Role and mechanism of autophagy in development and progression of hepatocellular carcinoma and regulation of immunotherapy
-
摘要: 自噬作为基础的生理现象,是维持细胞稳态和生理代谢的重要机制,还可以诱导细胞程序性死亡。目前大量研究证明,自噬在多种肿瘤的发生发展和演化过程中发挥重要作用,这为肿瘤的研究及治疗提供了新的思路。肝癌的发生机制极其复杂,其中免疫调控对肝癌发生、转移和侵袭的作用已经得到公认,近年来自噬被发现通过参与肿瘤免疫、氧化应激和维持细胞稳态等多方面影响肝癌进展,且可通过多种途径对肝癌免疫治疗效果产生影响。综述了自噬在肝癌发生发展和免疫治疗调控中的作用及其机制,以期深入了解自噬在肝癌中的重大影响和潜在的治疗价值。Abstract: As a basic physiological phenomenon, autophagy plays an important role in maintaining cellular homeostasis and physiological metabolism and can also induce programmed cell death. At present, many studies have shown that autophagy plays an important role in the development, progression, and metastasis of various tumors, which provide new viewpoints for tumor research and treatment. Hepatocellular carcinoma has an extremely complex pathogenesis, and the effect of immunoregulation on the development, metastasis, and invasion of hepatocellular carcinoma has been generally accepted. Recent studies have found that autophagy is involved in tumor immunity, oxidative stress, and maintenance of cellular homeostasis and thus affect the progression of hepatocellular carcinoma. It may also influence the effect of immunotherapy via multiple pathways. This article reviews the role and mechanism of autophagy in the development and progression of hepatocellular carcinoma and the regulation of immunotherapy, in order to understand the significant influence of autophagy on hepatocellular carcinoma and the potential therapeutic value of autophagy.
-
Key words:
- carcinoma, hepatocellular /
- autophagy /
- immunotherapy /
- review
-
[1] LIN H, YAN J, WANG Z, et al. Loss of immunity-supported senescence enhances susceptibility to hepatocellular carcinogenesis and progression in Toll-like receptor 2-deficient mice[J]. Hepatology, 2013, 57 (1) :171-182. [2] YU S, WANG Y, JING L, et al. Autophagy in the"inflammation-carcinogenesis"pathway of liver and HCC immunotherapy[J]. Cancer Lett, 2017, 411:82-89. [3] PENG JL, LAI X, WEI J. Dual role of autophagy in hepatitis B virus and related liver diseases[J]. J Clin Hepat, 2018, 34 (10) :2217-2220. (in Chinese) 彭佳丽, 赖欣, 韦嘉.自噬在HBV及相关肝脏疾病中的双重性作用[J].临床肝胆病杂志, 2018, 34 (10) :2217-2220. [4] EFEYAN A, COMB WC, SABATINI DM. Nutrient-sensing mechanisms and pathways[J]. Nature, 2015, 517 (7534) :302-310. [5] SIMONSEN A, TOOSE SA. Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes[J]. J Cell Biol, 2009, 186 (6) :773-782. [6] RUAN WJ, WAN FS. The role of Beclin1-Vps34 in the development of autophagy[J]. Chin J Cell Biol, 2016, 38 (11) :1420-1426. (in Chinese) 阮雯静, 万福生. Beclin1-Vps34在自噬发生发展中的作用[J].中国细胞生物学学报, 2016, 38 (11) :1420-1426. [7] ZHONG L, SHU W, DAI W, et al. Reactive oxygen speciesmediated c-Jun NH2-terminal kinase activation contributes to hepatitis B virus X protein-induced autophagy via regulation of the Beclin-1/Bcl-2 interaction[J]. J Virol, 2017, 91 (15) :e00001-17. [8] TAKAMURA A, KOMATSU M, HARA T, et al. Autophagydeficient mice develop multiple liver tumors[J]. Genes Dev, 2011, 25 (8) :795-800. [9] LEVINE B, KROEMER G. Autophagy in the pathogenesis of disease[J]. Cell, 2008, 132 (1) :27-42. [10] GALLUZZI L, PIETROCOLA F, BRAVO-SAN PEDRO JM, et al. Autophagy in malignant transformation and cancer progression[J]. EMBO J, 2015, 34 (7) :856-880. [11] WANG X, DENG Q, FENG K, et al. Insufficient radiofrequency ablation promotes hepatocellular carcinoma cell progression via autophagy and the CD133 feedback loop[J]. Oncol Rep, 2018, 40 (1) :241-251. [12] LI XP, CUI DL. Role of tumor microenvironment in hepatocellular carcinoma[J]. World Chin J Dig, 2014, 22 (9) :1219-1225. (in Chinese) 李小鹏, 崔东来.肿瘤微环境在肝细胞癌中的作用[J].世界华人消化杂志, 2014, 22 (9) :1219-1225. [13] FU S, FAN XG. Pathophysiological implications of hepatitis B X protein in tumor microenvironment of hepatocellular carcinoma[J]. World Chin J Dig, 2016, 24 (10) :1477-1484. (in Chinese) 付沙, 范学东. HBx在肿瘤微环境中的作用及其对肝癌发生发展的影响[J].世界华人消化杂志, 2016, 24 (10) :1477-1484. [14] ZHONG Z, SANCHEZ-LOPEZ E, KARIN M. Autophagy, inflammation, and immunity:A troika governing cancer and its treatment[J]. Cell, 2016, 166 (2) :288-298. [15] LIU B, FANG M, HU Y, et al. Hepatitis B virus X protein inhibits autophagic degradation by impairing lysosomal maturation[J]. Autophagy, 2014, 10 (3) :416-430. [16] SAITO T, ICHIMURA Y, TAGUCHI K, et al. p62/Sqstm1 promotes malignancy of HCV-positive hepatocellular carcinoma through Nrf2-dependent metabolic reprogramming[J]. Nat Commun, 2016, 7:12030. [17] LEVINE B, MIZUSHIMA N, VIRGIN HM. Autophagy in immunity and inflammation[J]. Nature, 2011, 469 (7330) :323-335. [18] SU WC, CHAO TC, HUANG YL, et al. Rab5 and class III phosphoinositide 3-kinase Vps34 are involved in hepatitis C virus NS4B-induced autophagy[J]. J Virol, 2011, 85 (20) :10561-10571. [19] OANA NA, THOMES PG, DONOHUE TM. Involvement of autophagy in alcoholic liver injury and hepatitis C pathogenesis[J]. World J Gastroenterol, 2011, 17 (20) :2507-2514. [20] AMIR M, CZAJA MJ. Autophagy in nonalcoholic steatohepatitis[J]. Expert Rev Gastroenterol Hepatol, 2011, 5 (2) :159-166. [21] SINGH R, KAUSHIK S, WANG Y, et al. Autophagy regulates lipid metabolism[J]. Nature, 2009, 458 (7242) :1131-1135. [22] SHALAPOUR S, KARIN M. Fatty acid-induced T cell loss greases liver carcinogenesis[J]. Cell Metab, 2016, 23 (5) :759-761. [23] DING WX, LI M, CHEN X, et al. Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice[J].Gastroenterology, 2010, 139 (5) :1740-1752. [24] WU D, WANG X, ZHOU R, et al. Alcohol steatosis and cytotoxicity:the role of cytochrome P4502E1 and autophagy[J].Free Radic Biol Med, 2012, 53 (6) :1346-1357. [25] WANG LR, ZHU GQ, SHI KQ, et al. Autophagy in ethanolexposed liver disease[J]. Expert Rev Gastroenterol Hepatol, 2015, 9 (8) :1031-1037. [26] KOMATSU M, WAGURI S, UENO T, et al. Impairment of starvation induced and constitutive autophagy in Atg7-deficient mice[J]. J Cell Biol, 2005, 169 (3) :425-434. [27] INAMI Y, WAGURI S, SAKAMOTO A, et al. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells[J].J Cell Biol, 2011, 193 (2) :275-284. [28] BAO L, CHANDRA PK, MOROZ K, et al. Impaired autophagy response in human hepatocellular carcinoma[J]. Exp Mol Pathol, 2014, 96 (2) :149-154. [29] DUFFY A, LE J, SAUSVILLE E, et al. Autophagy modulation:a target for cancer treatment development[J]. Cancer Chemother Pharmacol, 2015, 75 (3) :439-447. [30] HEN W, MA T, SHEN XN, et al. Macrophage-induced tumor angiogenesis is regulated by the TSC2-m TOR pathway[J].Cancer Res, 2012, 72 (6) :1363-1372. [31] BOTBOL Y, GUERRERO-ROS I, MACIAN F, et al. Key roles of autophagy in regulating T-cell function[J]. Eur J Immunol, 2016, 46 (6) :1326-1334. [32] MILLER BC, ZHAO Z, STEPHENSON LM, et al. The autophagy gene ATG5 plays an essential role in B lymphocyte development[J]. Autophagy, 2008, 4 (3) :309-314. [33] HAHN T, AKPORIAYE ET. alpha-TEA as a stimulator of tumor autophagy and enhancer of antigen cross-presentation[J]. Autophagy, 2013, 9 (3) :429-431. [34] SUN K, XU L, JING Y, et al. Autophagy-deficient Kupffer cells promote tumorigenesis by enhancing mtROS-NF-κBIL1α/β-dependent inflammation and fibrosis during the preneoplastic stage of hepatocarcinogenesis[J]. Cancer Lett, 2017, 388:198-207. [35] MAH LY, RYAN KM. Autophagy and cancer[J]. Cold Spring Harb Perspect Biol, 2012, 4 (1) :a008821. [36] LI P, DU Q, CAO Z, et al. Interferon-gamma induces autophagy with growth inhibition and cell death in human hepatocellular carcinoma (HCC) cells through interferon-regulatory factor-1[J]. Cancer Lett, 2012, 314 (2) :213-222. [37] TIAN Y, KUO CF, SIR D, et al. Autophagy inhibits oxidative stress and tumor suppressors to exert its dual effect on hepatocarcinogenesis[J]. Cell Death Differ, 2015, 22 (6) :1025-1034. [38] GUO JY, XIA B, WHITE E. Autophagy-mediated tumor promotion[J]. Cell, 2013, 155 (6) :1216-1219. [39] YANG X, YU DD, YAN F, et al. The role of autophagy induced by tumor microenvironment in different cells and stages of cancer[J]. Cell Biosci, 2015, 5:14. [40] WU DH, JIA CC, CHEN J, et al. Autophagic LC3B overexpression correlates with malignant progression and predicts a poor prognosis in hepatocellular carcinoma[J]. Tumour Biol, 2014, 35 (12) :12225-12233. [41] YUAN H, LI AJ, MA SL, et al. Inhibition of autophagy significantly enhances combination therapy with sorafenib and HDAC inhibitors for human hepatoma cells[J]. World J Gastroenterol, 2014, 20 (17) :4953-4962. [42] SONG B, QI B, CHENG HS, et al. Ulinastatin reduces the resistance of liver cancer cells to epirubicin by inhibiting autophagy[J]. PLo S One, 2015, 10 (3) :e0120694. [43] SHIBUTANI ST, SAITOH T, NOWAG H, et al. Autophagy and autophagy-related proteins in the immune system[J]. Nat Immunol, 2015, 16 (10) :1014-1024. [44] PAN H, CHEN L, XU Y, et al. Autophagy-associated immune responses and cancer immunotherapy[J]. Oncotarget, 2016, 7 (16) :21235-21246. [45] GABAI VL, SHIFRIN VI. Feasibility analysis of p62 (SQSTM1) -encoding DNA vaccine as a novel cancer immunotherapy[J]. Int Rev Immunol, 2014, 33 (5) :375-382. [46] LI H, LI X, LIU S, et al. Programmed cell death-1 (PD-1) checkpoint blockade in combination with a mammalian target of rapamycin inhibitor restrains hepatocellular carcinoma growth induced by hepatoma cell-intrinsic PD-1[J]. Hepatology, 2017, 66 (6) :1920-1933. [47] EL-KHOUEIRY AB, SANGRO B, YAU H, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate040) :An open-label, non-comparative, phase 1/2 dose escalation and expansion trial[J]. Lancet, 2017, 389 (10088) :2492-2502. [48] KUDO M. Immuno-oncology in hepatocellular carcinoma:2017 Update[J]. Oncology, 2017, 93 (Suppl 1) :147-159. [49] REN ZG. Immunotherapy for hepatocellular carcinoma[J]. J Clin Hepat, 2018, 34 (7) :1371-1373. (in Chinese) 任志刚.肝细胞癌的免疫治疗[J].临床肝胆病杂志, 2018, 34 (7) :1371-1373. [50] LOPEZ-SOTO A, BRAVO-SAN PEDRO JM, KROEMER G, et al. Involvement of autophagy in NK cell development and function[J]. Autophagy, 2017, 13 (3) :633-636. [51] LEE JH, LIM YS, YEON JE, et al. Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma[J]. Gastroenterology, 2015, 148 (7) :1383-1391. [52] JIANG SS, TANG Y, ZHANG YJ, et al. A phase I clinical trial utilizing autologous tumor-infiltrating lymphocytes in patients with primary hepatocellular carcinoma[J]. Oncotarget, 2015, 6 (38) :41339-41349. [53] WANG Y, TANG Y, ZHANG YJ, et al. CD133-directed CAR T cells for advanced metastasis malignancies:A phase I trial[J]. Oncoimmunology, 2018, 7 (7) :e1440169. [54] GABAI VL, SHIFRIN VI. Feasibility analysis of p62 (SQSTM1) -encoding DNA vaccine as a novel cancer immunotherapy[J]. Int Rev Immunol, 2014, 33 (5) :375-382. [55] SU S, ZHOU H, XUE M, et al. Anti-tumor efficacy of a hepatocellular carcinoma vaccine based on dendritic cells combined with tumor-derived autophagosomes in murine models[J]. Asian Pac J Cancer Prev, 2013, 14 (5) :3109-3116. [56] YAN Y, LIU N, LIU L, et al. Autophagy enhances antitumor immune responses induced by irradiated hepatocellular carcinoma cells engineered to express hepatitis B virus X protein[J]. Oncol Rep, 2013, 30 (2) :993-999. [57] WANG S, ZHU M, WANG Q, et al. Alpha-fetoprotein inhibits autophagy to promote malignant behaviour in hepatocellular carcinoma cells by activating PI3K/AKT/m TOR signalling[J].Cell Death Dis, 2018, 9 (10) :1027. [58] NAKAGAWA H, MIZUKOSHI E, KOBAYASHI E, et al. Association between high-avidity T-cell receptors, induced by alpha-fetoprotein-derived peptides, and anti-tumor effects in patients with hepatocellular carcinoma[J]. Gastroenterology, 2017, 152 (6) :1395-1406. e1310. [59] YUAN S, FANG X, XU Y, et al. An oncolytic adenovirus that expresses the HAb18 and interleukin 24 genes exhibits enhanced antitumor activity in hepatocellular carcinoma cells[J].Oncotarget, 2016, 7 (37) :60491-60502. [60] ZHANG J, LAI W, LI Q, et al. A novel oncolytic adenovirus targeting Wnt signaling effectively inhibits cancer-stem like cell growth via metastasis, apoptosis and autophagy in HCC models[J]. Biochem Biophys Res Commun, 2017, 491 (2) :469-477.
本文二维码
计量
- 文章访问数: 1368
- HTML全文浏览量: 58
- PDF下载量: 328
- 被引次数: 0