中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肝细胞癌组织中程序性死亡受体1和T淋巴细胞免疫球蛋白黏蛋白3的表达及意义

周舸 谢丽平 林涛发 卢友光 王少扬

崔皓哲, 马向明, 刘倩, 孙苗苗, 赵利, 王万超, 刘四清, 曹立瀛. 腹型肥胖与甘油三酯的交互作用对非酒精性脂肪性肝病发病的影响[J]. 临床肝胆病杂志, 2020, 36(6): 1314-1319. DOI: 10.3969/j.issn.1001-5256.2020.06.025.
引用本文: 崔皓哲, 马向明, 刘倩, 孙苗苗, 赵利, 王万超, 刘四清, 曹立瀛. 腹型肥胖与甘油三酯的交互作用对非酒精性脂肪性肝病发病的影响[J]. 临床肝胆病杂志, 2020, 36(6): 1314-1319. DOI: 10.3969/j.issn.1001-5256.2020.06.025.
Cui HaoZhe, Ma XiangMing, Liu Qian, Sun MiaoMiao, Zhao Li, Wang WanChao, Liu SiQing, Cao LiYing. Influence of the interaction between abdominal obesity and hypertriglyceridemia on the development of nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2020, 36(6): 1314-1319. DOI: 10.3969/j.issn.1001-5256.2020.06.025.
Citation: Cui HaoZhe, Ma XiangMing, Liu Qian, Sun MiaoMiao, Zhao Li, Wang WanChao, Liu SiQing, Cao LiYing. Influence of the interaction between abdominal obesity and hypertriglyceridemia on the development of nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2020, 36(6): 1314-1319. DOI: 10.3969/j.issn.1001-5256.2020.06.025.

肝细胞癌组织中程序性死亡受体1和T淋巴细胞免疫球蛋白黏蛋白3的表达及意义

DOI: 10.3969/j.issn.1001-5256.2020.11.011
基金项目: 

院内课题(杰出青年培育专项)(2018Q10); 

详细信息
  • 中图分类号: R735.7

Expression and significance of programmed death-1 and T-cell immunoglobulin-and mucin domain-3-containing molecule 3 in hepatocellular carcinoma

Research funding: 

 

  • 摘要:

    目的探讨程序性死亡受体1(PD-1)和T淋巴细胞免疫球蛋白黏蛋白3(TIM-3)在肝细胞癌(HCC)中的表达情况及其临床意义。方法收集2013年1月-2015年12月于中国人民解放军联勤保障部队第九〇〇医院接受手术治疗的46例HCC患者的癌组织及癌旁组织(距癌缘> 1 cm)蜡块采用免疫组化法检测组织中PD-1和TIM-3的表达,分析两者的表达情况,及两者与临床病理特征和预后的关系。配对等级资料的比较采用Wilcoxon检验,等级资料的相关性分析采用Spearman法,采用KaplanMeier法进行生存分析,log-rank检验比较组间生存率差异,采用Cox回归分析模型进行多因素分析。结果 HCC组织中PD-1、TIM-3的表达水平均高于癌旁组织(P值均<0.05),PD-1主要定位于淋巴细胞中,TIM-3主要定位于肿瘤相关巨噬细胞中。HCC组织中PD-1和TIM-3的表达呈正相关(rs=0.397,P=0.006)。HCC组织中PD-1的表达水平与肿瘤大小(rs=0.480,P=0.001)、门静脉癌栓(rs

     

  • [1] BRAY F,FERLAY J,SOERJOMATARAM I,et al. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin,2018,68(6):394-424.
    [2] CHEN W,ZHENG R,BAADE PD,et al. Cancer statistics in China,2015[J]. CA Cancer J Clin,2016,66(2):115-132.
    [3] RENG ZG. Immunotherapy for hepatocellular carcinoma[J]. J Clin Hepatol,2018,34(7):1371-1373.(in Chinese)任正刚.肝细胞癌的免疫治疗[J].临床肝胆病杂志,2018,34(7):1371-1373.
    [4] BAGHDADI M,JINUSHI M. The impact of the TIM gene family on tumor immunity and immunosuppression[J]. Cell Mol Immunol,2014,11(1):41-48.
    [5] SACHDEVA M,CHAWLA YK,ARORA SK. Immunology of hepatocellular carcinoma[J]. World J Hepatol,2015,7(17):2080-2090.
    [6] LAN F,LI RM,YANG LY,et al. Anti-tumor immune therapy with programmed death-1 and its ligand inhibitors:research advances[J]. J Int Pharm Res,2016,43(5):813-817.(in Chinese)兰芬,李睿旻,阳凌燕,等.程序性细胞死亡蛋白1及其配体抑制剂抗肿瘤免疫治疗进展[J].国际药学研究杂志,2016,43(5):813-817.
    [7] JOYCE JA,FEARON DT. T cell exclusion,immune privilege,and the tumor microenvironment[J]. Science,2015,348(6230):74-80.
    [8] MONNEY L,SABATOS CA,GAGLIA JL,et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease[J]. Nature,2002,415(6871):536-541.
    [9] ANDERSON AC,ANDERSON DE,BREGOLI L,et al. Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells[J]. Science,2007,318(5853):1141-1143.
    [10] JU Y,HOU N,MENG J,et al. T cell immunoglobulin-and mucin-domain-containing molecule-3(Tim-3)mediates natural killer cell suppression in chronic hepatitis B[J]. J Hepatol,2010,52(3):322-329.
    [11] WU W,SHI Y,LI S,et al. Blockade of Tim-3 signaling restores the virus-specific CD8+T-cell response in patients with chronic hepatitis B[J]. Eur J Immunol,2012,42(5):1180-1191.
    [12] ANDERSON AC. Tim-3,a negative regulator of anti-tumor immunity[J]. Curr Opin Immunol,2012,24(2):213-216.
    [13] PATEL J,BOZEMAN EN,SELVARAJ P. Taming dendritic cells with TIM-3:Another immunosuppressive strategy used by tumors[J]. Immunotherapy,2012,4(12):1795-1798.
    [14] HARDING JJ,EL DIKA I,ABOU-ALFA GK. Immunotherapy in hepatocellular carcinoma:Primed to make a difference?[J]. Cancer,2016,122(3):367-377.
    [15] JI M,LIU Y,LI Q,et al. PD-1/PD-L1 pathway in nonsmall-cell lung cancer and its relation with EGFR mutation[J]. J Transl Med,2015,13:5.
    [16] FREEMAN-KELLER M,WEBER JS. Anti-programmed death receptor 1 immunotherapy in melanoma:Rationale,evidence and clinical potential[J]. Ther Adv Med Oncol,2015,7(1):12-21.
    [17] HUANG RY,EPPOLITO C,LELE S,et al. LAG3 and PD1 co-inhibitory molecules collaborate to limit CD8+T cell signaling and dampen antitumor immunity in a murine ovarian cancer model[J]. Oncotarget,2015,6(29):27359-27377.
    [18] SHINOHARA T,TANIWAKI M,ISHIDA Y,et al. Structure and chromosomal localization of the human PD-1 gene(PDCD1)[J]. Genomics,1994,23(3):704-706.
    [19] FRANCISCO LM,SAGE PT,SHARPE AH. The PD-1 pathway in tolerance and autoimmunity[J]. Immunol Rev,2010,236:219-242.
    [20] LIU LX,CAI W. Current situation and prospect of immunotherapy for hepatocellular carcinoma[J]. Chin J Dig Surg,2020,19(2):119-122.(in Chinese)刘连新,蔡伟.肝细胞癌免疫治疗的现状和展望[J].中华消化外科杂志,2020,19(2):119-122.
    [21] FIFE BT,PAUKEN KE,EAGAR TN,et al. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal[J]. Nat Immunol,2009,10(11):1185-1192.
    [22] ZHU C,ANDERSON AC,KUCHROO VK. TIM-3 and its regulatory role in immune responses[J]. Curr Top Microbiol Immunol,2011,350:1-15.
    [23] SOLINAS G,GERMANO G,MANTOVANI A,et al. Tumorassociated macrophages(TAM)as major players of the cancer-related inflammation[J]. J Leukoc Biol,2009,86(5):1065-1073.
    [24] BISWAS SK,MANTOVANI A. Macrophage plasticity and interaction with lymphocyte subsets:Cancer as a paradigm[J].Nat Immunol,2010,11(10):889-896.
    [25] MASSAGUE J. TGFbeta in cancer[J]. Cell,2008,134(2):215-230.
    [26] YAN WJ. TGFβenhanced Tim-3 expression on macrophages fosters M2-like alternative activation contributing to HCC[D].Jinan:Shandong University,2014.(in Chinese)阎文江.Tim-3在肿瘤相关巨噬细胞极化及肝细胞肝癌进展中的作用及机制研究[D].济南:山东大学,2014.
    [27] LI Z,LI N,LI F,et al. Immune checkpoint proteins PD-1 and TIM-3 are both highly expressed in liver tissues and correlate with their gene polymorphisms in patients with HBV-related hepatocellular carcinoma[J]. Pubmed, 2016, 95(52):e5749.
  • 期刊类型引用(10)

    1. 刘听潮,张示杰,杨婧,彭心宇,马儒林,郭恒,张向辉,何佳,郭淑霞. 新疆维吾尔族农村居民肝纤维化评分与心血管疾病发病关系前瞻性队列研究. 中国公共卫生. 2025(02): 154-160 . 百度学术
    2. 卢晶,朴红心,金雪梅,崔京淑,金仁顺. 慢性乙型肝炎肝纤维化抗病毒治疗后生活质量与AST/PLT比率、肝硬度值、病理组织学的相关性分析. 临床肝胆病杂志. 2021(04): 813-816 . 本站查看
    3. 刘红虹,福军亮,洪智贤,靳雪原,陈曦,王文苓,王冶,赵艳玲. 肝纤维化血清学无创检测研究进展. 传染病信息. 2021(04): 347-352 . 百度学术
    4. 魏鑫,徐懂,龙细雨,伍喜良,郭丽颖,贾建伟. 基于血清Fe和CA199预测模型对慢性乙型肝炎患者肝纤维化分期的临床研究. 中西医结合肝病杂志. 2021(10): 869-873 . 百度学术
    5. 郑少秋,王启之. 无创肝纤维化诊断研究现状与前景. 临床肝胆病杂志. 2019(01): 197-200 . 本站查看
    6. 徐莉力,王佳冰,杨华睿,童明辉. 肝、脾二维实时剪切波弹性成像技术及血清纤维化模型对CHB肝脏纤维化程度的评估原理与应用. 武警医学. 2019(02): 169-173 . 百度学术
    7. 吴方雄,闫蓉,高保华,田秋梅,徐静远,鲁晓岚. RPR FIB-4 APRI及AAR对107例慢性乙型肝炎肝纤维化的诊断准确性比较. 中国实用内科杂志. 2019(03): 249-253 . 百度学术
    8. 张丽杰,张古城,申弘,胡萌,张均倡. 中西医结合治疗对乙肝肝硬化代偿期患者逆转情况的队列研究. 湖南师范大学学报(医学版). 2019(01): 34-38 . 百度学术
    9. 许峰铭,盛庆寿. 血清标志物与瞬时弹性成像技术评估肝纤维化的研究进展. 临床肝胆病杂志. 2018(03): 618-622 . 本站查看
    10. 富慧文. 血府逐瘀汤治疗慢性乙型肝炎肝纤维化的效果研究. 名医. 2018(08): 9+14 . 百度学术

    其他类型引用(14)

  • 加载中
计量
  • 文章访问数:  4568
  • HTML全文浏览量:  27
  • PDF下载量:  78
  • 被引次数: 24
出版历程
  • 收稿日期:  2019-05-20
  • 出版日期:  2020-11-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回