肠道屏障功能障碍在肝肾综合征-急性肾损伤发病中的串扰机制
DOI: 10.12449/JCH250833
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:孙文、邢海涛、张鑫负责设计论文框架;孙文、陈晓、张鑫负责论文参考文献收集;孙文、陈晓负责起草论文;邢海涛、于博睿负责论文修改;邢海涛、杨波负责拟定写作思路,指导撰写文章并最后定稿。
The crosstalk mechanism of intestinal barrier dysfunction in the pathogenesis of hepatorenal syndrome-acute kidney injury
-
摘要: 2015年国际腹水俱乐部就肝肾综合征的进展提出了肝肾综合征-急性肾损伤的新定义,目前其确切发病机制仍在探索中。肠道屏障在肝肾连接中发挥重要桥梁作用,肠道菌群紊乱,细菌易位发生,内毒素入血,通过释放促炎细胞因子、激活免疫相关细胞对肾脏造成损害,胆汁酸进入循环系统也直接或间接导致肝肾综合征-急性肾损伤的发生与进展。本文以肠道屏障为切入点对肝肾综合征-急性肾损伤的串扰机制进行综述,进一步阐明肝-肠-肾轴在其发病中的关键作用,以期提供新的治疗思路。Abstract: In 2015, the International Ascites Club proposed a new definition of hepatorenal syndrome-acute kidney injury based on the progression of hepatorenal syndrome, and studies are still being conducted to explore the exact pathogenesis of hepatorenal syndrome-acute kidney injury. Intestinal barrier plays an important bridging role in liver-kidney connection, and intestinal flora disturbance, bacterial translocation, and endotoxins entering the blood cause damage to the kidneys by releasing proinflammatory cytokines and activating immune-related cells. The entrance of bile acid into the circulation system also directly or indirectly lead to the development and progression of hepatorenal syndrome-acute kidney injury. This article reviews the crosstalk mechanism of hepatorenal syndrome-acute kidney injury from the perspective of the intestinal barrier and further clarifies the key role of the liver-gut-kidney axis in the pathogenesis of this disease, in order to provide new treatment ideas.
-
-
[1] XU XY, DING HG, LI WG, et al. Chinese guidelines on the management of liver cirrhosis(abbreviated version)[J]. World J Gastroenterol, 2020, 26( 45): 7088- 7103. DOI: 10.3748/wjg.v26.i45.7088. [2] LEKAKIS V, WONG F, GKOUFA A, et al. Mortality of acute kidney injury in cirrhosis: A systematic review and meta-analysis of over 5 million patients across different clinical settings[J]. Aliment Pharmacol Ther, 2025, 61( 3): 420- 432. DOI: 10.1111/apt.18426. [3] ANGELI P, GINES P, WONG F, et al. Diagnosis and management of acute kidney injury in patients with cirrhosis: Revised consensus recommendations of the International Club of Ascites[J]. Gut, 2015, 64( 4): 531- 537. DOI: 10.1136/gutjnl-2014-308874. [4] ADEBAYO D, WONG F. Pathophysiology of hepatorenal syndrome-acute kidney injury[J]. Clin Gastroenterol Hepatol, 2023, 21( 10): S1- S10. DOI: 10.1016/j.cgh.2023.04.034. [5] DURACK J, LYNCH SV. The gut microbiome: Relationships with disease and opportunities for therapy[J]. J Exp Med, 2019, 216( 1): 20- 40. DOI: 10.1084/jem.20180448. [6] PATRICIA JJ, DHAMOON AS. Physiology, Digestion[M]. Treasure Island(FL): StatPearls Publishing, 2025. [7] DAMIANOS J, ABDELNAEM N, CAMILLERI M. Gut goo: Physiology, diet, and therapy of intestinal mucus and biofilms in gastrointestinal health and disease[J]. Clin Gastroenterol Hepatol, 2025, 23( 2): 205- 215. DOI: 10.1016/j.cgh.2024.09.007. [8] AHREND H, BUCHHOLTZ A, STOPE MB. Microbiome and mucosal immunity in the intestinal tract[J]. In Vivo, 2025, 39( 1): 17- 24. DOI: 10.21873/invivo.13801. [9] KHALIL M, DI CIAULA A, MAHDI L, et al. Unraveling the role of the human gut microbiome in health and diseases[J]. Microorganisms, 2024, 12( 11): 2333. DOI: 10.3390/microorganisms12112333. [10] GARCIA-LEZANA T, RAURELL I, BRAVO M, et al. Restoration of a healthy intestinal microbiota normalizes portal hypertension in a rat model of nonalcoholic steatohepatitis[J]. Hepatology, 2018, 67( 4): 1485- 1498. DOI: 10.1002/hep.29646. [11] FUKUIH. Role of gut dysbiosis in liver diseases: What have we learned so far?[J]. Diseases, 2019, 7( 4): 58. DOI: 10.3390/diseases7040058. [12] MASLENNIKOV R, IVASHKIN V, EFREMOVA I, et al. Gut dysbiosis is associated with poorer long-term prognosis in cirrhosis[J]. World J Hepatol, 2021, 13( 5): 557- 570. DOI: 10.4254/wjh.v13.i5.557. [13] QIN N, YANG FL, LI A, et al. Alterations of the human gut microbiome in liver cirrhosis[J]. Nature, 2014, 513( 7516): 59- 64. DOI: 10.1038/nature13568. [14] YANG J, KIM CJ, GO YS, et al. Intestinal microbiota control acute kidney injury severity by immune modulation[J]. Kidney Int, 2020, 98( 4): 932- 946. DOI: 10.1016/j.kint.2020.04.048. [15] EFREMOVA I, MASLENNIKOV R, KUDRYAVTSEVA A, et al. Gut microbiota and cytokine profile in cirrhosis[J]. J Clin Transl Hepatol, 2024, 12( 8): 689- 700. DOI: 10.14218/JCTH.2024.00090. [16] IEBBA V, GUERRIERI F, DI GREGORIO V, et al. Combining amplicon sequencing and metabolomics in cirrhotic patients highlights distinctive microbiota features involved in bacterial translocation, systemic inflammation and hepatic encephalopathy[J]. Sci Rep, 2018, 8( 1): 8210. DOI: 10.1038/s41598-018-26509-y. [17] TRANAH TH, EDWARDS LA, SCHNABL B, et al. Targeting the gut-liver-immune axis to treat cirrhosis[J]. Gut, 2021, 70( 5): 982- 994. DOI: 10.1136/gutjnl-2020-320786. [18] PHILIPS CA, AUGUSTINE P. Gut barrier and microbiota in cirrhosis[J]. J Clin Exp Hepatol, 2022, 12( 2): 625- 638. DOI: 10.1016/j.jceh.2021.08.027. [19] MOHAMMADI-KORDKHAYLI M, MOUSAVI MJ, CAMARA-LEMARROY CR, et al. Elucidating the significance of zonulin in the pathogenesis of chronic inflammatory disorders: Emphasis on intestinal barrier function and tight junction regulation[J]. Curr Med Chem, 2024. DOI: 10.2174/0109298673335863240829060545.[ Online ahead of print] [20] XIANG L, PENG LL, DU WX, et al. Protective effects of Bifidobacterium on intestinal barrier function in LPS-induced enterocyte barrier injury of caco-2 monolayers and in a rat NEC model[J]. PLoS One, 2016, 11( 8): e0161635. DOI: 10.1371/journal.pone.0161635. [21] TRACHTMAN H, GIPSON DS, LEMLEY KV, et al. Plasma zonulin levels in childhood nephrotic syndrome[J]. Front Pediatr, 2019, 7: 197. DOI: 10.3389/fped.2019.00197. [22] YU J, SHEN Y, ZHOU N. Advances in the role and mechanism of zonulin pathway in kidney diseases[J]. Int Urol Nephrol, 2021, 53( 10): 2081- 2088. DOI: 10.1007/s11255-020-02756-9. [23] ZHANG HF, LIU M, SONG FF, et al. Fermentation enhances the amelioration effect of bee pollen on Caco-2 monolayer epithelial barrier dysfunction based on NF-κB-mediated MLCK-MLC signaling pathway[J]. Food Res Int, 2024, 178: 113938. DOI: 10.1016/j.foodres.2024.113938. [24] KE ZL, HUANG YB, XU J, et al. Escherichia coli NF73-1 disrupts the gut-vascular barrier and aggravates high-fat diet-induced fatty liver disease via inhibiting Wnt/β-catenin signalling pathway[J]. Liver Int, 2024, 44( 3): 776- 790. DOI: 10.1111/liv.15823. [25] NICOLETTI A, PONZIANI FR, BIOLATO M, et al. Intestinal permeability in the pathogenesis of liver damage: From non-alcoholic fatty liver disease to liver transplantation[J]. World J Gastroenterol, 2019, 25( 33): 4814- 4834. DOI: 10.3748/wjg.v25.i33.4814. [26] SHAN L, LIU D, XIAO J, et al. Abnormal lncRNA CCAT1/microRNA-155/SIRT1 axis promoted inflammatory response and apoptosis of tubular epithelial cells in LPS caused acute kidney injury[J]. Mitochondrion, 2020, 53: 76- 90. DOI: 10.1016/j.mito.2020.03.010. [27] LIN YH, KUO NR, SHEN HC, et al. Prediction models combining zonulin, LPS, and LBP predict acute kidney injury and hepatorenal syndrome-acute kidney injury in cirrhotic patients[J]. Sci Rep, 2023, 13( 1): 13048. DOI: 10.1038/s41598-023-40088-7. [28] NIE GL, ZHANG HL, XIE DN, et al. Liver cirrhosis and complications from the perspective of dysbiosis[J]. Front Med(Lausanne), 2024, 10: 1320015. DOI: 10.3389/fmed.2023.1320015. [29] MOLEMA G, ZIJLSTRA JG, van MEURS M, et al. Renal microvascular endothelial cell responses in sepsis-induced acute kidney injury[J]. Nat Rev Nephrol, 2022, 18( 2): 95- 112. DOI: 10.1038/s41581-021-00489-1. [30] ARROYO V, ANGELI P, MOREAU R, et al. The systemic inflammation hypothesis: Towards a new paradigm of acute decompensation and multiorgan failure in cirrhosis[J]. J Hepatol, 2021, 74( 3): 670- 685. DOI: 10.1016/j.jhep.2020.11.048. [31] QIAO YR, HE CE, XIA YX, et al. Intestinal mucus barrier: A potential therapeutic target for IBD[J]. Autoimmun Rev, 2025, 24( 2): 103717. DOI: 10.1016/j.autrev.2024.103717. [32] WAHIDA A, MÜLLER M, HIERGEIST A, et al. XIAP restrains TNF-driven intestinal inflammation and dysbiosis by promoting innate immune responses of Paneth and dendritic cells[J]. Sci Immunol, 2021, 6( 65): eabf7235. DOI: 10.1126/sciimmunol.abf7235. [33] JIANG XX, XU Y, FAGAN A, et al. Single nuclear RNA sequencing of terminal ileum in patients with cirrhosis demonstrates multi-faceted alterations in the intestinal barrier[J]. Cell Biosci, 2024, 14( 1): 25. DOI: 10.1186/s13578-024-01209-5. [34] HADERER M, NEUBERT P, RINNER E, et al. Novel pathomechanism for spontaneous bacterial peritonitis: Disruption of cell junctions by cellular and bacterial proteases[J]. Gut, 2022, 71( 3): 580- 592. DOI: 10.1136/gutjnl-2020-321663. [35] LIU Z, YOU C. The bile acid profile[J]. Clin Chim Acta, 2025, 565: 120004. DOI: 10.1016/j.cca.2024.120004. [36] TILG H, ADOLPH TE, TRAUNER M. Gut-liver axis: Pathophysiological concepts and clinical implications[J]. Cell Metab, 2022, 34( 11): 1700- 1718. DOI: 10.1016/j.cmet.2022.09.017. [37] QI YC, DUAN GZ, WEI DB, et al. The bile acid membrane receptor TGR5 in cancer: Friend or foe?[J]. Molecules, 2022, 27( 16): 5292. DOI: 10.3390/molecules27165292. [38] ZIMNY S, KOOB D, LI JG, et al. Hydrophobic bile salts induce pro-fibrogenic proliferation of hepatic stellate cells through PI3K p110 alpha signaling[J]. Cells, 2022, 11( 15): 2344. DOI: 10.3390/cells11152344. [39] VELEZ JCQ, THERAPONDOS G, JUNCOS LA. Reappraising the spectrum of AKI and hepatorenal syndrome in patients with cirrhosis[J]. Nat Rev Nephrol, 2020, 16( 3): 137- 155. DOI: 10.1038/s41581-019-0218-4. [40] KRONES E, ELLER K, POLLHEIMER MJ, et al. NorUrsodeoxycholic acid ameliorates cholemic nephropathy in bile duct ligated mice[J]. J Hepatol, 2017, 67( 1): 110- 119. DOI: 10.1016/j.jhep.2017.02.019. [41] SONG LT, HOU YS, XU D, et al. Hepatic FXR-FGF4 is required for bile acid homeostasis via an FGFR4-LRH-1 signal node under cholestatic stress[J]. Cell Metab, 2025, 37( 1): 104- 120. e 9. DOI: 10.1016/j.cmet.2024.09.008. [42] LIU SP, KANG WL, MAO XR, et al. Melatonin mitigates aflatoxin B1-induced liver injury via modulation of gut microbiota/intestinal FXR/liver TLR4 signaling axis in mice[J]. J Pineal Res, 2022, 73( 2): e12812. DOI: 10.1111/jpi.12812. [43] YANG JF, PONTOGLIO M, TERZI F. Bile acids and farnesoid X receptor in renal pathophysiology[J]. Nephron, 2024, 148( 9): 618- 630. DOI: 10.1159/000538038. [44] XU Y, LI DW, WU JJ, et al. Farnesoid X receptor promotes renal ischaemia-reperfusion injury by inducing tubular epithelial cell apoptosis[J]. Cell Prolif, 2021, 54( 4): e13005. DOI: 10.1111/cpr.13005. [45] KIM DH, PARK JS, CHOI HI, et al. The critical role of FXR is associated with the regulation of autophagy and apoptosis in the progression of AKI to CKD[J]. Cell Death Dis, 2021, 12( 4): 320. DOI: 10.1038/s41419-021-03620-z. [46] CHEN S, YANG CQ. Significance of lipidomics in liver fibrosis[J]. Chin J Hepatol, 2021, 29( 5): 484- 487. DOI: 10.3760/cma.j.cn501113-20200316-00118.陈帅, 杨长青. 脂质组学在肝纤维化中的意义[J]. 中华肝脏病杂志, 2021, 29( 5): 484- 487. DOI: 10.3760/cma.j.cn501113-20200316-00118. [47] MITROFANOVA A, MERSCHER S, FORNONI A. Kidney lipid dysmetabolism and lipid droplet accumulation in chronic kidney disease[J]. Nat Rev Nephrol, 2023, 19( 10): 629- 645. DOI: 10.1038/s41581-023-00741-w. [48] ZHANG YM, XU YW, QI Y, et al. Protective effects of dioscin against doxorubicin-induced nephrotoxicity via adjusting FXR-mediated oxidative stress and inflammation[J]. Toxicology, 2017, 378: 53- 64. DOI: 10.1016/j.tox.2017.01.007. [49] HA S, YANG YJ, WON KIM J, et al. Diminished tubule epithelial farnesoid X receptor expression exacerbates inflammation and fibrosis response in aged rat kidney[J]. J Gerontol A Biol Sci Med Sci, 2023, 78( 1): 60- 68. DOI: 10.1093/gerona/glac148. [50] RATZIU V, HARRISON SA, LOUSTAUD-RATTI V, et al. Hepatic and renal improvements with FXR agonist vonafexor in individuals with suspected fibrotic NASH[J]. J Hepatol, 2023, 78( 3): 479- 492. DOI: 10.1016/j.jhep.2022.10.023. [51] ANDERSON KM, GAYER CP. The pathophysiology of farnesoid X receptor(FXR) in the GI tract: Inflammation, barrier function and innate immunity[J]. Cells, 2021, 10( 11): 3206. DOI: 10.3390/cells10113206. [52] SAUERBRUCH T, HENNENBERG M, TREBICKA J, et al. Bile acids, liver cirrhosis, and extrahepatic vascular dysfunction[J]. Front Physiol, 2021, 12: 718783. DOI: 10.3389/fphys.2021.718783. [53] MACURA B, KIECKA A, SZCZEPANIK M. Intestinal permeability disturbances: Causes, diseases and therapy[J]. Clin Exp Med, 2024, 24( 1): 232. DOI: 10.1007/s10238-024-01496-9. [54] JUANOLA O, FRANCÉS R, CAPARRÓS E. Exploring the relationship between liver disease, bacterial translocation, and dysbiosis: Unveiling the gut-liver axis[J]. Visc Med, 2024, 40( 1): 12- 19. DOI: 10.1159/000535962. [55] MUÑOZ L, CAPARRÓS E, ALBILLOS A, et al. The shaping of gut immunity in cirrhosis[J]. Front Immunol, 2023, 14: 1139554. DOI: 10.3389/fimmu.2023.1139554. [56] DĄBROWSKA A, WILCZYŃSKI B, MASTALERZ J, et al. The impact of liver failure on the immune system[J]. Int J Mol Sci, 2024, 25( 17): 9522. DOI: 10.3390/ijms25179522. [57] VALLÉS PG, GIL LORENZO AF, GARCIA RD, et al. Toll-like receptor 4 in acute kidney injury[J]. Int J Mol Sci, 2023, 24( 2): 1415. DOI: 10.3390/ijms24021415. [58] GE GJ, ZHU BC, ZHU XF, et al. Mitochondrial DNA(mtDNA) accelerates oxygen-glucose deprivation-induced injury of proximal tubule epithelia cell via inhibiting NLRC5[J]. Mitochondrion, 2025, 81: 101989. DOI: 10.1016/j.mito.2024.101989. [59] YAO CC, LI ZW, SUN KK, et al. Mitochondrial dysfunction in acute kidney injury[J]. Ren Fail, 2024, 46( 2): 2393262. DOI: 10.1080/0886022X.2024.2393262. [60] PARK SW, CHEN SWC, KIM M, et al. Cytokines induce small intestine and liver injury after renal ischemia or nephrectomy[J]. Lab Invest, 2011, 91( 1): 63- 84. DOI: 10.1038/labinvest.2010.151. [61] GAO ZY, JIANG YJ, WANG J, et al. Inhibition of angiotensin II type 1 receptor reduces oxidative stress damage to the intestinal barrier in severe acute pancreatitis[J]. Kaohsiung J Med Sci, 2023, 39( 8): 824- 833. DOI: 10.1002/kjm2.12692. [62] CIRILO MAS, RIBEIRO FPB, LIMA NKDS, et al. Paricalcitol prevents renal tubular injury induced by ischemia-reperfusion: Role of oxidative stress, inflammation and AT1R[J]. Mol Cell Endocrinol, 2024, 594: 112349. DOI: 10.1016/j.mce.2024.112349. [63] LI S, ZHAO W, ZHAO ZM, et al. Levistilide A reverses rat hepatic fibrosis by suppressing angiotensin II-induced hepatic stellate cells activation[J]. Mol Med Rep, 2020, 22( 3): 2191- 2198. DOI: 10.3892/mmr.2020.11326. [64] AL-HARBI NO, NADEEM A, AHMAD SF, et al. Short chain fatty acid, acetate ameliorates sepsis-induced acute kidney injury by inhibition of NADPH oxidase signaling in T cells[J]. Int Immunopharmacol, 2018, 58: 24- 31. DOI: 10.1016/j.intimp.2018.02.023. [65] BALTAZAR-DÍAZ TA, LA GONZÁLEZ-HERNÁNDEZ, ALDANA-LEDESMA JM, et al. Escherichia/Shigella, SCFAs, and metabolic pathways-the triad that orchestrates intestinal dysbiosis in patients with decompensated alcoholic cirrhosis from western Mexico[J]. Microorganisms, 2022, 10( 6): 1231. DOI: 10.3390/microorganisms10061231. [66] CORTE-IGLESIAS V, SAIZ ML, ANDRADE-LOPEZ AC, et al. Propionate and butyrate counteract renal damage and progression to chronic kidney disease[J]. Nephrol Dial Transplant, 2024, 40( 1): 133- 150. DOI: 10.1093/ndt/gfae118. [67] CORMICAN S, GRIFFIN MD. Fractalkine(CX3CL1) and its receptor CX3CR1: A promising therapeutic target in chronic kidney disease?[J]. Front Immunol, 2021, 12: 664202. DOI: 10.3389/fimmu.2021.664202. -

PDF下载 ( 2088 KB)
下载:
