中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长链非编码RNA EXOC7在非酒精性脂肪性肝病中的表达及临床意义

张丽云 邓家琦 张双 邓华江 李晓红

王欣, 胡义扬, 刘平, 冯琴. 高血压与非酒精性脂肪性肝病的关系[J]. 临床肝胆病杂志, 2020, 36(11): 2584-2588. DOI: 10.3969/j.issn.1001-5256.2020.11.042.
引用本文: 王欣, 胡义扬, 刘平, 冯琴. 高血压与非酒精性脂肪性肝病的关系[J]. 临床肝胆病杂志, 2020, 36(11): 2584-2588. DOI: 10.3969/j.issn.1001-5256.2020.11.042.
WANG Xin, HU YiYang, LIU Ping, FENG Qin. Association between hypertension and nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2020, 36(11): 2584-2588. DOI: 10.3969/j.issn.1001-5256.2020.11.042.
Citation: WANG Xin, HU YiYang, LIU Ping, FENG Qin. Association between hypertension and nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2020, 36(11): 2584-2588. DOI: 10.3969/j.issn.1001-5256.2020.11.042.

长链非编码RNA EXOC7在非酒精性脂肪性肝病中的表达及临床意义

DOI: 10.3969/j.issn.1001-5256.2020.02.032
基金项目: 

泸州市科技创新苗子培育计划项目(2017-R-67); 西南医科大学青年基金(2018-ZRQN-077); 

详细信息
  • 中图分类号: R575.5

Expression and significance of the long non-coding RNA EXOC7 in nonalcoholic fatty liver disease

Research funding: 

 

  • 摘要:

    目的观察非酒精性脂肪性肝病(NAFLD)患者血清及肝穿刺组织中长链非编码RNA(lncRNA) EXOC7的表达及临床意义。方法选取2013年1月1日-2018年12月31日于西南医科大学附属医院住院行肝穿刺并经影像学及组织病理学诊断为NAFLD的患者120例,其中非酒精性单纯性脂肪肝(NAFL) 47例,非酒精性脂肪性肝炎(NASH) 73例。另选取同期体检的50例无脂肪变性和脂肪性肝炎的其他肝病患者作为对照组。采用Real-time PCR法检测lncRNA EXOC7在肝组织及血清中的表达。计量资料两组间比较采用t检验;多组间比较采用方差分析,进一步两两比较采用SNK-q检验。计数资料两组间比较采用χ2检验。采用Pearson相关分析lncRNA EXOC7表达与临床各生化指标的关系。绘制受试者工作特征曲线(ROC曲线)并分析lncRNA EXOC7的临床诊断价值。结果与对照组相比,NAFL和NASH患者的组织及血清中lncRNA EXOC7表达显著增高(P值均<0. 05),且其表达水平随着肝脏脂肪变性及炎症程度的加重而提升(F=19. 96,P <0. 05)。相...

     

  • 全世界约有一半新诊断的肝细胞癌(hepatocellular cell carcinoma,HCC)病例发生在我国,其中HBV感染是主要危险因素,占全球HCC病例的50%~80%[1]。HBV通过多种机制在宿主细胞中持续存在,从而导致慢性HBV感染[2],并且诱导HCC发生[3]。超过80%的HCC在肝硬化基础上发展,这表明肝硬化在肝癌前环境中起着重要作用[4]。因此慢性HBV感染和肝硬化是肝癌发生的高风险因素。由于缺乏明显的症状和有效的筛查策略,80%的HCC患者被诊断时已为中晚期,其中仅有30%~40%患者符合当前有效治疗方案的条件[5],故在早期将慢性HBV感染、肝硬化与HCC区分诊断是延长患者生存期甚至根治HCC的关键。现急需一种检测方式能够在患有良性肝病的肝癌高危人群中早期筛查出HCC,从而降低病死率。影像学检查作为有效筛查方法被应用于临床,但是受限于设备以及检测人员。实验室检测则更能筛查大量人群,目前主要的早期实验室筛查方法为检测患者血清AFP,但单一指标检测的敏感度与特异度存在限制。考虑联合指标检测能够提高诊断效率,本文将探究AFP与GGT/AST联合检测在良性肝病和HCC区别诊断中发挥的作用,以期为临床诊断提供新的参考依据。

    选取2019年1月15日—6月15日于本院诊治的慢性乙型肝炎患者(CHB组)、乙型肝炎肝硬化患者(LC组)、HBV相关HCC患者(HCC组),另选取同期健康体检者作为对照(HC组)。纳入标准:(1)HCC组患者HBsAg为阳性且诊断完全符合《原发性肝癌诊疗规范(2017年版)》[6]; (2)HCC组、CHB组和LC组患者均为首次诊断,在接受治疗前收集生化指标; (3)临床资料完整。排除标准:(1)排除HCC之外的恶性肿瘤; (2)排除HBV以外的其他肝炎病毒感染; (3)排除患有严重糖尿病、甲状腺亢进以及心血管疾病等患者; (4)排除妊娠患者。研究对象均自愿参与本项研究。

    采集所有研究对象空腹6~8 h后的静脉血5 ml,以转速3500 r/min(离心半径=16 cm)离心5 min,分离血清后-80 ℃冷冻备用。采用Siemens公司ADVIACENTUAR XP全自动化学发光免疫分析仪及配套试剂盒检测血清AFP水平,参考区间为0~8.0 ng/ml。使用Siemens公司ADVIA2400全自动生化分析仪检测AST、ALT、GGT水平,参考区间分别为15~40、5~40、10~60 U/L。以上操作严格依据说明书进行,所有检测均在试剂盒说明书规定时间内完成,且严格遵守试验相关操作规程。

    本研究方案经由武汉大学人民医院临床研究伦理委员会审批,批号:WDRY2018-K047。

    采用SPSS 23.0软件、GraphPad Prism 6.0和MedCalc 18.2.1对数据进行统计分析。正态分布计量资料以x±s表示,多组间比较采用方差分析,进一步两两比较采用LSD-t检验。偏态分布计量资料以M(P25~P75)表示,多组间比较采用Kruskal-Wallis H检验,进一步两两比较采用Nemenyi检验。计数资料组间比较采用χ2检验。通过二元logistic回归分析,计算出预测变量,并绘制AFP、GGT/AST以及预测变量单独或联合检测的受试者工作特征曲线(ROC曲线),计算曲线下面积(AUC)及敏感度、特异度,采用Z检验对AUC进行比较。P<0.05为差异有统计学意义。

    共纳入研究对象352例,其中HC组86例,男42例,女44例,年龄23~82岁,平均(55.90±15.19)岁; CHB组68例,男38例,女30例,年龄22~77岁,平均(51.40±10.59)岁,HBV DNA阳性50例; LC组69例,男34例,女35例,年龄28~79岁,平均(53.49±11.35)岁,HBV DNA阳性36例,Child-Pugh A级25例,B级32例,C级12例; HCC组129例,男70例,女59例,年龄24~78岁,平均(54.60±11.17)岁,HBV DNA阳性50例,Child-Pugh A级79例,B级41例,C级9例,BCLC分期A期21例,B期31例,C期77例。4组研究对象年龄(F=1.455,P=0.227)与性别分布(χ2=1.346,P=0.718)差异均无统计学意义。

    HCC组与HC组、CHB组、LC组之间患者的AFP、GGT/AST、GGT比较差异均有统计学意义(P值均<0.05)(表 1)。

    表  1  各组AFP、GGT、AST及GGT/AST血清学水平比较
    组别 例数 AFP(ng/ml) GGT/AST GGT(U/L) AST(U/L)
    HC组 86 3.35(2.20~4.70) 0.98(0.71~1.36) 20.00(15.00~27.00) 21.00(18.00~24.00)
    CHB组 68 4.35(2.35~15.75) 0.82(0.46~1.25) 51.00(23.75~140.75)1) 61.00(34.25~125.00)1)
    LC组 69 8.60(2.70~54.20)1) 0.97(0.55~1.81) 69.00(27.00~113.00)1) 47.00(31.00~88.00)1)
    HCC组 129 157.10(9.90~6126.40)1)2)3) 2.00(1.19~3.11)1)2)3) 98.00(45.00~207.00)1)2)3) 46.00(29.00~88.00)1)2)
    H 124.018 70.202 126.282 135.987
    P <0.001 <0.001 <0.001 <0.001
    注:与HC组比较,1)P<0.05;与CHB组比较,2)P<0.05;与LC组比较,3)P<0.05。
    下载: 导出CSV 
    | 显示表格

    采用二元logistic回归分析得到不同组别之间两种指标的联合回归模型,然后进一步绘制其ROC曲线(图 1),计算AUC(表 2),结果显示,在HCC组与LC组、HCC组与HC组+CHB组+LC组、HCC组与CHB组+LC组中,AFP与GGT/AST联合诊断的AUC均显著高于AFP单独诊断的AUC(Z值分别为2.684、2.241、2.415,P值分别为0.007、0.025、0.016)。

    图  1  AFP与GGT/AST单独或联合检测诊断HCC的ROC曲线
    注:a,HCC组与CHB组; b,HCC组与LC组; c,HCC组与HC组+CHB组+LC组; d,HCC组与CHB组+LC组。
    表  2  AFP与GGT/AST单独或联合检测在辅助HCC诊断中的价值
    分组 标志物 AUC 95%CI 敏感度(%) 特异度(%) P
    HCC组vs CHB组 AFP 0.803 0.742~0.864 72.9 72.1 <0.05
    GGT/AST 0.789 0.717~0.861 67.4 83.8 <0.05
    联合 0.846 0.790~0.910 79.8 77.9 <0.05
    HCC组vs LC组 AFP 0.760 0.693~0.826 55.8 84.1 <0.05
    GGT/AST 0.727 0.650~0.803 90.7 46.4 <0.05
    联合 0.802 0.741~0.862 48.1 97.1 <0.05
    HCC组vs HC组+CHB组+LC组 AFP 0.835 0.791~0.879 86.0 68.2 <0.05
    GGT/AST 0.768 0.718~0.817 67.4 74.9 <0.05
    联合 0.843 0.802~0.885 73.6 78.5 <0.05
    HCC组vs CHB组+LC组 AFP 0.781 0.727~0.835 55.8 85.4 <0.05
    GGT/AST 0.758 0.700~0.815 67.4 77.5 <0.05
    联合 0.823 0.775~0.871 81.4 66.4 <0.05
    下载: 导出CSV 
    | 显示表格

    HCC的发生通常伴有前期的慢性HBV感染和肝硬化,在慢性HBV感染以及患有肝硬化的高危人群中,利用有效的筛查方式早期发现HCC至关重要,是患者可能获得根治的关键[7]。本文纳入352例研究对象,基于相关纳排标准将其分为4组,统计分析结果发现HCC组与HC组、CHB组、LC组AFP和GGT/AST比较,差异均有统计学意义(P值均<0.05),此结果与以往研究结果[8]相符。

    AFP作为最早被发现的蛋白肿瘤标志物之一[9],其可反映肝功能情况,因此广泛用于实验室检查。综合全球多种指南,AFP在我国可作为良好的血清学指标[10],但其特异度低,易引起误判[11]。在CHB、LC患者中AFP水平也会升高,因此鉴别诊断HBV相关HCC患者时,AFP具有一定局限性,且部分HBV相关HCC患者的AFP水平并未达到筛查标准,因此容易漏查[12]

    GGT在哺乳动物组织中广泛分布,是一种质膜结合蛋白,血清中的GGT主要来源于肝胆系统[13]。已有研究[14]表明GGT通过诱导DNA损伤来促进肿瘤进展和不良预后,释放活性氧以激活与入侵相关的信号通路,与HCC发展关联密切。AST主要分布于肝细胞线粒体内,当肝脏严重病变坏死时,血清中AST水平会显著升高[15],作为肝功能检查常用生化指标,GGT与AST在临床中应用广泛[16]。本研究计算GGT/AST比值并发现其单独或联合AFP时在HBV相关HCC的诊断中具有一定价值,且该指标计算简单,不用另增检验项目,便于在HCC诊断过程中应用。

    本研究ROC曲线分析结果显示,在HCC组与LC组中,GGT/AST联合AFP后AUC明显提高,表明GGT/AST与AFP联合在鉴别HCC与LC时有良好的诊断效果; 在HCC组与HC组+CHB组+LC组以及CHB组+LC组分别区别诊断时,二者联合的AUC均明显高于AFP单独诊断的AUC,进一步说明GGT/AST联合AFP在鉴别HCC与良性肝病患者中有较好的诊断价值。

    综上所述,本研究表明GGT/AST联合AFP在HBV相关HCC的临床诊断中具有一定价值,提高了AFP的单独诊断效率。由于本研究样本量较小,因此相关研究结果仍需未来增加样本量予以验证。

  • [1] HARTLEY A,SANTOS FERREIRA DL,ANDERSON EL,et al.Metabolic profiling of adolescent non-alcoholic fatty liver disease[J]. Wellcome Open Res,2019,3:166.
    [2] ABU DAYYEH BK,BAZERBACHI F,GRAUPERA I,et al. Endoscopic bariatric and metabolic therapies for non-alcoholic fatty liver disease[J]. J Hepatol,2019,71(6):1246-1248.
    [3] CHAKRABORTY A,CHOUDHURY A,SAHA A. Development of non-alcoholic fatty liver disease(NAFLD)in young obese tribal subjects of Tripura:Link between low 25(OH)vitamin-D levels and immune modulators[J]. J Assoc Physicians India,2019,67(8):52-56.
    [4] FEKRY B,RIBAS-LATRE A,BAUMGARTNER C,et al. HNF4α-deficient fatty liver provides a permissive environment for sex-independent hepatocellular carcinoma[J]. Cancer Res,2019,79(22):5860-5873.
    [5] WANG T,PAN W,HU J,et al. Circular RNAs in metabolic diseases[J]. Adv Exp Med Biol,2018,1087:275-285.
    [6] MA TT,HUANG C,NI Y,et al. ATP citrate lyase and lncRNA NONMMUT010685 play crucial role in nonalcoholic fatty liver disease based on analysis of microarray data[J]. Cell Physiol Biochem,2018,51(2):871-885.
    [7] SALUJA M,KUMAR K,SWAMI YK,et al. Association between non-alcoholic fatty liver disease and left ventricular diastolic dysfunction in patients of type 2 diabetes[J]. J Assoc Physicians India,2019,67(8):20-24.
    [8] CHALASANI N,YOUNOSSI Z,LAVINE JE,et al. The diagnosis and management of non-alcoholic fatty liver disease:Practice Guideline by the American Association for the Study of Liver Diseases,American College of Gastroenterology,and the American Gastroenterological Association[J]. Hepatology,2012,55(6):2005-2023.
    [9] LEE J,PARK JS,ROH YS. Molecular insights into the role of mitochondria in non-alcoholic fatty liver disease[J]. Arch Pharm Res,2019,42(11):935-946.
    [10] YANG S,KWAK S,LEE JH,et al. Nonalcoholic fatty liver disease is an early predictor of metabolic diseases in a metabolically healthy population[J]. PLo S One,2019,14(11):e0224626.
    [11] LIU T,LUO X,LI ZH,et al. Zinc-α2-glycoprotein 1 attenuates non-alcoholic fatty liver disease by negatively regulating tumour necrosis factor-α[J]. World J Gastroenterol,2019,25(36):5451-5468.
    [12] RHEE EJ. Nonalcoholic fatty liver disease and diabetes:An epidemiological perspective[J]. Endocrinol Metab(Seoul),2019,34(3):226-233.
    [13] WU J,PENG X,QIAO M,et al. Genome-wide analysis of long noncoding RNA and mRNA profiles in PRRSV-infected porcine alveolar macrophages[J]. Genomics,2019.[Epub ahead of print]
    [14] BERGAD-PIJUAN J,PULIDO-QUETGLAS C,VANCURA A,et al. CASPR,an analysis pipeline for single and paired guide RNA CRISPR screens,reveals optimal target selection for long noncoding RNAs[J]. Bioinformatics,2019.[Epub ahead of print]
    [15] WU H,SONG X,LING Y,et al. Comprehensive bioinformatics analysis of critical lncRNAs,mRNAs and miRNAs in non-alcoholic fatty liver disease[J]. Mol Med Rep,2019,19(4):2649-2659.
    [16] CHEN X,TAN XR,LI SJ,et al. LncRNA NEAT1 promotes hepatic lipid accumulation via regulating miR-146a-5p/ROCK1in nonalcoholic fatty liver disease[J]. Life Sci,2019,235:116829.
    [17] WANG B,LI X,HU W,et al. Silencing of lncRNA SNHG20delays the progression of nonalcoholic fatty liver disease to hepatocellular carcinoma via regulating liver Kupffer cells polarization[J]. IUBMB Life,2019,71(12):1952-1961.
    [18] CHEN Y,CHEN X,GAO J,et al. Long noncoding RNA FLRL2alleviated nonalcoholic fatty liver disease through Arntl-Sirt1pathway[J]. FASEB J,2019,33(10):11411-11419.
    [19] SUN Y,SONG Y,LIU C,et al. LncRNA NEAT1-MicroRNA-140 axis exacerbates nonalcoholic fatty liver through interrupting AMPK/SREBP-1 signaling[J]. Biochem Biophys Res Commun,2019,516(2):584-590.
    [20] LIU J,TANG T,WANG GD,et al. LncRNA-H19 promotes hepatic lipogenesis by directly regulating miR-130a/PPARγaxis in non-alcoholic fatty liver disease[J]. Biosci Rep,2019,39(7):BSR20181722.
    [21] SHEN X,GUO H,XU J,et al. Inhibition of lncRNA HULC improves hepatic fibrosis and hepatocyte apoptosis by inhibiting the MAPK signaling pathway in rats with nonalcoholic fatty liver disease[J]. J Cell Physiol,2019,234(10):18169-18179.
    [22] ZHANG B,LI H,LI D,et al. Long noncoding RNA Mirt2 upregulates USP10 expression to suppress hepatic steatosis by sponging miR-34a-5p[J]. Gene,2019,700:139-148.
    [23] HUANG P,HUANG FZ,LIU HZ,et al. LncRNA MEG3 functions as a ceRNA in regulating hepatic lipogenesis by competitively binding to miR-21 with LRP6[J]. Metabolism,2019,94:1-8.
  • 期刊类型引用(3)

    1. 姚爱武,廖和壁,张璟. 血清AFP、AFP-L3与肝细胞癌经肝动脉化疗栓塞术后疗效的关系分析. 分子诊断与治疗杂志. 2023(04): 690-693+698 . 百度学术
    2. 朱富平,刘红强,常清,冷伟业. miR-222-3p在乙型肝炎病毒相关肝细胞癌血清外泌体中的表达及临床意义. 局解手术学杂志. 2022(08): 702-708 . 百度学术
    3. 高武林,韦超,郭晓烨. 术前血清MMP-9水平对HBV相关肝细胞癌患者肝切除术后生存的预测作用. 东南大学学报(医学版). 2022(05): 652-659 . 百度学术

    其他类型引用(2)

  • 加载中
计量
  • 文章访问数:  1158
  • HTML全文浏览量:  71
  • PDF下载量:  193
  • 被引次数: 5
出版历程
  • 收稿日期:  2019-10-10
  • 出版日期:  2020-02-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

/

返回文章
返回