中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胰腺导管腺癌的免疫治疗——挑战与机遇并存

葛伟玉 王红霞

引用本文:
Citation:

胰腺导管腺癌的免疫治疗——挑战与机遇并存

DOI: 10.3969/j.issn.1001-5256.2019.05.005
详细信息
  • 中图分类号: R735.9

Immunotherapy for pancreatic ductal adenocarcinoma: Challenges and opportunities

  • 摘要: 胰腺导管腺癌(PDAC)是胰腺癌中最常见的一种恶性肿瘤类型,且极易发生微转移。尽管近年来恶性肿瘤的免疫治疗取得重大进步,以程序性细胞死亡蛋白-1/程序性死亡配体-1抗体为代表的免疫检查点阻断,彻底改变了非小细胞肺癌、黑色素瘤、尿路上皮癌和肾癌等的临床诊疗。然而,由于PDAC的低免疫原性和独特的肿瘤微环境(TME),该免疫治疗方案在PDAC中并不尽如人意,PDAC的5年生存率在所有恶性肿瘤中仍为最差。随着对PDAC-TME的研究发展和理解的深入,深度解析免疫系统、肿瘤细胞和基质信号之间高度复杂的相互作用网络,将有助于开发针对PDAC免疫疗法的合理组合。通过阐述PDAC-TME的免疫独特性,探讨PDAC的潜在治疗机会以及相关临床研究进展。

     

  • [1] TORRE LA, TRABERT B, DESANTIS CE, et al. Ovarian cancer statistics, 2018[J]. CA Cancer J Clin, 2018, 68 (4) :284-296.
    [2] LIU Q, LIAO Q, ZHAO Y. Chemotherapy and tumor microenvironment of pancreatic cancer[J]. Cancer Cell Int, 2017, 17:68.
    [3] ZHENG L, XUE J, JAFFEE EM, et al. Role of immune cells and immune-based therapies in pancreatitis and pancreatic ductal adenocarcinoma[J]. Gastroenterology, 2013, 144 (6) :1230-1240.
    [4] MENON S, SHIN S, DY G. Advances in cancer immunotherapy in solid tumors[J]. Cancers, 2016, 8 (12) :E106.
    [5] ROYAL RE, LEVY C, TURNER K, et al. Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma[J]. J Immunother, 2010, 33 (8) :828-833.
    [6] BRAHMER JR, TYKODI SS, CHOW LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer[J]. N Engl J Med, 2012, 366 (26) :2455-2465.
    [7] DUNN GP, OLD LJ, SCHREIBER RD. The three Es of cancer immunoediting[J]. Annu Rev Immunol, 2004, 22:329-360.
    [8] PAGURA L, CACERES JM, CARDINALE A, et al. A mammary adenocarcinoma murine model suitable for the study of cancer immunoediting[J]. J Biomed Sci, 2014, 21:52.
    [9] RAJA J, LUDWIG JM, GETTINGER SN, et al. Oncolytic virus immunotherapy:Future prospects for oncology[J]. J Immunother Cancer, 2018, 6 (1) :140.
    [10] CHOWELL D, MORRIS LGT, GRIGG CM, et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy[J]. Science, 2018, 359 (6375) :582-587.
    [11] KATSUYA Y, FUJITA Y, HORINOUCHI H, et al. Immunohistochemical status of PD-L1 in thymoma and thymic carcinoma[J]. Lung Cancer, 2015, 88 (2) :154-159.
    [12] NAKANISHI J, WADA Y, MATSUMOTO K, et al. Overexpression of B7-H1 (PD-L1) significantly associates with tumor grade and postoperative prognosis in human urothelial cancers[J]. Cancer Immunol Immunother, 2007, 56 (8) :1173-1182.
    [13] NOMI T, SHO M, AKAHORI T, et al. Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer[J].Clin Cancer Res, 2007, 13 (7) :2151-2157.
    [14] FAY AP, SIGNORETTI S, CALLEA M, et al. Programmed death ligand-1 expression in adrenocortical carcinoma:An exploratory biomarker study[J]. J Immunother Cancer, 2015, 3:3.
    [15] STROME SE, DONG H, TAMURA H, et al. B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma[J]. Cancer Res, 2003, 63 (19) :6501-6505.
    [16] WILMOTTE R, BURKHARDT K, KINDLER V, et al. B7-homolog 1 expression by human glioma:A new mechanism of immune evasion[J]. Neuroreport, 2005, 16 (10) :1081-1085.
    [17] MCDERMOTT DF, ATKINS MB. PD-1 as a potential target in cancer therapy[J]. Cancer Med, 2013, 2 (5) :662-673.
    [18] DONG H, STROME SE, SALOMAO DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis:A potential mechanism of immune evasion[J]. Nat Med, 2002, 8 (8) :793-800.
    [19] JIANG Y, LI Y, ZHU B. T-cell exhaustion in the tumor microenvironment[J]. Cell Death Dis, 2015, 6:e1792.
    [20] WANG X, TENG F, KONG L, et al. PD-L1 expression in human cancers and its association with clinical outcomes[J].Onco Targets Ther, 2016, 9:5023-5039.
    [21] GAO HL, LIU L, QI ZH, et al. The clinicopathological and prognostic significance of PD-L1 expression in pancreatic cancer:A meta-analysis[J]. Hepatobiliary Pancreat Dis Int, 2018, 17 (2) :95-100.
    [22] COPPOCK JD, VOLARIC AK, MILLS AM, et al. Concordance levels of PD-L1 expression by immunohistochemistry, mRNA in situ hybridization, and outcome in lung carcinomas[J].Hum Pathol, 2018, 82:282-288.
    [23] GERLINGER M, ROWAN AJ, HORSWELL S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing[J]. N Engl J Med, 2012, 366 (10) :883-892.
    [24] WANG L, MA Q, CHEN X, et al. Clinical significance of B7-H1 and B7-1 expressions in pancreatic carcinoma[J]. World J Surg, 2010, 34 (5) :1059-1065.
    [25] CHEN Y, SUN J, ZHAO H, et al. The coexpression and clinical significance of costimulatory molecules B7-H1, B7-H3, and B7-H4 in human pancreatic cancer[J]. Onco Targets Ther, 2014, 7:1465-1472.
    [26] LOOS M, GIESE NA, KLEEFF J, et al. Clinical significance and regulation of the costimulatory molecule B7-H1 in pancreatic cancer[J]. Cancer Lett, 2008, 268 (1) :98-109.
    [27] GENG L, HUANG D, LIU J, et al. B7-H1 up-regulated expression in human pancreatic carcinoma tissue associates with tumor progression[J]. J Cancer Res Clin Oncol, 2008, 134 (9) :1021-1027.
    [28] BIRNBAUM DJ, FINETTI P, LOPRESTI A, et al. Prognostic value of PDL1 expression in pancreatic cancer[J]. Oncotarget, 2016, 7 (44) :71198-71210.
    [29] ZHANG CM, LV JF, GONG L, et al. Role of deficient mismatch repair in the personalized management of colorectal cancer[J]. Int J Environ Res Public Health, 2016, 13 (9) :E892.
    [30] SHARP JT, LIDSKY MD, DUFFY J, et al. Comparison of two dosage schedules of gold salts in the treatment of rheumatoid arthritis. Relationship of serum gold levels to therapeutic response[J]. Arthritis Rheum, 1977, 20 (6) :1179-1187.
    [31] SALEM ME, PUCCINI A, GROTHEY A, et al. Landscape of tumor mutation load, mismatch repair deficiency, and pd-l1expression in a large patient cohort of gastrointestinal cancers[J]. Mol Cancer Res, 2018, 16 (5) :805-812.
    [32] CHAMPIAT S, FERTE C, LEBEL-BINAY S, et al. Exomics and immunogenics:Bridging mutational load and immune checkpoints efficacy[J]. Oncoimmunology, 2014, 3 (1) :e27817.
    [33] LATSOUDIS H, MASHREGHI MF, GRUN JR, et al. Differential expression of miR-4520a associated with pyrin mutations in familial mediterranean fever (FMF) [J]. J Cell Physiol, 2017, 232 (6) :1326-1336.
    [34] KIM ST, KLEMPNER SJ, PARK SH, et al. Correlating programmed death ligand 1 (PD-L1) expression, mismatch repair deficiency, and outcomes across tumor types:Lmplications for immunotherapy[J]. Oncotarget, 2017, 8 (44) :77415-77423.
    [35] MARISA L, SVRCEK M, COLLURA A, et al. The balance between cytotoxic T-cell lymphocytes and immune checkpoint expression in the prognosis of colon tumors[J]. J Natl Cancer Inst, 2018, 110 (1) :68-77.
    [36] WALKER EJ, CARNEVALE J, PEDLEY C, et al. Referral frequency, attrition rate, and outcomes of germline testing in patients with pancreatic adenocarcinoma[J]. Fam Cancer, 2018.[Epub ahead of print]
    [37] KAWAKAMI H, ZAANAN A, SINICROPE FA. Microsatellite instability testing and its role in the management of colorectal cancer[J]. Curr Treat Options Oncol, 2015, 16 (7) :30.
    [38] LEMERY S, KEEGAN P, PAZDUR R. First FDA Approval agnostic of cancer site-when a biomarker defines the indication[J]. N Engl J Med, 2017, 377 (15) :1409-1412.
    [39] CHANG L, CHANG M, CHANG HM, et al. Microsatellite instability:A predictive biomarker for cancer immunotherapy[J].Appl Immunohistochem Mol Morphol, 2018, 26 (2) :e15-e21.
    [40] EL-KHOUEIRY AB, SANGRO B, YAU T, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate040) :An open-label, non-comparative, phase 1/2 dose escalation and expansion trial[J]. Lancet, 2017, 389 (10088) :2492-2502.
    [41] PATNAIK A, KANG SP, RASCO D, et al. Phase I study of pembrolizumab (MK-3475; anti-PD-1 monoclonal antibody) in patients with advanced solid tumors[J]. Clin Cancer Res, 2015, 21 (19) :4286-4293.
    [42] WEISS GJ, BLAYDORN L, BECK J, et al. Phase Ib/II study of gemcitabine, nab-paclitaxel, and pembrolizumab in metastatic pancreatic adenocarcinoma[J]. Invest New Drugs, 2018, 36 (1) :96-102.
    [43] COOK AM, LESTERHUIS WJ, NOWAK AK, et al. Chemotherapy and immunotherapy:Mapping the road ahead[J]. Curr Opin Immunol, 2016, 39:23-29.
    [44] McDONNELL AM, LESTERHUIS WJ, KHONG A, et al. Tumor-infiltrating dendritic cells exhibit defective cross-presentation of tumor antigens, but is reversed by chemotherapy[J].Eur J Immunol, 2015, 45 (1) :49-59.
    [45] HAYNES NM, van der MOST RG, LAKE RA, et al. Immunogenic anti-cancer chemotherapy as an emerging concept[J]. Curr Opin Immunol, 2008, 20 (5) :545-557.
    [46] van der MOST RG, ROBINSON BW, LAKE RA. Combining immunotherapy with chemotherapy to treat cancer[J]. Discov Med, 2005, 5 (27) :265-270.
    [47] VONDERHEIDE RH, GLENNIE MJ. Agonistic CD40 antibodies and cancer therapy[J]. Clin Cancer Res, 2013, 19 (5) :1035-1043.
    [48] LONG KB, GLADNEY WL, TOOKER GM, et al. IFNgamma and CCL2 cooperate to redirect tumor-infiltrating monocytes to degrade fibrosis and enhance chemotherapy efficacy in pancreatic carcinoma[J]. Cancer Discov, 2016, 6 (4) :400-413.
    [49] BEATTY GL, TORIGIAN DA, CHIOREAN EG, et al. A phase I study of an agonist CD40 monoclonal antibody (CP-870, 893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma[J]. Clin Cancer Res, 2013, 19 (22) :6286-6295.
    [50] MITCHEM JB, BRENNAN DJ, KNOLHOFF BL, et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses[J]. Cancer Res, 2013, 73 (3) :1128-1141.
    [51] WITKIEWICZ A, WILLIAMS TK, COZZITORTO J, et al. Expression of indoleamine 2, 3-dioxygenase in metastatic pancreatic ductal adenocarcinoma recruits regulatory T cells to avoid immune detection[J]. J Am Coll Surg, 2008, 206 (5) :849-854, discussion 54-56.
    [52] MUNN DH, MELLOR AL. IDO in the tumor microenvironment:Inflammation, counter-regulation, and tolerance[J]. Trends Immunol, 2016, 37 (3) :193-207.
    [53] YOUMANS GP, YOUMANS AS. Nonspecific factors in resistance of mice to experimental tuberculosis[J]. J Bacteriol, 1965, 90 (6) :1675-1681.
    [54] MASSO-VALLES D, JAUSET T, SERRANO E, et al. Ibrutinib exerts potent antifibrotic and antitumor activities in mouse models of pancreatic adenocarcinoma[J]. Cancer Res, 2015, 75 (8) :1675-1681.
    [55] XIA L, SCHRUMP DS, GILDERSLEEVE JC. Whole-cell cancer vaccines induce large antibody responses to carbohydrates and glycoproteins[J]. Cell Chem Biol, 2016, 23 (12) :1515-1525.
    [56] LUTZ ER, WU AA, BIGELOW E, et al. Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation[J]. Cancer Immunol Res, 2014, 2 (7) :616-631.
    [57] SOARES KC, RUCKI AA, WU AA, et al. PD-1/PD-L1blockade together with vaccine therapy facilitates effector Tcell infiltration into pancreatic tumors[J]. J Immunother, 2015, 38 (1) :1-11.
    [58] KEENAN BP, SAENGER Y, KAFROUNI MI, et al. A Listeria vaccine and depletion of T-regulatory cells activate immunity against early stage pancreatic intraepithelial neoplasms and prolong survival of mice[J]. Gastroenterology, 2014, 146 (7) :1784-1794. e6.
    [59] LE DT, WANG-GILLAM A, PICOZZI V, et al. Safety and survival with GVAX pancreas prime and Listeria Monocytogenesexpressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer[J]. J Clin Oncol, 2015, 33 (12) :1325-1333.
    [60] EBERT PJR, CHEUNG J, YANG Y, et al. MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade[J]. Immunity, 2016, 44 (3) :609-621.
    [61] SHINDO Y, HAZAMA S, MAEDA Y, et al. Adoptive immunotherapy with MUC1-mRNA transfected dendritic cells and cytotoxic lymphocytes plus gemcitabine for unresectable pancreatic cancer[J]. J Transl Med, 2014, 12:175.
    [62] POSEY AD Jr, SCHWAB RD, BOESTEANU AC, et al. Engineered CAR T cells targeting the cancer-associated Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma[J]. Immunity, 2016, 44 (6) :1444-1454.
    [63] STROMNES IM, SCHMITT TM, HULBERT A, et al. T Cells engineered against a native antigen can surmount immunologic and physical barriers to treat pancreatic ductal adenocarcinoma[J]. Cancer Cell, 2015, 28 (5) :638-652.
    [64] CHMIELEWSKI M, HAHN O, RAPPL G, et al. T cells that target carcinoembryonic antigen eradicate orthotopic pancreatic carcinomas without inducing autoimmune colitis in mice[J].Gastroenterology, 2012, 143 (4) :1095-1107. e2.
    [65] NICHOLLS DJ, WILEY K, DAINTY I, et al. Pharmacological characterization of AZD5069, a slowly reversible CXC chemokine receptor 2 antagonist[J]. J Pharmacol Exp Ther, 2015, 353 (2) :340-350.
    [66] MORTON JP, SANSOM OJ. CXCR2 inhibition in pancreatic cancer:Opportunities for immunotherapy?[J]. Immunotherapy, 2017, 9 (1) :9-12.
    [67] STEELE CW, KARIM SA, LEACH JDG, et al. CXCR2 Inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma[J]. Cancer Cell, 2016, 29 (6) :832-845.
    [68] ZHANG H, WANG Y, HWANG ES, et al. Interleukin-10:An immune-activating cytokine in cancer immunotherapy[J]. J Clin Oncol, 2016, 34 (29) :3576-3578.
    [69] NAING A, PAPADOPOULOS KP, AUTIO KA, et al. Safety, antitumor activity, and immune activation of pegylated recombinant human interleukin-10 (AM0010) in patients with advanced solid tumors[J]. J Clin Oncol, 2016, 34 (29) :3562-3569.
    [70] KAWAOKA T, OKA M, TAKASHIMA M, et al. Adoptive immunotherapy for pancreatic cancer:Cytotoxic T lymphocytes stimulated by the MUC1-expressing human pancreatic cancer cell line YPK-1[J]. Oncol Rep, 2008, 20 (1) :155-163.
    [71] KONDO H, HAZAMA S, KAWAOKA T, et al. Adoptive immunotherapy for pancreatic cancer using MUC1 peptide-pulsed dendritic cells and activated T lymphocytes[J]. Anticancer Res, 2008, 28 (1b) :379-387.
  • 加载中
计量
  • 文章访问数:  1853
  • HTML全文浏览量:  21
  • PDF下载量:  444
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-15
  • 出版日期:  2019-05-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回