中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
引用本文:
Citation:

肝癌局部治疗策略

DOI: 10.12449/JCH250804
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:向华文章总体设计与构思;对全文进行最终审核;龙林、张永琎、赵杨、李慕梓参与文章的概念构思,对全文进行多次修订、润色与校对;周菊梅、刘韧耕、石世雄、王蓉蓉协助进行文献检索,参与部分章节的撰写工作。
详细信息
    通信作者:

    向华, vipxiangh@163.com (ORCID: 0000-0001-7924-4670)

Locoregional therapeutic strategies for hepatocellular carcinoma

More Information
    Corresponding author: XIANG Hua, vipxiangh@163.com (ORCID: 0000-0001-7924-4670)
  • 摘要: 原发性肝癌在我国发病率与死亡率居高不下,因多数患者确诊时已属晚期,外科手术适用受限。本文通过综述现有常用及先进的肝癌局部治疗技术,全面整合局部消融(射频消融、微波消融、不可逆电穿孔和冷冻消融等)、血管内介入(经导管动脉栓塞化疗、肝动脉灌注化疗和钇-90放射栓塞)及放疗(射波刀、质子治疗、重离子治疗)等主流技术进展,通过对比各项治疗技术的治疗原理、适应证与局限性、临床数据等,构建基于多维度的肝癌局部治疗决策框架。本文旨在为目前仍存在的临床决策困境提供循证依据,推动局部治疗在临床实践中的角色升级,并提出未来研究与实践的变革方向。本文旨在为肝癌局部治疗绘制的一张临床路线图,既解决“当前如何选技术”的实践问题,更指引“未来往何处突破”的研究方向,目的是通过技术整合与模式创新,重塑肝癌治疗格局。

     

  • 表  1  局部消融治疗技术的比较

    Table  1.   Comparison of local ablation treatment techniques

    技术名称 核心原理 适用人群/病灶特征 优势 局限性
    RFA 高频交流电(400~900 kHz)
    通过电极针产生焦耳热,使
    组织温度>60 ℃致凝固坏死
    ≤3 cm小肝癌,尤其远离
    大血管
    微创、成本低、5年生存率
    40%~70%
    热沉效应明显;单点消融直
    径≤3 cm;组织碳化限制能
    量扩散
    MWA 微波电磁场(915/2 450 MHz)
    驱动水分子旋转生热,快速升
    温至60~150 ℃致凝固坏死
    >3 cm肝癌、富血供肿瘤,
    邻近大血管(如肝门区)
    穿透深(>5 cm),抗热沉效应强,
    消融时间比RFA缩短30%~
    50%
    成本较高;需规避金属植入
    物(如心脏起搏器)
    IRE 高压脉冲电场在细胞膜上形
    成永久性微孔,非热性破坏细
    胞稳态
    肿瘤紧邻血管、胆管、膈
    肌、肝门、胃肠道等危险
    部位
    非热消融、选择性杀伤肿瘤细
    胞、保护血管/胆管结构
    操作复杂、成本高、肿瘤大
    小受限、并发症风险较高
    CRA 重复冷冻和复温的过程对组
    织产生即时物理性损伤;冷冻
    引起微血管收缩、血栓形成导
    致微循环进行性衰竭;肿瘤微
    环境的改变和肿瘤的坏死及
    凋亡可激活抗肿瘤免疫反应
    位置特殊、临近高风险部
    位的体积相对较小的肝癌
    术中疼痛轻;激活抗肿瘤免疫
    应答(T细胞活化、远隔效应);
    冰球可视化(CT/MRI实时监测)
    消融效率与RFA、MWA相
    当,但操作稍复杂
    PEI 无水酒精致肿瘤细胞脱水、蛋
    白变性及坏死
    高风险部位(如紧贴重要
    结构);辅助热消融治疗
    无热损伤、安全性高、对周围组
    织损伤小
    需多点、多次穿刺;药物弥
    散不均;单用效率低
    下载: 导出CSV
  • [1] National Health Commission of the People’s Republic of China. Standard for diagnosis and treatment of primary liver cancer(2024 edition)[J]. J Clin Hepatol, 2024, 40( 5): 893- 918. DOI: 10.12449/JCH240508.

    中华人民共和国国家卫生健康委员会. 原发性肝癌诊疗指南(2024年版)[J]. 临床肝胆病杂志, 2024, 40( 5): 893- 918. DOI: 10.12449/JCH240508.
    [2] LI X. The transformation of thinking patterns brought about by the application of the MDT model in the diagnosis and treatment of liver cancer[J]. Chin Med News, 2021, 36( 18): 13. DOI: 10.3760/cma.j.issn.1000-8039.2021.18.125.

    李汛. MDT模式应用于肝癌诊疗带来的思维模式变革[J]. 中华医学信息导报, 2021, 36( 18): 13. DOI: 10.3760/cma.j.issn.1000-8039.2021.18.125.
    [3] Chinese Society of Liver Cancer, Chinese Anti-Cancer Association; Chinese Society of Clinical Oncology, Chinese Anti-Cancer Association; Liver Cancer Study Group, Chinese Society of Hepatology, Chinese Medical Association. Experts consensus on local ablation therapy for liver cancer[J]. Chin Hepatol, 2011, 16( 3): 242- 244. DOI: 10.3969/j.issn.1008-1704.2011.03.023.

    中国抗癌协会肝癌专业委员会, 中国抗癌协会临床肿瘤学协作专业委员会, 中华医学会肝病学分会肝癌学组. 肝癌局部消融治疗规范的专家共识[J]. 肝脏, 2011, 16( 3): 242- 244. DOI: 10.3969/j.issn.1008-1704.2011.03.023.
    [4] SLOVAK R, LUDWIG JM, GETTINGER SN, et al. Immuno-thermal ablations-boosting the anticancer immune response[J]. J Immunother Cancer, 2017, 5( 1): 78. DOI: 10.1186/s40425-017-0284-8.
    [5] MA CY, FU YL, ZHANG ZL, et al. Study on the efficacy evaluation of microwave ablation for hepatocellular carcinoma by contrast-enhanced ultrasound and its predictive value for local recurrence[J]. Chin J Med Offic, 2023, 51( 8): 850- 853. DOI: 10.16680/j.1671-3826.2023.08.21.

    马春燕, 符叶柳, 张植兰, 等. 超声造影对肝细胞癌微波消融疗效评估及对局部复发预测价值研究[J]. 临床军医杂志, 2023, 51( 8): 850- 853. DOI: 10.16680/j.1671-3826.2023.08.21.
    [6] MA JQ, YANG MJ, YAN ZP. The therapeutic goals and embolization endpoints of fine TACE[J]. J Surg Concep Pract, 2022, 27( 2): 131- 133. DOI: 10.16139/j.1007-9610.2022.02.009.

    马婧嶔, 杨敏捷, 颜志平. 精细TACE的治疗目标与栓塞终点[J]. 外科理论与实践, 2022, 27( 2): 131- 133. DOI: 10.16139/j.1007-9610.2022.02.009.
    [7] TINKLE CL, HAAS-KOGAN D. Hepatocellular carcinoma: Natural history, current management, and emerging tools[J]. Biologics, 2012, 6: 207- 219. DOI: 10.2147/BTT.S23907.
    [8] CHEN P, YUAN P, CHEN B, et al. Evaluation of drug-eluting beads versus conventional transcatheter arterial chemoembolization in patients with unresectable hepatocellular carcinoma: A systematic review and meta-analysis[J]. Clin Res Hepatol Gastroenterol, 2017, 41( 1): 75- 85. DOI: 10.1016/j.clinre.2016.05.013.
    [9] FORNER A, GILABERT M, BRUIX J, et al. Treatment of intermediate-stage hepatocellular carcinoma[J]. Nat Rev Clin Oncol, 2014, 11( 9): 525- 535. DOI: 10.1038/nrclinonc.2014.122.
    [10] EL-SERAG HB. Hepatocellular carcinoma[J]. N Engl J Med, 2011, 365( 12): 1118- 27. DOI: 10.1056/NEJMra1001683.
    [11] WU ST, FAN K, YANG Q, et al. Smart nanoparticles and microbeads for interventional embolization therapy of liver cancer: State of the art[J]. J Nanobiotechnology, 2023, 21( 1): 42. DOI: 10.1186/s12951-023-01804-7.
    [12] POURSAID A, JENSEN MM, HUO E, et al. Polymeric materials for embolic and chemoembolic applications[J]. J Control Release, 2016, 240: 414- 433. DOI: 10.1016/j.jconrel.2016.02.033.
    [13] CHAN LL, CHAN SL. Drug development for hepatocellular carcinoma[J]. Lancet Oncol, 2023, 24( 12): 1292- 1294. DOI: 10.1016/S1470-2045(23)00523-5.
    [14] CHO Y, CHOI JW, KWON H, et al. Transarterial chemoembolization for hepatocellular carcinoma: 2023 expert consensus-based practical recommendations of the Korean liver cancer association[J]. Clin Mol Hepatol, 2023, 29( 3): 521- 541. DOI: 10.3350/cmh.2023.0202.
    [15] YANG XL, YU HP, GUO Z. New Progress in the application research of drug-loaded microspheres in transarterial chemoembolization for liver cancer[J]. National Med J Chin, 2016( 7): 589- 592. DOI: 10.3760/cma.j.issn.0376-2491.2016.07.023.

    杨雪玲, 于海鹏, 郭志. 载药微球在肝癌经动脉化疗栓塞治疗中的应用研究新进展[J]. 中华医学杂志, 2016( 7): 589- 592. DOI: 10.3760/cma.j.issn.0376-2491.2016.07.023.
    [16] LI L, HE J, XIE YX, et al. A retrospective controlled study of TACE-HAIC-targeted-immune quadruple therapy for intermediate and advanced-stage hepatocellular carcinoma[J]. Chin J Hepatol, 2022, 30( 9): 939- 946. DOI: 10.3760/cma.j.cn501113-20220823-00432.

    李灵, 贺剑, 谢义星, 等. TACE-HAIC-靶向-免疫四联治疗中晚期肝细胞癌的回顾性对照研究[J]. 中华肝脏病杂志, 2022, 30( 9): 939- 946. DOI: 10.3760/cma.j.cn501113-20220823-00432.
    [17] CHANG X, LI XG, SUN P, et al. HAIC Combined with lenvatinib plus PD-1 versus lenvatinib Plus PD-1 in patients with high-risk advanced HCC: A real-world study[J]. BMC Cancer, 2024, 24( 1): 480. DOI: 10.1186/s12885-024-12233-6.
    [18] LI BS, LI Q, PENG L, et al. A randomized comparison of transradial and transfemoral approach in hepatic arterial infusion chemotherapy[J]. Curr Med Imaging, 2023. DOI: 10.2174/1573405620666230511094840.
    [19] XU SR. Research advances in the treatment of hepatic arterial infusion chemotherapy(HAIC) for hepatocellular carcinoma(HCC)[J]. Fudan Univ J Med Sci, 2019, 46( 6): 814- 818, 823. DOI: 10.3969/j.issn.1672-8467.2019.06.016.

    许书榕. 肝动脉灌注化疗(HAIC)治疗肝细胞癌(HCC)的研究进展[J]. 复旦学报(医学版), 2019, 46( 6): 814- 818, 823. DOI: 10.3969/j.issn.1672-8467.2019.06.016.
    [20] MEMON K, KULIK L, LEWANDOWSKI RJ, et al. Radioembolization for hepatocellular carcinoma with portal vein thrombosis: Impact of liver function on systemic treatment options at disease progression[J]. J Hepatol, 2013, 58( 1): 73- 80. DOI: 10.1016/j.jhep.2012.09.003.
    [21] SALEM R, GORDON AC, MOULI S, et al. Y90 radioembolization significantly prolongs time to progression compared with chemoembolization in patients with hepatocellular carcinoma[J]. Gastroenterology, 2016, 151( 6): 1155- 1163. e 2. DOI: 10.1053/j.gastro.2016.08.029.
    [22] MAZZAFERRO V, SPOSITO C, BHOORI S, et al. Yttrium-90 radioembolization for intermediate-advanced hepatocellular carcinoma: A phase 2 study[J]. Hepatology, 2013, 57( 5): 1826- 1837. DOI: 10.1002/hep.26014.
    [23] KULIK LM, CARR BI, MULCAHY MF, et al. Safety and efficacy of 90Y radiotherapy for hepatocellular carcinoma with and without portal vein thrombosis[J]. Hepatology, 2008, 47( 1): 71- 81. DOI: 10.1002/hep.21980.
    [24] LOBO L, YAKOUB D, PICADO O, et al. Unresectable hepatocellular carcinoma: Radioembolization versus chemoembolization: A systematic review and meta-analysis[J]. Cardiovasc Intervent Radiol, 2016, 39( 11): 1580- 1588. DOI: 10.1007/s00270-016-1426-y.
    [25] ZHANG JP, WANG L, XIE CY, et al. Novel utilization and quantification of Xsight diaphragm tracking for respiratory motion compensation in Cyberknife Synchrony treatment of liver tumors[J]. J Appl Clin Med Phys, 2024, 25( 7): e14341. DOI: 10.1002/acm2.14341.
    [26] OHRI N, TOMÉ WA, MÉNDEZ ROMERO A, et al. Local control after stereotactic body radiation therapy for liver tumors[J]. Int J Radiat Oncol Biol Phys, 2021, 110( 1): 188- 195. DOI: 10.1016/j.ijrobp.2017.12.288.
    [27] KOBEISSI JM, HILAL L, SIMONE CB 2nd, et al. Proton therapy in the management of hepatocellular carcinoma[J]. Cancers(Basel), 2022, 14( 12): 2900. DOI: 10.3390/cancers14122900.
    [28] KIM TH, PARK JW, KIM BH, et al. Phase II study of hypofractionated proton beam therapy for hepatocellular carcinoma[J]. Front Oncol, 2020, 10: 542. DOI: 10.3389/fonc.2020.00542.
    [29] SHIBUYA K, OHNO T, TERASHIMA K, et al. Short-course carbon-ion radiotherapy for hepatocellular carcinoma: A multi-institutional retrospective study[J]. Liver Int, 2018, 38( 12): 2239- 2247. DOI: 10.1111/liv.13969.
    [30] ZAKI P, CHUONG MD, SCHAUB SK, et al. Proton beam therapy and photon-based magnetic resonance image-guided radiation therapy: The next frontiers of radiation therapy for hepatocellular carcinoma[J]. Technol Cancer Res Treat, 2023, 22: 15330338231206335. DOI: 10.1177/15330338231206335.
    [31] SEGAWA K, NAGATA S. An apoptotic‘eat me’ signal: Phosphatidylserine exposure[J]. Trends Cell Biol, 2015, 25( 11): 639- 650. DOI: 10.1016/j.tcb.2015.08.003.
    [32] MIZUKOSHI E, YAMASHITA T, ARAI K, et al. Enhancement of tumor-associated antigen-specific T cell responses by radiofrequency ablation of hepatocellular carcinoma[J]. Hepatology, 2013, 57( 4): 1448- 1457. DOI: 10.1002/hep.26153.
    [33] DAI ZH, WANG ZR, LEI K, et al. Irreversible electroporation induces CD8+ T cell immune response against post-ablation hepatocellular carcinoma growth[J]. Cancer Lett, 2021, 503: 1- 10. DOI: 10.1016/j.canlet.2021.01.001.
    [34] LEUCHTE K, STAIB E, THELEN M, et al. Microwave ablation enhances tumor-specific immune response in patients with hepatocellular carcinoma[J]. Cancer Immunol Immunother, 2021, 70( 4): 893- 907. DOI: 10.1007/s00262-020-02734-1.
    [35] LUO T, MA KP, ZHANG Y, et al. Nanostrategies synergize with locoregional interventional therapies for boosting antitumor immunity[J]. Bioact Mater, 2025, 51: 634- 649. DOI: 10.1016/j.bioactmat.2025.05.016.
    [36] DROMI SA, WALSH MP, HERBY S, et al. Radiofrequency ablation induces antigen-presenting cell infiltration and amplification of weak tumor-induced immunity[J]. Radiology, 2009, 251( 1): 58- 66. DOI: 10.1148/radiol.2511072175.
    [37] ZHONG BY, FAN WZ, GUAN JJ, et al. Combination locoregional and systemic therapies in hepatocellular carcinoma[J]. Lancet Gastroenterol Hepatol, 2025, 10( 4): 369- 386. DOI: 10.1016/S2468-1253(24)00247-4.
    [38] CHIANG CL, CHIU KWH, CHAN KSK, et al. Sequential transarterial chemoembolisation and stereotactic body radiotherapy followed by immunotherapy as conversion therapy for patients with locally advanced, unresectable hepatocellular carcinoma(START-FIT): A single-arm, phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2023, 8( 2): 169- 178. DOI: 10.1016/S2468-1253(22)00339-9.
    [39] TIAN Z, HU QT, SUN ZY, et al. A booster for radiofrequency ablation: Advanced adjuvant therapy via in situ nanovaccine synergized with anti-programmed death ligand 1 immunotherapy for systemically constraining hepatocellular carcinoma[J]. ACS Nano, 2023, 17( 19): 19441- 19458. DOI: 10.1021/acsnano.3c08064.
    [40] ZHU XQ, LI TH, WANG Q, et al. Dual-synergistic nanomodulator alleviates exosomal PD-L1 expression enabling exhausted cytotoxic T lymphocytes rejuvenation for potentiated iRFA-treated hepatocellular carcinoma immunotherapy[J]. ACS Nano, 2024, 18( 47): 32818- 32833. DOI: 10.1021/acsnano.4c11257.
    [41] HU ZL, HU ZW, ZHAN WX, et al. Efficacy of additional locoregional therapy based on systemic therapy after intrahepatic progression for BCLC stage B/C hepatocellular carcinoma: A real-world study[J]. Int Immunopharmacol, 2024, 127: 111413. DOI: 10.1016/j.intimp.2023.111413.
    [42] ZHU HD, LI HL, HUANG MS, et al. Transarterial chemoembolization with PD-(L)1 inhibitors plus molecular targeted therapies for hepatocellular carcinoma(CHANCE001)[J]. Signal Transduct Target Ther, 2023, 8( 1): 58. DOI: 10.1038/s41392-022-01235-0.
    [43] EL-KHOUEIRY AB, SANGRO B, YAU T, et al. Nivolumab in patients with advanced hepatocellular carcinoma(CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial[J]. Lancet, 2017, 389( 10088): 2492- 2502. DOI: 10.1016/S0140-6736(17)31046-2.
    [44] SONG SM, BAI MZ, LI XF, et al. Early predictive value of circulating biomarkers for sorafenib in advanced hepatocellular carcinoma[J]. Expert Rev Mol Diagn, 2022, 22( 3): 361- 378. DOI: 10.1080/14737159.2022.2049248.
    [45] YUE CY, JIANG YB, LI P, et al. Dynamic change of PD-L1 expression on circulating tumor cells in advanced solid tumor patients undergoing PD-1 blockade therapy[J]. Oncoimmunology, 2018, 7( 7): e1438111. DOI: 10.1080/2162402X.2018.1438111.
    [46] WINOGRAD P, HOU S, COURT CM, et al. Hepatocellular carcinoma-circulating tumor cells expressing PD-L1 are prognostic and potentially associated with response to checkpoint inhibitors[J]. Hepatol Commun, 2020, 4( 10): 1527- 1540. DOI: 10.1002/hep4.1577.
    [47] OKAMURA Y, SUGIURA T, ITO T, et al. Neutrophil to lymphocyte ratio as an indicator of the malignant behaviour of hepatocellular carcinoma[J]. Br J Surg, 2016, 103( 7): 891- 898. DOI: 10.1002/bjs.10123.
    [48] GUO XY, ZHAO ZW, ZHU LY, et al. The evolving landscape of biomarkers for systemic therapy in advanced hepatocellular carcinoma[J]. Biomark Res, 2025, 13( 1): 60. DOI: 10.1186/s40364-025-00774-2.
    [49] XU J, WANG TF, LI JJ, et al. A multimodal fusion system predicting survival benefits of immune checkpoint inhibitors in unresectable hepatocellular carcinoma[J]. NPJ Precis Oncol, 2025, 9( 1): 185. DOI: 10.1038/s41698-025-00979-6.
    [50] GRETEN TF, VILLANUEVA A, KORANGY F, et al. Biomarkers for immunotherapy of hepatocellular carcinoma[J]. Nat Rev Clin Oncol, 2023, 20( 11): 780- 798. DOI: 10.1038/s41571-023-00816-4.
  • 加载中
表(1)
计量
  • 文章访问数:  466
  • HTML全文浏览量:  220
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-11
  • 录用日期:  2025-07-29
  • 出版日期:  2025-08-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回