中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

microRNA调控胰腺星状细胞活化对慢性胰腺炎纤维化进程的影响

朱奕舟 朱昌 周姝 刘华 徐晓蓉

引用本文:
Citation:

microRNA调控胰腺星状细胞活化对慢性胰腺炎纤维化进程的影响

DOI: 10.3969/j.issn.1001-5256.2017.08.042
基金项目: 

上海市自然科学基金(15ZR1432800); 

详细信息
  • 中图分类号: R576

Effect of pancreatic stellate cell activation regulated by microRNA on fibrosis of chronic pancreatitis

Research funding: 

 

  • 摘要: 慢性胰腺炎是一种进行性的慢性炎症性疾病,最终表现为不可逆的胰腺纤维化。其诊断及治疗困难,且目前无有效延缓或逆转纤维化的手段。介绍了microRNA(miRNA)在慢性胰腺炎纤维化中所起作用的研究进展,认为胰腺星状细胞的活化是胰腺纤维化的关键步骤。miRNA可通过改变基因表达,介导信号通路、上皮-间充质转化进程等,调控胰腺星状细胞的活化,参与慢性胰腺炎纤维化的进展,其有望成为慢性胰腺炎治疗的新靶点。

     

  • [1]Group of Pancreas Surgery, Chinese Society of Surgery, Chinese Medical Association.Guidelines for the management of chronic pancreatitis (2014) [J].J Clin Hepatol, 2015, 31 (3) :322-326. (in Chinese) 中华医学会外科学分会胰腺外科学组.慢性胰腺炎诊治指南 (2014) [J].临床肝胆病杂志, 2015, 31 (3) :322-326.
    [2]APTE MV, HABER PS, APPLEGATE TL, et al.Periacinar stellate shaped cells in rat pancreas:identification, isolation, and culture[J].Gut, 1998, 43 (1) :128-133.
    [3]BACHEM MG, SCHNEIDER E, GROSS H, et al.Identification, culture, and characterization of pancreatic stellate cells in rats and humans[J].Gastroenterology, 1998, 115 (2) :421-432.
    [4]MASAMUNE A, SATOH A, WATANABE T, et al.Effects of ethanol and its metabolites on human pancreatic stellate cells[J].Dig Dis Sci, 2010, 55 (1) :204-211.
    [5]APTE M, PIROLA RC, WILSON JS.Pancreatic stellate cell:physiologic role, role in fibrosis and cancer[J].Curr Opin Gastroenterol, 2015, 31 (5) :416-423.
    [6]UCHIDA M, NAKAMURA T, ITO T, et al.ERK pathway and sheddases play an essential role in ethanol-induced CX3CL1 release in pancreatic stellate cells (PSCs) , and several cellular signaling cascades are activated by CX3CL1 in PSCs and associated with cell proliferation[J].JGH, 2014, 293 (SI) :223.
    [7]AMERES SL, ZAMORE PD.Diversifying microRNA sequence and function[J].Nat Rev Mol Cell Biol, 2013, 14 (8) :475-488.
    [8]HE Y, HUANG C, ZHANG SP, et al.The potential of microRNAs in liver fibrosis[J].Cell Signal, 2012, 24 (12) :2268-2272.
    [9]MASAMUNE A, NAKANO E, HAMADA S, et al.Alteration of the microRNA expression profile during the activation of pancreatic stellate cells[J].Scand J Gastroenterol, 2014, 49 (3) :323-331.
    [10]YANG T, LIANG Y, LIN Q, et al.miR-29 mediates TGFβ1-induced extracellular matrix synthesis through activation of PI3KAKT pathway in human lung fibroblasts[J].J Cell Biochem, 2013, 114 (6) :1336-1342.
    [11]WANG B, KOMERS R, CAREW R, et al.Suppression of microRNA-29 expression by TGF-β1 promotes collagen expression and renal fibrosis[J].J Am Soc Nephrol, 2012, 23 (2) :252-265.
    [12]RODERBURG C, URBAN GW, BETTERMANN K, et al.MicroRNA profiling reveals a role for miR-29 in human and murine liver fibrosis[J].Hepatology, 2011, 53 (1) :209-218.
    [13]KAPINAS K, KESSLER CB, DELANY AM.miR-29 suppression of osteonectin in osteoblasts:regulation during differentiation and by canonical Wnt signaling[J].J Cell Biochem, 2009, 108 (1) :216-224.
    [14]MEI Y, BIAN C, LI J, et al.miR-21 modulates the ERKMAPK signaling pathway by regulating SPRY2 expression during human mesenchymal stem cell differentiation[J].J Cell Biochem, 2013, 114 (6) :1374-1384.
    [15]ZHU H, LUO H, LI Y, et al.MicroRNA-21 in scleroderma fibrosis and its function in TGF-β-regulated fibrosis-related genes expression[J].J Clin Immunol, 2013, 33 (6) :1100-1109.
    [16]LIU X, HONG Q, WANG Z, et al.MicroRNA21 promotes interstitial fibrosis via targeting DDAH1:a potential role in renal fibrosis[J].Mol Cell Biochem, 2016, 411 (1-2) :181-189.
    [17]HUANG CF, SUN CC, ZHAO F, et al.miR-33a levels in hepatic and serum after chronic HBV-induced fibrosis[J].J Gastroenterol, 2015, 50 (4) :480-490.
    [18]ZHOU G, LIN W, FANG P, et al.MiR-10a improves hepatic fibrosis by regulating the TGFβl/Smads signal transduction pathway[J].Exp Ther Med, 2016, 12 (3) :1719-1722.
    [19]LIU XY, HE YJ, YANG QH, et al.Induction of autophagy and apoptosis by miR-148a through the sonic hedgehog signaling pathway in hepatic stellate cells[J].Am J Cancer Res, 2015, 5 (9) :2569-2589.
    [20]WANG H, JIANG Y, LU M, et al.STX12 lncRNA/miR-148a/SMAD5 participate in the regulation of pancreatic stellate cell activation through a mechanism involving competing endogenous RNA[J].Pancreatology, 2017, 17 (2) :237-246.
    [21]ZOU XZ, LIU T, GONG ZC, et al.MicroRNAs-mediated epithelial-mesenchymal transition in fibrotic diseases[J].Eur J Pharmacol, 2017, 796:190-206.
    [22]TIAN L, LU ZP, CAI BB, et al.Activation of pancreatic stellate cells involves an EMT-like process[J].Int J Oncol, 2016, 48 (2) :783-792.
    [23]HULEIHEL L, BEN-YEHUDAH A, MILOSEVIC J, et al.Let-7d microRNA affects mesenchymal phenotypic properties of lung fibroblasts[J].Am J Physiol Lung Cell Mol Physiol, 2014, 306 (6) :l534-l542.
    [24]LIANG H, LIU S, CHEN Y, et al.miR-26a suppresses EMT by disrupting the Lin28B/let-7d axis:potential cross-talks among miRNAs in IPF[J].J Mol Med (Berl) , 2016, 94 (6) :655-665.
    [25]GAO SY, ZHOU X, LI YJ, et al.Arsenic trioxide prevents rat pulmonary fibrosis via miR-98 overexpression[J].Life Sci, 2014, 114 (1) :20-28.
    [26]DU R, SUN W, XIA L, et al.Hypoxia-induced down-regulation of microRNA-34a promotes EMT by targeting the Notch signaling pathway in tubular epithelial cells[J].PLo S One, 2012, 7 (2) :e30771.
    [27]PENG R, ZHOU L, ZHOU Y, et al.MiR-30a inhibits the epithelial-mesenchymal transition of podocytes through downregulation of NFATc3[J].Int J Mol Sci, 2015, 16 (10) :24032-24047.
    [28]BAI X, GENG J, ZHOU Z, et al.MicroRNA-130b improves renal tubulointerstitial fibrosis via repression of Snail-induced epithelial-mesenchymal transition in diabetic nephropathy[J].Sci Rep, 2016, 6:20475.
    [29]ZHOU X, LI YJ, GAO SY, et al.Sulindac has strong antifibrotic effects by suppressing STAT3-related miR-21[J].J Cell Mol Med, 2015, 19 (5) :1103-1113.
    [30]XIONG M, JIANG L, ZHOU Y, et al.The miR-200 family regulates TGF-β1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression[J].Am J Physiol Renal Physiol, 2012, 302 (3) :f369-f379.
    [31]HUANG Y, TONG J, HE F, et al.miR-141 regulates TGF-β1-induced epithelial-mesenchymal transition through repression of HIPK2 expression in renal tubular epithelial cells[J].Int J Mol Med, 2015, 35 (2) :311-318.
    [32]XIAO Y, ZHOU Y, CHEN Y, et al.The expression of epithelialmesenchymal transition-related proteins in biliary epithelial cells is associated with liver fibrosis in biliary atresia[J].Pediatr Res, 2015, 77 (2) :310-315.
    [33]SINIGAGLIA A, LAVEZZO E, TREVISAN M, et al.Changes in microRNA expression during disease progression in patients with chronic viral hepatitis[J].Liver Int, 2015, 35 (4) :1324-1333.
    [34]EL ANDALOUSSI S, MGER I, BREAKEFIELD XO, et al.Extracellular vesicles:biology and emerging therapeutic opportunities[J].Nat Rev Drug Discov, 2013, 12 (5) :348-357.
    [35]TAKIKAWA T, MASAMUNE A, YOSHIDA N, et al.Exosomes derived from pancreatic stellate cells:microRNA signature and effects on pancreatic cancer cells[J].Pancreas, 2017, 46 (1) :19-27.
    [36]CHARRIER A, CHEN R, CHEN L, et al.Connective tissue growth factor (CCN2) and microRNA-21 are components of a positive feedback loop in pancreatic stellate cells (PSC) during chronic pancreatitis and are exported in PSC-derived exosomes[J].J Cell Commun Signal, 2014, 8 (2) :147-156.
  • 加载中
计量
  • 文章访问数:  1434
  • HTML全文浏览量:  43
  • PDF下载量:  352
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-27
  • 出版日期:  2017-08-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回