Research advances in the pathogenesis of nonalcoholic fatty liver disease
-
摘要:
非酒精性脂肪性肝病(NAFLD)发生和发展的潜在机制较复杂。传统的"二次打击"病理生理学理论已受到挑战。有关胰岛素抵抗、脂肪因子和其他未被广泛认识的各器官致病因素之间相互作用的研究近年来有所增加。归纳总结了肝脏自身因素、肠道因素、下丘脑因素、细胞外内囊体因素及遗传因素等,着重介绍肝脏及肝外周围器官协同参与NAFLD发病过程的作用机制,以期为将来获得NAFLD调控网络的新见解以及确定预防和治疗NAFLD的新靶标提供参考。
Abstract:The development and progression of nonalcoholic fatty liver disease(NAFLD) have complex potential mechanisms.The traditional“two-hit”pathophysiological theory has been challenged,and in recent years,an increasing number of studies have been performed to investigate the interaction between insulin resistance,adipokines,and other unknown pathogenic factors in various organs.This article summarizes the factors of the liver,intestinal tract,hypothalamus,and extracellular cysts,as well as genetic factors,with an emphasis on the synergistic mechanism of action of the liver and extrahepatic organs in the pathogenesis of NAFLD,in order to provide a reference for obtaining new insights into NAFLD regulatory network and determining new targets for the prevention and treatment of NAFLD.
-
[1] KITADE H,CHEN G,NI Y,et al. Nonalcoholic fatty liver disease and insulin resistance:New insights and potential new treatments[J]. Nutrients,2017,9(4):387. [2] JIANG M,WU N,CHEN X,et al. Pathogenesis of and major animal models used for nonalcoholic fatty liver disease[J]. J Int Med Res,2019,47(4):1453-1466. [3] WONG VW,CHITTURI S,WONG GL,et al. Pathogenesis and novel treatment options for non-alcoholic steatohepatitis[J].Lancet Gastroenterol Hepatol,2016,1(1):56-67. [4] LIU TY,XIONG XQ,REN XS,et al. FNDC5 alleviates hepatosteatosis by restoring AMPK/m TOR-mediated autophagy,fatty acid oxidation,and lipogenesis in mice[J]. Diabetes,2016,65(11):3262-3275. [5] GUHA P,TYAGI R,CHOWDHURY S,et al. IPMK mediates activation of ULK signaling and transcriptional regulation of autophagy linked to liver inflammation and regeneration[J]. Cell Rep,2019,26(10):2692-2703. [6] GUHA P,SNYDER SH. Noncatalytic functions of IPMK are essential for activation of autophagy and liver regeneration[J].Autophagy,2019,15(8):1473-1474. [7] SHI C,XUE W,HAN B,et al. Acetaminophen aggravates fat accumulation in NAFLD by inhibiting autophagy via the AMPK/m TOR pathway[J]. Eur J Pharmacol,2019,850:15-22. [8] ZHANG S,MAO Y,FAN X. Inhibition of ghrelin o-acyltransferase attenuated lipotoxicity by inducing autophagy via AMPKm TOR pathway[J]. Drug Des Devel Ther,2018,12:873-885. [9] SHI J,FAN J,SU Q,et al. Cytokines and abnormal glucose and lipid metabolism[J]. Front Endocrinol(Lausanne),2019,10:703. [10] JUNG TW,YOO HJ,CHOI KM. Implication of hepatokines in metabolic disorders and cardiovascular diseases[J]. BBA Clin,2016,5:108-113. [11] KE Y,XU C,LIN J,et al. Role of hepatokines in non-alcoholic fatty liver disease[J]. J Transl Int Med,2019,7(4):143-148. [12] MISU H,TAKAMURA T,TAKAYAMA H,et al. A liver-derived secretory protein,selenoprotein P,causes insulin resistance[J]. Cell Metab,2010,12(5):483-495. [13] PANG J,XU W,ZHANG X,et al. Significant positive association of endotoxemia with histological severity in 237 patients with non-alcoholic fatty liver disease[J]. Aliment Pharmacol Ther,2017,46(2):175-182. [14] JIN CJ,ENGSTLER AJ,ZIEGENHARDT D,et al. Loss of lipopolysaccharide-binding protein attenuates the development of diet-induced non-alcoholic fatty liver disease in mice[J]. J Gastroenterol Hepatol,2017,32(3):708-715. [15] NIGHOT M,AL-SADI R,GUO S,et al. Lipopolysaccharide-induced increase in intestinal epithelial tight permeability is mediated by toll-like receptor 4/myeloid differentiation primary response 88(My D88)activation of myosin light chain kinase expression[J]. Am J Pathol,2017,187(12):2698-2710. [16] JI Y,YIN Y,LI Z,et al. Gut microbiota-derived components and metabolites in the progression of non-alcoholic fatty liver disease(NAFLD)[J]. Nutrients,2019,11(8):1712. [17] GONZALEZ FJ,JIANG CT,PATTERSON AD. An intestinal microbiota-farnesoid X receptor axis modulates metabolic disease[J]. Gastroenterology,2016,151(5):845-859. [18] LIU XZ,XU JX. Research progress on the relationship between intestinal flora and non-alcoholic fatty liver disease[J]. Chin J Gerontol,2019,39(11):2815-2818.(in Chinese)刘晓贞,徐积兄.肠道菌群与非酒精性脂肪肝关系的研究进展[J].中国老年学杂志,2019,39(11):2815-2818. [19] RAU M,REHMAN A,DITTRICH M,et al. Fecal SCFAs and SCFA-producing bacteria in gut microbiome of human NAFLD as a putative link to systemic T-cell activation and advanced disease[J]. United European Gastroenterol J,2018,6(10):1496-1507. [20] ZHOU D,CHEN YW,ZHAO ZH,et al. Sodium butyrate reduces high-fat diet-induced non-alcoholic steatohepatitis through upregulation of hepatic GLP-1R expression[J]. Exp Mol Med,2018,50(12):1-12. [21] CHENG YP,ZHANG XJ,WANG SC,et al. Research progress on the role of adipose factors in the occurrence and development of non-alcoholic fatty liver disease[J]. Shandong Med J,2019,59(30):98-102.(in Chinese)成艺坪,张秀娟,王思超,等.脂肪因子在非酒精性脂肪肝病发生发展中作用的研究进展[J].山东医药,2019,59(30):98-102. [22] POLYZOS SA,ARONIS KN,KOUNTOURAS J,et al. Circulating leptin in non-alcoholic fatty liver disease:A systematic review and meta-analysis[J]. Diabetologia,2016,59(1):30-43. [23] HOSSAIN IA,AKTER S,RAHMAN MK,et al. Gender specific association of serum leptin and insulinemic indices with nonalcoholic fatty liver disease in prediabetic subjects[J]. PLo S One,2015,10(11):e0142165. [24] XIE LF,CAI YY,JI LL,et al. Research progress of microRNAs in nonalcoholic fatty liver disease[J]. J Pract Med,2016,32(12):2061-2063.(in Chinese)谢璐帆,蔡艳阳,计雷来,等.MicroRNAs在非酒精性脂肪肝中的研究进展[J].实用医学杂志,2016,32(12):2061-2063. [25] LAI CY,LIN CY,HSU CC,et al. Liver-directed microRNA-7a depletion induces nonalcoholic fatty liver disease by stabilizing YY1-mediated lipogenic pathways in zebrafish[J]. Biochim Biophys Acta Mol Cell Biol Lipids,2018,1863(8):844-856. [26] YUAN X,WANG J,TANG X,et al. Berberine ameliorates nonalcoholic fatty liver disease by a global modulation of hepatic mRNA and lncRNA expression profiles[J]. J Transl Med,2015,13:24. [27] LETI F,LEGENDRE C,STILL CD,et al. Altered expression of MALAT1 lncRNA in nonalcoholic steatohepatitis fibrosis regulates CXCL5 in hepatic stellate cells[J]. Transl Res,2017,190:25-39. [28] GREENBERG AS,COLEMAN RA,KRAEMER FB,et al. The role of lipid droplets in metabolic disease in rodents and humans[J]. J Clin Invest,2011,121(6):2102-2110. [29] FUJII H,IKURA Y,ARIMOTO J,et al. Expression of perilipin and adipophilin in nonalcoholic fatty liver disease; relevance to oxidative injury and hepatocyte ballooning[J]. J Atheroscler Thromb,2009,16(6):893-901. [30] LI JZ,YE J,XUE B,et al. Cideb regulates diet-induced obesity,liver steatosis,and insulin sensitivity by controlling lipogenesis and fatty acid oxidation[J]. Diabetes,2007,56(10):2523-2532. [31] CRUNK AE,MONKS J,MURAKAMI A,et al. Dynamic regulation of hepatic lipid droplet properties by diet[J]. PLo S One,2013,8(7):e67631. [32] ROMEO S,KOZLITINA J,XING C,et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease[J]. Nat Genet,2008,40(12):1461-1465. [33] MARCHISELLO S,DI PINO A,SCICALI R,et al. Pathophysiological,molecular and therapeutic issues of nonalcoholic fatty liver disease:An overview[J]. Int J Mol Sci,2019,20(8):1948. [34] SMAGRIS E,BASURAY S,LI J,et al. Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis[J]. Hepatology,2015,61(1):108-118. [35] SU W,WANG Y,JIA X,et al. Comparative proteomic study reveals 17β-HSD13 as a pathogenic protein in nonalcoholic fatty liver disease[J]. Proc Natl Acad Sci U S A,2014,111(31):11437-11442. [36] HORIGUCHI Y,ARAKI M,MOTOJIMA K. 17beta-Hydroxysteroid dehydrogenase type 13 is a liver-specific lipid droplet-associated protein[J]. Biochem Biophys Res Commun,2008,370(2):235-238. [37] TULKENS J,VERGAUWEN G,van DEUN J,et al. Increased levels of systemic LPS-positive bacterial extracellular vesicles in patients with intestinal barrier dysfunction[J]. Gut,2020,69(1):191-193. [38] GU L,MENG R,TANG Y,et al. Tol-like receptor 4 signaling licenses the cytosolic transport of lipopolysaccharide from bacterial outer membrane vesicles[J]. Shock,2019,51(2):256-265. [39] GARZETTI L,MENON R,FINARDI A,et al. Activated macrophages release microvesicles containing polarized M1 or M2mRNAs[J]. J Leukoc Biol,2014,95(5):817-825. [40] BALA S,PETRASEK J,MUNDKUR S,et al. Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic,drug-induced,and inflammatory liver diseases[J]. Hepatology,2012,56(5):1946-1957.
计量
- 文章访问数: 1893
- HTML全文浏览量: 156
- PDF下载量: 390
- 被引次数: 0