Establishment and application of in vitro and in vivo models of hepatitis B virus infection
-
摘要: 乙型肝炎是危害人类健康的重要传染病,目前的抗病毒治疗,如干扰素、核苷和核苷酸类药物仍无法治愈慢性乙型肝炎。因此,亟待阐明HBV复制和致病机制,探索新的治疗靶点,进而研发新的治疗药物或方案。合适的HBV感染与复制模型是上述研究的基础。由于HBV具有严格的种属限制性及组织亲嗜性,使得HBV感染与复制模型的研发受到一定限制。在国家传染病科技重大专项资助下,国内研究者建立了一系列的细胞和动物模型,就此并结合近年来国内外研究进展进行简要综述。Abstract: Hepatitis B is still an important infectious disease which threatens human health, and current antiviral therapy, including interferon and nucleos ( t) ide analogues, cannot cure chronic hepatitis B. Therefore, it is urgent to explore the detail mechanisms of HBV replication and pathogenesis, identify new therapeutic targets, and develop new drugs or treatment regimens, which relies on the development of suitable models for HBV infection and replication. Species restriction and tissue tropism of HBV have limited the development of models for HBV infection and replication. With the support by National Science and Technology Major Project for Infectious Diseases, the researchers in China have developed a series of cellular and animal models for HBV. This article reviews these models with reference to recent research advances in China and foreign countries.
-
Key words:
- hepatitis B virus /
- cell model /
- disease models
-
[1]Chinese Society of Hepatology and Chinese Society of Infectious Diseases, Chinese Medical Association.The guideline of prevention and treatment for chronic hepatitis B:a 2015 update[J].J Clin Hepatol, 2015, 31 (12) :1941-1960. (in Chinese) 中华医学会肝病学分会, 中华医学会感染病学分会.慢性乙型肝炎防治指南 (2015年更新版) [J].临床肝胆病杂志, 2015, 31 (12) :1941-1960. [2]ZHOU M, HUANG Y, CHENG Z, et al.Revival, characterization, and hepatitis B virus infection of cryopreserved human fetal hepatocytes[J].J Virol Methods, 2014, 207:29-37. [3]ZHOU M, ZHAO F, LI J, et al.Long-term maintenance of human fetal hepatocytes and prolonged susceptibility to HBV infection by co-culture with non-parenchymal cells[J].J Virol Methods, 2014, 195:185-193. [4]VERRIER ER, COLPITTS CC, SCHUSTER C, et al.Cell culture models for the investigation of hepatitis B and D virus infection[J].Viruses, 2016, 8 (9) :261. [5]HANTZ O, PARENT R, DURANTEL D, et al.Persistence of the hepatitis B virus covalently closed circular DNA in HepaRG human hepatocyte-like cells[J].J Gen Virol, 2009, 90 (Pt 1) :127-135. [6]PHILLIPS S, CHOKSHI S, CHATTERJI U, et al.Alisporivir inhibition of hepatocyte cyclophilins reduces HBV replication and hepatitis B surface antigen production[J].Gastroenterology, 2015, 148 (2) :403-414. [7]YANG D, ZUO C, WANG X, et al.Complete replication of hepatitis B virus and hepatitis C virus in a newly developed hepatoma cell line[J].Proc Natl Acad Sci U S A, 2014, 111 (13) :e1264-e1273. [8] YAN H, ZHONG G, XU G, et al.Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus[J].Elife, 2012, 1:e00049. [9]KO C, LEE S, WINDISCH MP, et al.DDX3 DEAD-box RNA helicase is a host factor that restricts hepatitis B virus replication at the transcriptional level[J].J Virol, 2014, 88 (23) :13689-13698. [10]NKONGOLO S, NI Y, LEMPP FA, et al.Cyclosporin A inhibits hepatitis B and hepatitis D virus entry by cyclophilin-independent interference with the NTCP receptor[J].J Hepatol, 2014, 60 (4) :723-731. [11]IWAMOTO M, WATASHI K, TSUKUDA S, et al.Evaluation and identification of hepatitis B virus entry inhibitors using Hep G2 cells overexpressing a membrane transporter NTCP[J].Biochem Biophys Res Commun, 2014, 443 (3) :808-813. [12]NI Y, LEMPP FA, MEHRLE S, et al.Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes[J].Gastroenterology, 2014, 146 (4) :1070-1083. [13]LI H, ZHUANG Q, WANG Y, et al.HBV life cycle is restricted in mouse hepatocytes expressing human NTCP[J].Cell Mol Immunol, 2014, 11 (2) :175-183. [14]van de KLUNDERT MA, ZAAIJER HL, KOOTSTRA NA.Identification of FDA-approved drugs that target hepatitis B virus transcription[J].J Viral Hepat, 2016, 23 (3) :191-201. [15] LUCIFORA J, XIA Y, REISINGER F, et al.Specific and nonhepatotoxic degradation of nuclear hepatitis B virus ccc DNA[J].Science, 2014, 343 (6176) :1221-1228. [16]YAN R, ZHAO X, CAI D, et al.The interferon-inducible protein tetherin inhibits hepatitis B virus virion secretion[J].J Virol, 2015, 89 (18) :9200-9212. [17]LI H, SHENG C, WANG S, et al.Removal of integrated hepatitis B virus DNA using CRISPR-Cas9[J].Front Cell Infect Microbiol, 2017, 7:91. [18]LIU W, SONG H, CHEN Q, et al.Multidrug resistance protein 4is a critical protein associated with the antiviral efficacy of nucleos (t) ide analogues[J].Liver Int, 2016, 36 (9) :1284-1294. [19]LIU N, JIAO T, HUANG Y, et al.Hepatitis B virus regulates apoptosis and tumorigenesis through the microRNA-15a-Smad7-transforming growth factor beta pathway[J].J Virol, 2015, 89 (5) :2739-2749. [20]WIELAND SF.The chimpanzee model for hepatitis B virus infection[J].Cold Spring Harb Perspect Med, 2015, 5 (6) :a021469. [21]LANFORD RE, GUERRA B, CHAVEZ D, et al.GS-9620, an oral agonist of Toll-like receptor-7, induces prolonged suppression of hepatitis B virus in chronically infected chimpanzees[J].Gastroenterology, 2013, 144 (7) :1508-1517. [22]ASABE S, WIELAND SF, CHATTOPADHYAY PK, et al.The size of the viral inoculum contributes to the outcome of hepatitis B virus infection[J].J Virol, 2009, 83 (19) :9652-9662. [23]DUPINAY T, GHEIT T, ROQUES P, et al.Discovery of naturally occurring transmissible chronic hepatitis B virus infection among Macaca fascicularis from Mauritius Island[J].Hepatology, 2013, 58 (5) :1610-1620. [24]XIAO J, LIU R, CHEN C.Tree shrew (Tupaia belangeri) as a novel non-human primate laboratory disease animal model[J].Zool Res, 2017, 38 (3) :127-137. [25]YAO YG.Creating animal models, why not use the Chinese tree shrew (Tupaia belangeri chinensis) ?[J].Zool Res, 2017, 38 (3) :118-126. [26]TSUKIYAMA-KOHARA K, KOHARA M.Tupaia belangeri as an experimental animal model for viral infection[J].Exp Anim, 2014, 63 (4) :367-374. [27]WANG Q, SCHWARZENBERGER P, YANG F, et al.Experimental chronic hepatitis B infection of neonatal tree shrews (Tupaia belangeri chinensis) :a model to study molecular causes for susceptibility and disease progression to chronic hepatitis in humans[J].Virol J, 2012, 9:170. [28]FENG Y, FENG YM, FENG Y, et al.Identification and characterization of liver microRNAs of the Chinese tree shrew via deep sequencing[J].Hepat Mon, 2015, 15 (10) :e29053. [29]FAN Y, YU D, YAO YG.Tree shrew database (Treeshrew DB) :a genomic knowledge base for the Chinese tree shrew[J].Sci Rep, 2014, 4:7145. [30]WU X, XU H, ZHANG Z, et al.Transcriptome profiles using next-generation sequencing reveal liver changes in the early stage of diabetes in tree shrew (Tupaia belangeri chinensis) [J].J Diabetes Res, 2016, 2016:6238526. [31]YU W, YANG C, BI Y, et al.Characterization of hepatitis E virus infection in tree shrew (Tupaia belangeri chinensis) [J].BMC Infect Dis, 2016, 16:80. [32]YE L, HE M, HUANG Y, et al.Tree shrew as a new animal model for the study of lung cancer[J].Oncol Lett, 2016, 11 (3) :2091-2095. [33]RUAN P, YANG C, SU J, et al.Histopathological changes in the liver of tree shrew (Tupaia belangeri chinensis) persistently infected with hepatitis B virus[J].Virol J, 2013, 10:333. [34]ZHAO F, GUO X, WANG Y, et al.Drug target mining and analysis of the Chinese tree shrew for pharmacological testing[J].PLo S One, 2014, 9 (8) :e104191. [35]BISSIG KD, WIELAND SF, TRAN P, et al.Human liver chimeric mice provide a model for hepatitis B and C virus infection and treatment[J].J Clin Invest, 2010, 120 (3) :924-930. [36]ZHANG TY, YUAN Q, ZHAO JH, et al.Prolonged suppression of HBV in mice by a novel antibody that targets a unique epitope on hepatitis B surface antigen[J].Gut, 2016, 65 (4) :658-671. [37]WASHBURN ML, BILITY MT, ZHANG L, et al.A humanized mouse model to study hepatitis C virus infection, immune response, and liver disease[J].Gastroenterology, 2011, 140 (4) :1334-1344. [38]BILITY MT, CHENG L, ZHANG Z, et al.Hepatitis B virus infection and immunopathogenesis in a humanized mouse model:induction of human-specific liver fibrosis and M2-like macrophages[J].PLo S Pathog, 2014, 10 (3) :e1004032. [39]HAO YH, LI AY, DING HH, et al.Experimental study on duck hepatitis B virus infection model by different kinds of ducklings and antiviral effect[J].Chin J Comp Med, 2012, 22 (11) :23-26. (in Chinese) 郝友华, 李安意, 丁红晖, 等.不同种雏鸭建立鸭乙肝病毒感染模型及抗病毒效果的实验[J].中国比较医学杂志, 2012, 22 (11) :23-26. [40]CAMPAGNA MR, LIU F, MAO R, et al.Sulfamoylbenzamide derivatives inhibit the assembly of hepatitis B virus nucleocapsids[J].J Virol, 2013, 87 (12) :6931-6942. [41]TOHIDI-ESFAHANI R, VICKERY K, COSSART Y.The early host innate immune response to duck hepatitis B virus infection[J].J Gen Virol, 2010, 91 (Pt 2) :509-520. [42]REAICHE GY, LE MIRE MF, MASON WS, et al.The persistence in the liver of residual duck hepatitis B virus covalently closed circular DNA is not dependent upon new viral DNA synthesis[J].Virology, 2010, 406 (2) :286-292. [43]SAADE F, BURONFOSSE T, GUERRET S, et al.In vivo infectivity of liver extracts after resolution of hepadnaviral infection following therapy associating DNA vaccine and cytokine genes[J].J Viral Hepat, 2013, 20 (4) :e56-e65. [44]ROGGENDORF M, YANG D, LU M.The woodchuck:a model for therapeutic vaccination against hepadnaviral infection[J].Pathol Biol (Paris) , 2010, 58 (4) :308-314. [45]MASON WS.Animal models and the molecular biology of hepadnavirus infection[J].Cold Spring Harb Perspect Med, 2015, 5 (4) :a021352. [46]FLETCHER SP, CHIN DJ, CHENG DT, et al.Identification of an intrahepatic transcriptional signature associated with self-limiting infection in the woodchuck model of hepatitis B[J].Hepatology, 2013, 57 (1) :13-22. [47]KOSINSKA AD, ZHANG E, JOHRDEN L, et al.Combination of DNA prime-adenovirus boost immunization with entecavir elicits sustained control of chronic hepatitis B in the woodchuck model[J].PLo S Pathog, 2013, 9 (6) :e1003391. [48]WANG BJ, TIAN YJ, MENG ZJ, et al.Establishing a new animal model for hepadnaviral infection:susceptibility of Chinese Marmota-species to woodchuck hepatitis virus infection[J].J Gen Virol, 2011, 92 (Pt 3) :681-691. [49]LIU Y, WANG B, WANG L, et al.Transcriptome analysis and comparison of marmota monax and marmota himalayana[J].PLo S One, 2016, 11 (11) :e165875. [50]FAN H, ZHU Z, WANG Y, et al.Molecular characterization of the type I IFN receptor in two woodchuck species and detection of its expression in liver samples from woodchucks infected with woodchuck hepatitis virus (WHV) [J].Cytokine, 2012, 60 (1) :179-185. [51]YANG Y, ZHANG X, ZHANG C, et al.Molecular characterization of woodchuck CD4 (w CD4) and production of a depletion monoclonal antibody against w CD4[J].Mol Immunol, 2013, 56 (1-2) :64-71. [52]YAN Q, LI M, LIU Q, et al.Molecular characterization of woodchuck IFI16 and AIM2 and their expression in woodchucks infected with woodchuck hepatitis virus (WHV) [J].Sci Rep, 2016, 6:28776. [53]JIANG M, LIU J, ZHANG E, et al.Molecular characterization of woodchuck interleukin-10 receptor and enhanced function of specific T cells from chronically infected woodchucks following its blockade[J].Comp Immunol Microbiol Infect Dis, 2012, 35 (6) :563-573. [54]WANG L, WANG J, LIU Y, et al.Molecular cloning, characterization and expression analysis of TGF-βand receptor genes in the woodchuck model[J].Gene, 2016, 595 (1) :1-8. [55]ZHANG E, ZHANG X, LIU J, et al.The expression of PD-1 ligands and their involvement in regulation of T cell functions in acute and chronic woodchuck hepatitis virus infection[J].PLo S One, 2011, 6 (10) :e26196. [56]LU Y, WANG B, HUANG H, et al.The interferon-alpha gene family of Marmota himalayana, a Chinese marmot species with susceptibility to woodchuck hepatitis virus infection[J].Dev Comp Immunol, 2008, 32 (4) :445-457. [57]WANG B, ZHU Z, ZHU B, et al.Nucleoside analogues alone or combined with vaccination prevent hepadnavirus viremia and induce protective immunity:alternative strategy for hepatitis B virus postexposure prophylaxis[J].Antiviral Res, 2014, 105:118-125. [58]LIU J, ZHANG E, MA Z, et al.Enhancing virus-specific immunity in vivo by combining therapeutic vaccination and PD-L1blockade in chronic hepadnaviral infection[J].PLo S Pathog, 2014, 10 (1) :e1003856. [59]PAN D, LIN Y, WU W, et al.Persistence of the recombinant genomes of woodchuck hepatitis virus in the mouse model[J].PLo S One, 2015, 10 (5) :e0125658. [60]ZHANG E, KOSINSKA AD, MA Z, et al.Woodchuck hepatitis virus core antigen-based DNA and protein vaccines induce qualitatively different immune responses that affect T cell recall responses and antiviral effects[J].Virology, 2015, 475:56-65. [61]MA Z, ZHANG E, YANG D, et al.Contribution of Toll-like receptors to the control of hepatitis B virus infection by initiating antiviral innate responses and promoting specific adaptive immune responses[J].Cell Mol Immunol, 2015, 12 (3) :273-282. [62]MENG Z, ZHANG X, WU J, et al.RNAi induces innate immunity through multiple cellular signaling pathways[J].PLo S One, 2013, 8 (5) :e64708. [63]QING Y, CHEN M, ZHAO J, et al.Construction of an HBV DNA vaccine by fusion of the GM-CSF gene to the HBV-S gene and examination of its immune effects in normal and HBV-transgenic mice[J].Vaccine, 2010, 28 (26) :4301-4307. [64]DING C, WEI H, SUN R, et al.Hepatocytes proteomic alteration and seroproteome analysis of HBV-transgenic mice[J].Proteomics, 2009, 9 (1) :87-105. [65]JIN Z, SUN R, WEI H, et al.Accelerated liver fibrosis in hepatitis B virus transgenic mice:involvement of natural killer T cells[J].Hepatology, 2011, 53 (1) :219-229. [66]MENG Z, MA Z, ZHANG E, et al.Novel Woodchuck Hepatitis Virus (WHV) transgene mouse models show sex-dependent WHV replicative activity and development of spontaneous immune responses to WHV proteins[J].J Virol, 2014, 88 (3) :1573-1581. [67]HUANG LR, GBEL YA, GRAF S, et al.Transfer of HBV genomes using low doses of adenovirus vectors leads to persistent infection in immune competent mice[J].Gastroenterology, 2012, 142 (7) :1447-1450. [68]PENG XH, REN XN, CHEN LX, et al.High persistence rate of hepatitis B virus in a hydrodynamic injection-based transfection model in C3H/He N mice[J].World J Gastroenterol, 2015, 21 (12) :3527-3536. [69]DIETZE KK, SCHIMMER S, KRETZMER F, et al.Characterization of the treg response in the hepatitis B virus hydrodynamic injection mouse model[J].PLo S One, 2016, 11 (3) :e0151717. [70]WU J, HUANG S, ZHAO X, et al.Poly (I∶C) treatment leads to interferon-dependent clearance of hepatitis B virus in a hydrodynamic injection mouse model[J].J Virol, 2014, 88 (18) :10421-10431. [71]SONG J, ZHOU Y, LI S, et al.Susceptibility of different hepatitis B virus isolates to interferon-alpha in a mouse model based on hydrodynamic injection[J].PLo S One, 2014, 9 (3) :e90977. [72]WANG J, WANG B, HUANG S, et al.Immunosuppressive drugs modulate the replication of hepatitis B virus (HBV) in a hydrodynamic injection mouse model[J].PLo S One, 2014, 9 (1) :e85832. [73]LI L, SHEN H, LI A, et al.Inhibition of hepatitis B virus (HBV) gene expression and replication by HBx gene silencing in a hydrodynamic injection mouse model with a new clone of HBV genotype B[J].Virol J, 2013, 10:214. [74] QI Z, LI G, HU H, et al.Recombinant covalently closed circular hepatitis B virus DNA induces prolonged viral persistence in immunocompetent mice[J].J Virol, 2014, 88 (14) :8045-8056.
本文二维码
计量
- 文章访问数: 2284
- HTML全文浏览量: 13
- PDF下载量: 457
- 被引次数: 0