中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胰高血糖素样肽1受体激动剂在非酒精性脂肪性肝病治疗中的作用及相关机制

俞晓菡 王雨露 许笑阳 平键 赵长青

引用本文:
Citation:

胰高血糖素样肽1受体激动剂在非酒精性脂肪性肝病治疗中的作用及相关机制

DOI: 10.3969/j.issn.1001-5256.2021.01.043
基金项目: 

国家自然科学基金 (81673780)

作者贡献声明:俞晓菡负责课题设计,资料分析,撰写论文;王雨露、许笑阳参与收集数据;平键、赵长青负责拟定写作思路,修改论文,指导撰写文章并最后定稿。
详细信息
    作者简介:

    俞晓菡(1996—), 女, 主要从事中西医结合抗肝纤维化方面的研究

    通信作者:

    赵长青,cathy090909@126.com

  • 中图分类号: R575.5

Effect of glucagon-like peptide-1 receptor agonist in treatment of nonalcoholic fatty liver disease and related mechanism

  • 摘要: 非酒精性脂肪性肝病在全球发病率持续上升,由于其复杂的发病机制,尚未开发出有效的治疗药物。该病若未得到及时治疗,可能加剧糖尿、高血脂等相关代谢性疾病发生的风险,严重会导致肝纤维化,甚至发生肝硬化。胰高血糖素样肽-1是小肠L型细胞分泌的一种激素,具有调节葡萄糖依赖性的胰岛素分泌刺激,减少胃排空,抑制食物摄取等作用。综述了胰高血糖素样肽-1受体激动剂对非酒精性脂肪性肝病的治疗作用及其相关机制。

     

  • 图  1  GLP-1R激动剂在糖脂代谢和肝脏炎症中的作用机制

    注:PCSK9, 前蛋白转化酶枯草杆菌蛋白酶/kexin9型; HNF1α, 肝细胞核因子1;ATGL,脂肪甘油三酯脂肪酶;PPARα, 过氧化物酶体增值物激活受体α;CPT-1a, 肉碱棕榈酰转移酶-1a;ACOX-1, 酰基辅酶A氧化酶-1;SREBP-1c, 固醇调节元件结合蛋白-1c;FAS, 脂肪酸合酶; IRE-1, 肌醇需要酶1;PERK, PKR样内质网激酶; ER, 内质网; NLRP3, 富含亮氨酸的重复序列含受体的吡啶结构域3。

  • [1] ESLAM M, SANYAL AJ, GEORGE J, et al. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease[J]. Gastroenterology, 2020, 158(7): 1999-2014. e1. DOI: 10.1053/j.gastro.2019.11.312
    [2] IQBAL U, PERUMPAIL BJ, AKHTAR D, et al. The epidemiology, risk profiling and diagnostic challenges of nonalcoholic fatty liver disease[J]. Medicines (Basel), 2019, 6(1): 41.
    [3] ATHYROS VG, POLYZOS SA, KOUNTOURAS J, et al. Non-alcoholic fatty liver disease treatment in patients with type 2 diabetes mellitus; new kids on the block[J]. Curr Vasc Pharmacol, 2020, 18(2): 172-181. DOI: 10.2174/1570161117666190405164313
    [4] YANG Z, FU BS. Research status of liver transplantation in the treatment of non-alcoholic fatty liver disease[J]. Ogran Transplantation, 2020, 11(3): 419-423. (in Chinese) DOI: 10.3969/j.issn.1674-7445.2020.03.017

    杨洲, 傅斌生. 肝移植治疗非酒精性脂肪性肝病的研究现状[J]. 器官移植, 2020, 11(3): 419-423. DOI: 10.3969/j.issn.1674-7445.2020.03.017
    [5] ZHOU F, ZHOU J, WANG W, et al. Unexpected rapid increase in the burden of NAFLD in China from 2008 to 2018: A systematic review and meta-analysis[J]. Hepatology, 2019, 70(4): 1119-1133. DOI: 10.1002/hep.30702
    [6] LIU Q, NIU CY. From "two hit theory" to "multiple hit theory": Implications of evolution of pathogenesis concepts for treatment of non-alcoholic fatty liver disease[J]. World Chin J Dig, 2019, 27(19): 1171-1178. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XXHB201919001.htm

    刘勤, 牛春燕. 由"二次打击"到"多重打击":发病机制的演变带给非酒精性脂肪性肝病的治疗启示[J]. 世界华人消化杂志, 2019, 27(19): 1171-1178. https://www.cnki.com.cn/Article/CJFDTOTAL-XXHB201919001.htm
    [7] GAO X. New thoughts about renaming nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2020, 36(6): 1201-1204. (in Chinese) DOI: 10.3969/j.issn.1001-5256.2020.06.001

    高鑫. 非酒精性脂肪性肝病更名带来的新思考[J]. 临床肝胆病杂志, 2020, 36(6): 1201-1204. DOI: 10.3969/j.issn.1001-5256.2020.06.001
    [8] ZHOU Q, SU J, JI MY. Progress in the treatment of nonalcoholic fatty liver disease[J]. China Med Herald, 2020, 17(6): 26-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202006008.htm

    周谦, 苏娟, 季梦遥. 非酒精性脂肪性肝病的治疗研究进展[J]. 中国医药导报, 2020, 17(6): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202006008.htm
    [9] MVLLER TD, FINAN B, BLOOM SR, et al. Glucagon-like peptide 1 (GLP-1)[J]. Mol Metab, 2019, 30: 72-130. DOI: 10.1016/j.molmet.2019.09.010
    [10] BAGGIO LL, DRUCKER DJ. Biology of incretins: GLP-1 and GIP[J]. Gastroenterology, 2007, 132(6): 2131-2157. DOI: 10.1053/j.gastro.2007.03.054
    [11] BULLOCK BP, HELLER RS, HABENER JF. Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor[J]. Endocrinology, 1996, 137(7): 2968-2978. DOI: 10.1210/endo.137.7.8770921
    [12] RICHARDS P, PARKER HE, ADRIAENSSENS AE, et al. Identification and characterization of GLP-1 receptor-expressing cells using a new transgenic mouse model[J]. Diabetes, 2014, 63(4): 1224-1233. DOI: 10.2337/db13-1440
    [13] CANTINI G, MANNUCCI E, LUCONI M. Perspectives in GLP-1 Research: New targets, new receptors[J]. Trends Endocrinol Metab, 2016, 27(6): 427-438. DOI: 10.1016/j.tem.2016.03.017
    [14] XIAO C, BANDSMA RH, DASH S, et al. Exenatide, a glucagon-like peptide-1 receptor agonist, acutely inhibits intestinal lipoprotein production in healthy humans[J]. Arterioscler Thromb Vasc Biol, 2012, 32(6): 1513-1519. DOI: 10.1161/ATVBAHA.112.246207
    [15] HSIEH J, LONGUET C, BAKER CL, et al. The glucagon-like peptide 1 receptor is essential for postprandial lipoprotein synthesis and secretion in hamsters and mice[J]. Diabetologia, 2010, 53(3): 552-561. DOI: 10.1007/s00125-009-1611-5
    [16] SHARMA D, VERMA S, VAIDYA S, et al. Recent updates on GLP-1 agonists: Current advancements & challenges[J]. Biomed Pharmacother, 2018, 108: 952-962. DOI: 10.1016/j.biopha.2018.08.088
    [17] KHOO J, HSIANG J, TANEJA R, et al. Comparative effects of liraglutide 3 mg vs structured lifestyle modification on body weight, liver fat and liver function in obese patients with non-alcoholic fatty liver disease: A pilot randomized trial[J]. Diabetes Obes Metab, 2017, 19(12): 1814-1817. DOI: 10.1111/dom.13007
    [18] ARMSTRONG MJ, HULL D, GUO K, et al. Glucagon-like peptide 1 decreases lipotoxicity in non-alcoholic steatohepatitis[J]. J Hepatol, 2016, 64(2): 399-408. DOI: 10.1016/j.jhep.2015.08.038
    [19] PETIT JM, CERCUEIL JP, LOFFROY R, et al. Effect of liraglutide therapy on liver fat content in patients with inadequately controlled type 2 diabetes: the lira-NAFLD study[J]. J Clin Endocrinol Metab, 2017, 102(2): 407-415. http://smartsearch.nstl.gov.cn/paper_detail.html?id=19d6760c2234e3c8576ae4a3f8dbe431
    [20] SHAO N, KUANG HY, HAO M, et al. Benefits of exenatide on obesity and non-alcoholic fatty liver disease with elevated liver enzymes in patients with type 2 diabetes[J]. Diabetes Metab Res Rev, 2014, 30(6): 521-529. DOI: 10.1002/dmrr.2561
    [21] ARMSTRONG MJ, GAUNT P, AITHAL GP, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): A multicentre, double-blind, randomised, placebo-controlled phase 2 study[J]. Lancet, 2016, 387(10019): 679-690. DOI: 10.1016/S0140-6736(15)00803-X
    [22] EGUCHI Y, KITAJIMA Y, HYOGO H, et al. Pilot study of liraglutide effects in non-alcoholic steatohepatitis and non-alcoholic fatty liver disease with glucose intolerance in Japanese patients (LEAN-J)[J]. Hepatol Res, 2015, 45(3): 269-278. DOI: 10.1111/hepr.12351
    [23] SEKO Y, SUMIDA Y, TANAKA S, et al. Effect of 12-week dulaglutide therapy in Japanese patients with biopsy-proven non-alcoholic fatty liver disease and type 2 diabetes mellitus[J]. Hepatol Res, 2017, 47(11): 1206-1211. DOI: 10.1111/hepr.12837
    [24] RAHMAN K, LIU Y, KUMAR P, et al. C/EBP homologous protein modulates liraglutide-mediated attenuation of non-alcoholic steatohepatitis[J]. Lab Invest, 2016, 96(8): 895-908. DOI: 10.1038/labinvest.2016.61
    [25] LAKOSKI SG, LAGACE TA, COHEN JC, et al. Genetic and metabolic determinants of plasma PCSK9 levels[J]. J Clin Endocrinol Metab, 2009, 94(7): 2537-2543. DOI: 10.1210/jc.2009-0141
    [26] YANG SH, LI S, ZHANG Y, et al. Positive correlation of plasma PCSK9 levels with HbA1c in patients with type 2 diabetes[J]. Diabetes Metab Res Rev, 2016, 32(2): 193-199. DOI: 10.1002/dmrr.2712
    [27] DONG B, SINGH AB, AZHAR S, et al. High-fructose feeding promotes accelerated degradation of hepatic LDL receptor and hypercholesterolemia in hamsters via elevated circulating PCSK9 levels[J]. Atherosclerosis, 2015, 239(2): 364-374. DOI: 10.1016/j.atherosclerosis.2015.01.013
    [28] YANG SH, XU RX, CUI CJ, et al. Liraglutide downregulates hepatic LDL receptor and PCSK9 expression in HepG2 cells and db/db mice through a HNF-1a dependent mechanism[J]. Cardiovasc Diabetol, 2018, 17(1): 48. DOI: 10.1186/s12933-018-0689-9
    [29] FANG QH, SHEN QL, LI JJ, et al. Inhibition of microRNA-124a attenuates non-alcoholic fatty liver disease through upregulation of adipose triglyceride lipase and the effect of liraglutide intervention[J]. Hepatol Res, 2019, 49(7): 743-757. http://www.ncbi.nlm.nih.gov/pubmed/30861258
    [30] CHIKKA MR, MCCABE DD, TYRA HM, et al. C/EBP homologous protein (CHOP) contributes to suppression of metabolic genes during endoplasmic reticulum stress in the liver[J]. J Biol Chem, 2013, 288(6): 4405-4415. DOI: 10.1074/jbc.M112.432344
    [31] SZEGEZDI E, LOGUE SE, GORMAN AM, et al. Mediators of endoplasmic reticulum stress-induced apoptosis[J]. EMBO Rep, 2006, 7(9): 880-885. DOI: 10.1038/sj.embor.7400779
    [32] RUTKOWSKI DT, WU J, BACK SH, et al. UPR pathways combine to prevent hepatic steatosis caused by ER stress-mediated suppression of transcriptional master regulators[J]. Dev Cell, 2008, 15(6): 829-840. DOI: 10.1016/j.devcel.2008.10.015
    [33] YU X, HAO M, LIU Y, et al. Liraglutide ameliorates non-alcoholic steatohepatitis by inhibiting NLRP3 inflammasome and pyroptosis activation via mitophagy[J]. Eur J Pharmacol, 2019, 864: 172715. DOI: 10.1016/j.ejphar.2019.172715
    [34] SATHYANARAYAN A, MASHEK MT, MASHEK DG. ATGL promotes autophagy/lipophagy via SIRT1 to control hepatic lipid droplet catabolism[J]. Cell Rep, 2017, 19(1): 1-9. http://www.ncbi.nlm.nih.gov/pubmed/28380348/
    [35] SAAD ZA, KHODEER DM, ZAITONE SA, et al. Exenatide ameliorates experimental non-alcoholic fatty liver in rats via suppression of toll-like receptor 4/NFκB signaling: Comparison to metformin[J]. Life Sci, 2020, 253: 117725. DOI: 10.1016/j.lfs.2020.117725
  • 加载中
图(1)
计量
  • 文章访问数:  817
  • HTML全文浏览量:  375
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-19
  • 录用日期:  2020-09-10
  • 出版日期:  2021-01-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回