中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肝细胞癌放射治疗抵抗的机制及应对策略

王钦波 李术华 孙航 吴传新

引用本文:
Citation:

肝细胞癌放射治疗抵抗的机制及应对策略

DOI: 10.12449/JCH251029
基金项目: 

重庆市自然科学基金杰出青年项目 (CSTB2022NSCQ-JQX0032);

重庆医科大学未来医学青年创新团队支持计划 (W0156)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:王钦波、李术华负责查阅论文资料,设计论文框架,撰写论文;吴传新、孙航指导撰写文章并最后定稿。
详细信息
    通信作者:

    吴传新, 300395@cqmu.edu.cn (ORCID: 0000-0002-1481-2582)

Mechanism of radiotherapy resistance in hepatocellular carcinoma and related coping strategies

Research funding: 

Chongqing Science Fund for Distinguished Young Scholars (CSTB2022NSCQ-JQX0032);

Program for Youth Innovation in Future Medicine of Chongqing Medical University (W0156)

More Information
    Corresponding author: WU Chuanxin, 300395@cqmu.edu.cn (ORCID: 0000-0002-1481-2582)
  • 摘要: 原发性肝癌是一种在全球范围内发病率和死亡率持续上升的恶性肿瘤,给患者和社会带来了沉重的负担,其中肝细胞癌是原发性肝癌中的常见类型。放射治疗作为肝细胞癌的重要治疗手段之一,能够有效控制肿瘤的局部生长并缓解患者症状。然而,放疗抵抗问题严重影响了治疗效果,成为临床治疗中的一大挑战。当前研究表明,肝细胞癌放疗抵抗的机制较为复杂,涉及细胞内信号通路异常激活、肿瘤微环境变化以及基因表达调控等多种因素。因此,临床上提出一系列针对放疗抵抗的应对策略,包括调控细胞信号通路、改善肿瘤微环境、联合治疗等,这些策略展现出良好的应用前景。本文旨在综述放疗抵抗的相关机制及应对策略的研究进展,以期为肝细胞癌放疗研究提供新的视角。

     

  • 注: GPx,谷胱甘肽过氧化物酶;SOD,超氧化物歧化酶;DNA-PKcs,DNA依赖性蛋白激酶催化亚基。

    图  1  放疗后HCC细胞DNA损伤修复、细胞周期阻滞与凋亡逃逸的多重通路

    Figure  1.  Multiple pathways of DNA damage repair, cell cycle arrest, and evasion of apoptosis in hepatocellular carcinoma cells following radiotherapy

    注: PDGF,血小板衍生生长因子;GSH,谷胱甘肽。

    图  2  放疗后TME中放射抵抗的形成机制

    Figure  2.  Mechanisms of radiation resistance formation in the tumor microenvironment following radiotherapy

  • [1] CHEN WQ, CHIANG CL, DAWSON LA. Efficacy and safety of radiotherapy for primary liver cancer[J]. Chin Clin Oncol, 2021, 10( 1): 9. DOI: 10.21037/cco-20-89.
    [2] ZHANG CH, CHENG YF, ZHANG S, et al. Changing epidemiology of hepatocellular carcinoma in Asia[J]. Liver Int, 2022, 42( 9): 2029- 2041. DOI: 10.1111/liv.15251.
    [3] ZHANG ZZ, WANG MX, WU YF, et al. Epidemiological and clinical characteristics of hepatocellular carcinoma in Xiamen[J]. Cancer Epidemiol, 2024, 93: 102691. DOI: 10.1016/j.canep.2024.102691.
    [4] CAPASSO M, COSSIGA V, GUARINO M, et al. The role of hepatitis viruses as drivers of hepatocancerogenesis[J]. Cancers, 2024, 16( 8): 1505. DOI: 10.3390/cancers16081505.
    [5] ZHANG H, FU Y, TAN BB, et al. Clinical application and progress of yttrium 90 microsphere selective internal radiation therapy in primary hepatic cancer[J]. Chin J Dig Surg, 2024, 23( 2): 242- 247. DOI: 10.3760/cma.j.cn115610-20231208-00242.

    张辉, 付颖, 谭斌彬, 等. 钇-90微球选择性内放射治疗在原发性肝癌中的临床应用及进展[J]. 中华消化外科杂志, 2024, 23( 2): 242- 247. DOI: 10.3760/cma.j.cn115610-20231208-00242.
    [6] FANG ZY, JIN S, LI G. Efficacy and prognostic factors of intensity-modulated radiotherapy for large primary hepatocellular carcinoma[J]. J Clin Hepatol, 2015, 31( 6): 886- 890. DOI: 10.3969/j.issn.1001-5256.2015.06.014.

    方子燕, 金帅, 黎功. 原发性大肝癌调强放疗的疗效及预后分析[J]. 临床肝胆病杂志, 2015, 31( 6): 886- 890. DOI: 10.3969/j.issn.1001-5256.2015.06.014.
    [7] CUNEO KC, HERR DJ. Advances in radiation therapy for primary liver cancer[J]. Surg Oncol Clin N Am, 2023, 32( 3): 415- 432. DOI: 10.1016/j.soc.2023.02.002.
    [8] DIONISI F, SCARTONI D, FRACCHIOLLA F, et al. Proton therapy in the treatment of hepatocellular carcinoma[J]. Front Oncol, 2022, 12: 959552. DOI: 10.3389/fonc.2022.959552.
    [9] LING R, WANG JZ, FANG Y, et al. HDAC-an important target for improving tumor radiotherapy resistance[J]. Front Oncol, 2023, 13: 1193637. DOI: 10.3389/fonc.2023.1193637.
    [10] JAGASIA S, TASCI E, ZHUGE Y, et al. Identifying patients suitable for targeted adjuvant therapy: Advances in the field of developing biomarkers for tumor recurrence following irradiation[J]. Expert Rev Precis Med Drug Dev, 2023, 8( 1): 33- 42. DOI: 10.1080/23808993.2023.2276927.
    [11] MIR SM, ALIARAB A, GOODARZI G, et al. Melatonin: A smart molecule in the DNA repair system[J]. Cell Biochem Funct, 2022, 40( 1): 4- 16. DOI: 10.1002/cbf.3672.
    [12] HUANG CY, LAI ZY, HSU TJ, et al. Boron neutron capture therapy eliminates radioresistant liver cancer cells by targeting DNA damage and repair responses[J]. J Hepatocell Carcinoma, 2022, 9: 1385- 1401. DOI: 10.2147/jhc.s383959.
    [13] BYUN HK, KIM C, SEONG J. Carbon ion radiotherapy in the treatment of hepatocellular carcinoma[J]. Clin Mol Hepatol, 2023, 29( 4): 945- 957. DOI: 10.3350/cmh.2023.0217.
    [14] BEDOLLA N, LIU L, XIE Q, et al. Quercetin regulates sensitivity to X-ray radiation of hepatocellular carcinoma through miR-216a-3p[J]. Biomol Biomed, 2025, 25( 4): 833- 849. DOI: 10.17305/bb.2024.11125.
    [15] JIN Q, HU H, YAN SQ, et al. lncRNA MIR22HG-derived miR-22-5p enhances the radiosensitivity of hepatocellular carcinoma by increasing histone acetylation through the inhibition of HDAC2 activity[J]. Front Oncol, 2021, 11: 572585. DOI: 10.3389/fonc.2021.572585.
    [16] JIA HJ, WEI PK, ZHOU SJ, et al. Attenuated Salmonella carrying siRNA-PD-L1 and radiation combinatorial therapy induces tumor regression on HCC through T cell-mediated immuno-enhancement[J]. Cell Death Discov, 2023, 9: 318. DOI: 10.1038/s41420-023-01603-x.
    [17] JENG KS, CHANG CF, SHEEN IS, et al. Cellular and molecular biology of cancer stem cells of hepatocellular carcinoma[J]. Int J Mol Sci, 2023, 24( 2): 1417. DOI: 10.3390/ijms24021417.
    [18] KABAKOV AE, YAKIMOVA AO. Hypoxia-induced cancer cell responses driving radioresistance of hypoxic tumors: Approaches to targeting and radiosensitizing[J]. Cancers, 2021, 13( 5): 1102. DOI: 10.3390/cancers13051102.
    [19] WEI HJ, WANG CR, CROCE CM, et al. p62/SQSTM1 synergizes with autophagy for tumor growth in vivo[J]. Genes Dev, 2014, 28( 11): 1204- 1216. DOI: 10.1101/gad.237354.113.
    [20] KIM W, LEE S, SEO D, et al. Cellular stress responses in radiotherapy[J]. Cells, 2019, 8( 9): 1105. DOI: 10.3390/cells8091105.
    [21] YAO QW, ZHENG R, XIE GZ, et al. Late-responding normal tissue cells benefit from high-precision radiotherapy with prolonged fraction delivery times via enhanced autophagy[J]. Sci Rep, 2015, 5: 9119. DOI: 10.1038/srep09119.
    [22] ZHENG W, SHEN GL, XU KY, et al. Lnc524369 promotes hepatocellular carcinoma progression and predicts poor survival by activating YWHAZ-RAF1 signaling[J]. World J Gastrointest Oncol, 2022, 14( 1): 253- 264. DOI: 10.4251/wjgo.v14.i1.253.
    [23] SAKAGUCHI H, TSUCHIYA H, KITAGAWA Y, et al. NEAT1 confers radioresistance to hepatocellular carcinoma cells by inducing autophagy through GABARAP[J]. Int J Mol Sci, 2022, 23( 2): 711. DOI: 10.3390/ijms23020711.
    [24] DAI XF, WANG DJ, ZHANG JY. Programmed cell death, redox imbalance, and cancer therapeutics[J]. Apoptosis, 2021, 26( 7-8): 385- 414. DOI: 10.1007/s10495-021-01682-0.
    [25] GHAHREMANIFARD P, CHANDA A, BONNI S, et al. TGF-β mediated immune evasion in cancer-spotlight on cancer-associated fibroblasts[J]. Cancers(Basel), 2020, 12( 12): 3650. DOI: 10.3390/cancers12123650.
    [26] CUKIERMAN E. A reflection on how carcinoma-associated fibroblasts were recognized as active participants of epithelial tumorigenesis[J]. Cancer Res, 2021, 81( 18): 4668- 4670. DOI: 10.1158/0008-5472.CAN-21-2553.
    [27] KIM TW. Fisetin, an anti-inflammatory agent, overcomes radioresistance by activating the PERK-ATF4-CHOP axis in liver cancer[J]. Int J Mol Sci, 2023, 24( 10): 9076. DOI: 10.3390/ijms24109076.
    [28] XU YY, CHEN YH, JIN J, et al. Modulating tumour vascular normalisation using triptolide-loaded NGR-functionalized liposomes for enhanced cancer radiotherapy[J]. J Liposome Res, 2023, 33( 3): 251- 257. DOI: 10.1080/08982104.2022.2161095.
    [29] LIANG HZ, SHEN XL. LXR activation radiosensitizes non-small cell lung cancer by restricting myeloid-derived suppressor cells[J]. Biochem Biophys Res Commun, 2020, 528( 2): 330- 335. DOI: 10.1016/j.bbrc.2020.04.137.
    [30] MCANDREWS KM, CHEN Y, DARPOLOR JK, et al. Identification of functional heterogeneity of carcinoma-associated fibroblasts with distinct IL6-mediated therapy resistance in pancreatic cancer[J]. Cancer Discov, 2022, 12( 6): 1580- 1597. DOI: 10.1158/2159-8290.CD-20-1484.
    [31] DUNLOCK VE. Tetraspanin CD53: An overlooked regulator of immune cell function[J]. Med Microbiol Immunol, 2020, 209( 4): 545- 552. DOI: 10.1007/s00430-020-00677-z.
    [32] DAWSON HD, SANG YM, LUNNEY JK. Porcine cytokines, chemokines and growth factors: 2019 update[J]. Res Vet Sci, 2020, 131: 266- 300. DOI: 10.1016/j.rvsc.2020.04.022.
    [33] LIU C, LIU XM, ZHOU HY, et al. Growth factors and cytokines involved in liver regeneration[J]. Eur Cytokine Netw, 2023, 34( 4): 38- 45. DOI: 10.1684/ecn.2023.0483.
    [34] WANG YH, CHEN ZM, YIN YC, et al. Mechanism and application progress of sensitivity regulation of tumor associated macrophages in radiotherapy[J]. Trauma Crit Care Med, 2024, 12( 3): 182- 185, 190. DOI: 10.16048/j.issn.2095-5561.2024.03.13.

    王禹杭, 陈志明, 殷雨成, 等. 肿瘤相关巨噬细胞放射治疗敏感性调节机制与应用进展[J]. 创伤与急危重病医学, 2024, 12( 3): 182- 185, 190. DOI: 10.16048/j.issn.2095-5561.2024.03.13.
    [35] PENG C, XU YL, WU J, et al. TME-related biomimetic strategies against cancer[J]. Int J Nanomed, 2024, 19: 109- 135. DOI: 10.2147/ijn.s441135.
    [36] ZHAO W, HU H, MO Q, et al. Function and mechanism of combined PARP-1 and BRCA genes in regulating the radiosensitivity of breast cancer cells[J]. Int J Clin Exp Pathol, 2019, 12( 10): 3915- 3920.
    [37] SATO H, OKONOGI N, NAKANO T. Rationale of combination of anti-PD-1/PD-L1 antibody therapy and radiotherapy for cancer treatment[J]. Int J Clin Oncol, 2020, 25( 5): 801- 809. DOI: 10.1007/s10147-020-01666-1.
    [38] YANG YJ, KE TY, LIU SX, et al. Synergistic sensitization of apatinib mesylate and radiotherapy on hepatocarcinoma cells in vitro[J]. J Jilin Univ(Med Ed), 2024, 50( 4): 1009- 1015. DOI: 10.13481/j.1671-587X.202404015.

    杨永净, 柯天洋, 刘士新, 等. 甲磺酸阿帕替尼联合放疗对肝癌HepG2细胞的体外协同增敏作用[J]. 吉林大学学报(医学版), 2024, 50( 4): 1009- 1015. DOI: 10.13481/j.1671-587X.202404015.
    [39] CHEN YH, WEI MF, WANG CW, et al. Dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor is an effective radiosensitizer for colorectal cancer[J]. Cancer Lett, 2015, 357( 2): 582- 590. DOI: 10.1016/j.canlet.2014.12.015.
    [40] YOSHIDA A, KITAYAMA Y, HAYAKAWA N, et al. Biocompatible polymer-modified gold nanocomposites of different shapes as radiation sensitizers[J]. Biomater Sci, 2022, 10( 10): 2665- 2672. DOI: 10.1039/d2bm00174h.
    [41] SEBASTIAN AM, PETER D. Artificial intelligence in cancer research: Trends, challenges and future directions[J]. Life, 2022, 12( 12): 1991. DOI: 10.3390/life12121991.
    [42] BORCZYK M, PIECHOTA M, RODRIGUEZ PARKITNA J, et al. Prospects for personalization of depression treatment with genome sequencing[J]. Br J Pharmacol, 2022, 179( 17): 4220- 4232. DOI: 10.1111/bph.15470.
    [43] HORLAIT M, BAES S, DE REGGE M, et al. Understanding the complexity, underlying processes, and influencing factors for optimal multidisciplinary teamwork in hospital-based cancer teams: A systematic integrative review[J]. Cancer Nurs, 2021, 44( 6): E476- E492. DOI: 10.1097/NCC.0000000000000923.
    [44] BARRAULT-COUCHOURON M, MICHELI N, SOUBEYRAN P. Exploring determinants of interdisciplinary collaboration within a geriatric oncology setting: A mixed-method study[J]. Cancers, 2022, 14( 6): 1386. DOI: 10.3390/cancers14061386.
  • 加载中
图(2)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  21
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-01
  • 录用日期:  2025-05-06
  • 出版日期:  2025-10-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回