, WANG Q, et al. Dual-synergistic nanomodulator alleviates exosomal PD-L1 expression enabling exhausted cytotoxic T lymphocytes rejuvenation for potentiated iRFA-treated hepatocellular carcinoma immunotherapy[J]. ACS Nano, 2024, 18( 47): 32818- 32833. DOI: 10.1021/acsnano.4c11257. [41] HU ZL, HU ZW, ZHAN WX, et al. Efficacy of additional locoregional therapy based on systemic therapy after intrahepatic progression for BCLC stage B/C hepatocellular carcinoma: A real-world study[J]. Int Immunopharmacol, 2024, 127: 111413. DOI: 10.1016/j.intimp.2023.111413. [42] ZHU HD, LI HL, HUANG MS, et al. Transarterial chemoembolization with PD-(L)1 inhibitors plus molecular targeted therapies for hepatocellular carcinoma(CHANCE001)[J]. Signal Transduct Target Ther, 2023, 8( 1): 58. DOI: 10.1038/s41392-022-01235-0. [43] EL-KHOUEIRY AB, SANGRO B, YAU T, et al. Nivolumab in patients with advanced hepatocellular carcinoma(CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial[J]. Lancet, 2017, 389( 10088): 2492- 2502. DOI: 10.1016/S0140-6736(17)31046-2. [44] SONG SM, BAI MZ, LI XF, et al. Early predictive value of circulating biomarkers for sorafenib in advanced hepatocellular carcinoma[J]. Expert Rev Mol Diagn, 2022, 22( 3): 361- 378. DOI: 10.1080/14737159.2022.2049248. [45] YUE CY, JIANG YB, LI P, et al. Dynamic change of PD-L1 expression on circulating tumor cells in advanced solid tumor patients undergoing PD-1 blockade therapy[J]. Oncoimmunology, 2018, 7( 7): e1438111. DOI: 10.1080/2162402X.2018.1438111. [46] WINOGRAD P, HOU S, COURT CM, et al. Hepatocellular carcinoma-circulating tumor cells expressing PD-L1 are prognostic and potentially associated with response to checkpoint inhibitors[J]. Hepatol Commun, 2020, 4( 10): 1527- 1540. DOI: 10.1002/hep4.1577. [47] OKAMURA Y, SUGIURA T, ITO T, et al. Neutrophil to lymphocyte ratio as an indicator of the malignant behaviour of hepatocellular carcinoma[J]. Br J Surg, 2016, 103( 7): 891- 898. DOI: 10.1002/bjs.10123. [48] GUO XY, ZHAO ZW, ZHU LY, et al. The evolving landscape of biomarkers for systemic therapy in advanced hepatocellular carcinoma[J]. Biomark Res, 2025, 13( 1): 60. DOI: 10.1186/s40364-025-00774-2. [49] XU J, WANG TF, LI JJ, et al. A multimodal fusion system predicting survival benefits of immune checkpoint inhibitors in unresectable hepatocellular carcinoma[J]. NPJ Precis Oncol, 2025, 9( 1): 185. DOI: 10.1038/s41698-025-00979-6. [50] GRETEN TF, VILLANUEVA A, KORANGY F, et al. Biomarkers for immunotherapy of hepatocellular carcinoma[J]. Nat Rev Clin Oncol, 2023, 20( 11): 780- 798. DOI: 10.1038/s41571-023-00816-4. -
本文二维码
计量
- 文章访问数: 466
- HTML全文浏览量: 220
- PDF下载量: 106
- 被引次数: 0

PDF下载 ( 760 KB)
下载: 