中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人工智能在多种肝脏和胰腺疾病诊断中的作用

龚航 黄忠 刘先丽

引用本文:
Citation:

人工智能在多种肝脏和胰腺疾病诊断中的作用

DOI: 10.3969/j.issn.1001-5256.2020.12.048
详细信息
  • 中图分类号: R575;R576;TP18

Application of artificial intelligence in various liver and pancreas diseases

  • 摘要:

    利用人工智能提取出临床血液学数据、影像学图片等大量信息,形成各种可量化的特征,进而分析不同特征与所关心问题(如诊断)的关系,从而解决复杂的医学问题。主要从胰腺癌、肝纤维化及食管静脉曲张入手,阐述并分析了各种人工智能算法分别对上述疾病的诊断效能,以供临床医生更清楚地认识和决策。

     

  • [1] LE BERRE C,SANDBORN WJ,ARIDHI S,et al. Application of Artificial Intelligence to Gastroenterology and Hepatology[J]. Gastroenterology,2020,158(1):76-94. e2.
    [2] LECUN Y,BENGIO Y,HINTON G. Deep learning[J]. Nature,2015,521(7553):436-444.
    [3] FRITSCHER-RAVENS A,BRAND L,KNOFEL WT,et al. Comparison of endoscopic ultrasound-guided fine needle aspiration for focal pancreatic lesions in patients with normal parenchyma and chronic pancreatitis[J]. Am J Gastroenterol,2002,97(11):2768-2775.
    [4] CASTELLANO G,BONILHA L,LI LM,et al. Texture analysis of medical images[J]. Clin Radiol,2004,59(12):1061-1069.
    [5] DAS A,NGUYEN CC,LI F,et al. Digital image analysis of EUS images accurately differentiates pancreatic cancer from chronic pancreatitis and normal tissue[J]. Gastrointest Endosc,2008,67(6):861-867.
    [6] ZHU M,XU C,YU J,et al. Differentiation of pancreatic cancer and chronic pancreatitis using computer-aided diagnosis of endoscopic ultrasound(EUS)images:A diagnostic test[J]. PLo S One,2013,8(5):e63820.
    [7] OZKAN M,CAKIROGLU M,KOCAMAN O,et al. Age-based computer-aided diagnosis approach for pancreatic cancer on endoscopic ultrasound images[J]. Endosc Ultrasound,2016,5(2):101-107.
    [8] SFTOIU A,VILMANN P,GORUNESCU F,et al. Efficacy of an artificial neural network-based approach to endoscopic ultrasound elastography in diagnosis of focal pancreatic masses[J]. Clin Gastroenterol Hepatol,2012,10(1):84-90. e1.
    [9] SFTOIU A,VILMANN P,DIETRICH CF,et al. Quantitative contrast-enhanced harmonic EUS in differential diagnosis of focal pancreatic masses(with videos)[J]. Gastrointest Endosc,2015,82(1):59-69.
    [10] YANG Y,CHEN H,WANG D,et al. Diagnosis of pancreatic carcinoma based on combined measurement of multiple serum tumor markers using artificial neural network analysis[J]. Chin Med J(Engl),2014,127(10):1891-1896.
    [11] LIU SL,LI S,GUO YT,et al. Establishment and application of an artificial intelligence diagnosis system for pancreatic cancer with a faster region-based convolutional neural network[J].Chin Med J(Engl),2019,132(23):2795-2803.
    [12] LI S,JIANG H,WANG Z,et al. An effective computer aided diagnosis model for pancreas cancer on PET/CT images[J].Comput Methods Programs Biomed,2018,165:205-214.
    [13] GAO X,WANG X. Performance of deep learning for differentiating pancreatic diseases on contrast-enhanced magnetic resonance imaging:A preliminary study[J]. Diagn Interv Imaging,2020,101(2):91-100.
    [14] DIEHL AM,DAY C. Cause,pathogenesis,and treatment of nonalcoholic steatohepatitis[J]. N Engl J Med,2017,377(21):2063-2072.
    [15] PISCAGLIA F,CUCCHETTI A,BENLLOCH S,et al. Prediction of significant fibrosis in hepatitis C virus infected liver transplant recipients by artificial neural network analysis of clinical factors[J]. Eur J Gastroenterol Hepatol,2006,18(12):1255-1261.
    [16] HASHEM S,ESMAT G,ELAKEL W,et al. Comparison of machine learning approaches for prediction of advanced liver fibrosis in chronic hepatitis C patients[J]. IEEE/ACM Trans Comput Biol Bioinform,2018,15(3):861-868.
    [17] WANG D,WANG Q,SHAN F,et al. Identification of the risk for liver fibrosis on CHB patients using an artificial neural network based on routine and serum markers[J]. BMC Infect Dis,2010,10:251.
    [18] WEI R,WANG J,WANG X,et al. Clinical prediction of HBV and HCV related hepatic fibrosis using machine learning[J].EBio Medicine,2018,35:124-132.
    [19] RAOUFY MR,VAHDANI P,ALAVIAN SM,et al. A novel method for diagnosing cirrhosis in patients with chronic hepatitis B:Artificial neural network approach[J]. J Med Syst,2011,35(1):121-126.
    [20] CHEN Y,LUO Y,HUANG W,et al. Machine-learning-based classification of real-time tissue elastography for hepatic fibrosis in patients with chronic hepatitis B[J]. Comput Biol Med,2017,89:18-23.
    [21] WANG K,LU X,ZHOU H,et al. Deep learning Radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B:A prospective multicentre study[J]. Gut,2019,68(4):729-741.
    [22] YASAKA K,AKAI H,KUNIMATSU A,et al. Liver Fibrosis:Deep convolutional neural network for staging by using gadoxetic acid-enhanced hepatobiliary phase MR images[J]. Radiology,2018,287(1):146-155.
    [23] YASAKA K,AKAI H,KUNIMATSU A,et al. Deep learning for staging liver fibrosis on CT:A pilot study[J]. Eur Radiol,2018,28(11):4578-4585.
    [24] SOWA JP,ATMACAKAHRAMAN A,et al. Non-invasive separation of alcoholic and non-alcoholic liver disease with predictive modeling[J]. PLo S One,2014,9(7):e101444.
    [25] ESLAM M,NEWSOME PN,SARIN SK,et al. A new definition for metabolic dysfunction-associated fatty liver disease:An international expert consensus statement[J]. J Hepatol,2020,73(1):202-209.
    [26] ESLAM M,SANYAL AJ,GEORGE J,et al. MAFLD:A consensus-driven proposed nomenclature for metabolic associated fatty liver disease[J]. Gastroenterology,2020,158(7):1999-2014. e1.
    [27] GAO X. New thoughts about renaming nonalcoholic fatty liver disease[J]. J Clin Hepatol,2020,36(6):1201-1204.(in Chinese)高鑫.非酒精性脂肪性肝病更名带来的新思考[J].临床肝胆病杂志,2020,36(6):1201-1204.
    [28] SOWA JP,HEIDER D,BECHMANN LP,et al. Novel algorithm for non-invasive assessment of fibrosis in NAFLD[J]. PLo S One,2013,8(4):e62439.
    [29] YIP TC,MA AJ,WONG VW,et al. Laboratory parameterbased machine learning model for excluding non-alcoholic fatty liver disease(NAFLD)in the general population[J]. Aliment Pharmacol Ther,2017,46(4):447-456.
    [30] FIALOKE S,MALARSTIG A,MILLER MR,et al. Application of machine learning methods to predict non-alcoholic steatohepatitis(NASH)in non-alcoholic fatty liver(NAFL)patients[J]. AMIA Annu Symp Proc,2018,2018:430-439.
    [31] HAN D,QI XS,YU Y. An excerpt of portal hypertensive bleeding in cirrhosis:Risk stratification,diagnosis and management-2016practice guidance by the American Association for the Study of Liver Diseases[J]. J Clin Hepatol,2017,33(3):422-427.(in Chinese)韩丹,祁兴顺,于洋.《2016年美国肝病学会肝硬化门静脉高压出血的风险分层、诊断和管理实践指导》摘译[J].临床肝胆病杂志,2017,33(3):422-427.
    [32] HONG WD,JI YF,WANG D,et al. Use of artificial neural network to predict esophageal varices in patients with HBV related cirrhosis[J]. Hepat Mon,2011,11(7):544-547.
    [33] DONG TS,KALANI A,ABY ES,et al. Machine learningbased development and validation of a scoring system for screening high-risk esophageal varices[J]. Clin Gastroenterol Hepatol,2019,17(9):1894-1901. e1.
  • 加载中
计量
  • 文章访问数:  663
  • HTML全文浏览量:  30
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-24
  • 出版日期:  2020-12-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回