microRNA在自身免疫性肝病中的作用
DOI: 10.3969/j.issn.1001-5256.2021.01.047
作者贡献声明:蔡萌强负责资料收集、撰写论文;刘素彤、刘君颖、张丽慧负责修改论文;赵文霞负责拟定研究方向、写作思路,指导撰写文章并最后定稿。
The role of microRNA in autoimmune liver diseases
-
摘要: microRNA(miRNA)通过抑制靶基因转录后翻译,影响细胞分化、增殖与凋亡等生物学过程,广泛参与调节生物体内的免疫与炎症反应。自身免疫性肝病是一种异常免疫介导的肝胆系统慢性炎症性疾病,miRNA参与的肝组织异常免疫炎症反应与自身免疫性肝病的发生发展过程密切相关。现就当前miRNA在自身免疫性肝病中的研究进展作一综述。Abstract: MicroRNA(miRNA) affect various biological processes such as cell differentiation, proliferation, and apoptosis by inhibiting the translation of target genes after transcription and are widely involved in the regulation of immune and inflammatory responses in organisms. Autoimmune liver diseases are a group of chronic inflammatory diseases of the hepatobiliary system mediated by abnormal immunity, and abnormal immune inflammatory response of liver tissue with the involvement of miRNA is closely associated with the development and progression of autoimmune liver diseases. This article reviews the current research advances in miRNA in autoimmune liver diseases.
-
Key words:
- microRNAs /
- Hepatitis, Autoimmune /
- Liver Cirrhosis, Biliary /
- Cholangitis, Sclerosing
-
[1] LIBERAL R, GRANT CR. Cirrhosis and autoimmune liver disease: Current understanding[J]. World J Hepatol, 2016, 8(28): 1157-1168. DOI: 10.4254/wjh.v8.i28.1157 [2] BÖTTCHER K, ROMBOUTS K, SAFFIOTI F, et al. MAIT cells are chronically activated in patients with autoimmune liver disease and promote profibrogenic hepatic stellate cell activation[J]. Hepatology, 2018, 68(1): 172-186. DOI: 10.1002/hep.29782 [3] MUSADDAQ G, SHAHZAD N, ASHRAF MA, et al. Circulating liver-specific microRNAs as noninvasive diagnostic biomarkers of hepatic diseases in human[J]. Biomarkers, 2019, 24(2): 103-109. DOI: 10.1080/1354750X.2018.1528631 [4] AZAR F, COURTET K, DEKKY B, et al. Integration of miRNA-regulatory networks in hepatic stellate cells identifies TIMP3 as a key factor in chronic liver disease[J]. Liver Int, 2020, 40(8): 2021-2033. DOI: 10.1111/liv.14476 [5] MIELI-VERGANI G, VERGANI D, CZAJA AJ, et al. Autoimmune hepatitis[J]. Nat Rev Dis Primers, 2018, 4: 18017. DOI: 10.1038/nrdp.2018.17 [6] LIBERAL R, VERGANI D, MIELI-VERGANI G. Update on autoimmune hepatitis[J]. J Clin Transl Hepatol, 2015, 3(1): 42-52. DOI: 10.14218/JCTH.2014.00032 [7] AN HAACK I, DERKOW K, RIEHN M, et al. The role of regulatory CD4 T cells in maintaining tolerance in a mouse model of autoimmune hepatitis[J]. PLoS One, 2015, 10(11): e0143715. DOI: 10.1371/journal.pone.0143715 [8] LIU Y, YAN W, YUAN W, et al. Treg/Th17 imbalance is associated with poor autoimmune hepatitis prognosis[J]. Clin Immunol, 2019, 198: 79-88. DOI: 10.1016/j.clim.2018.11.003 [9] YAN L, HU F, YAN X, et al. Inhibition of microRNA-155 ameliorates experimental autoimmune myocarditis by modulating Th17/Treg immune response[J]. J Mol Med (Berl), 2016, 94(9): 1063-1079. DOI: 10.1007/s00109-016-1414-3 [10] ALIVERNINI S, GREMESE E, MCSHARRY C, et al. MicroRNA-155-at the critical interface of innate and adaptive immunity in arthritis[J]. Front Immunol, 2017, 8: 1932. http://www.ncbi.nlm.nih.gov/pubmed/29354135 [11] XIA G, WU S, WANG X, et al. Inhibition of microRNA-155 attenuates concanavalin-A-induced autoimmune hepatitis by regulating Treg/Th17 cell differentiation[J]. Can J Physiol Pharmacol, 2018, 96(12): 1293-1300. DOI: 10.1139/cjpp-2018-0467 [12] BLAYA D, AGUILAR-BRAVO B, HAO F, et al. Expression of microRNA-155 in inflammatory cells modulates liver injury[J]. Hepatology, 2018, 68(2): 691-706. DOI: 10.1002/hep.29833 [13] CHEN L, LU FB, CHEN DZ, et al. BMSCs-derived miR-223-containing exosomes contribute to liver protection in experimental autoimmune hepatitis[J]. Mol Immunol, 2018, 93: 38-46. DOI: 10.1016/j.molimm.2017.11.008 [14] SPEL L, MARTINON F. Inflammasomes contributing to inflammation in arthritis[J]. Immunol Rev, 2020, 294(1): 48-62. DOI: 10.1111/imr.12839 [15] GLEESON D, HENEGHAN MA, British Society of Gastroenterology. British Society of Gastroenterology (BSG) guidelines for management of autoimmune hepatitis[J]. Gut, 2011, 60(12): 1611-1629. DOI: 10.1136/gut.2010.235259 [16] TU H, CHEN D, CAI C, et al. microRNA-143-3p attenuated development of hepatic fibrosis in autoimmune hepatitis through regulation of TAK1 phosphorylation[J]. J Cell Mol Med, 2020, 24(2): 1256-1267. DOI: 10.1111/jcmm.14750 [17] HUANG H, WU T, MAO J, et al. CHI3L1 is a liver-enriched, noninvasive biomarker that can be used to stage and diagnose substantial hepatic fibrosis[J]. OMICS, 2015, 19(6): 339-345. DOI: 10.1089/omi.2015.0037 [18] MA ZH, SUN CX, SHI H, et al. Detection of miR-122 by fluorescence real-time PCR in blood from patients with chronic hepatitis B and C infections[J]. Cytokine, 2020, 131: 155076. DOI: 10.1016/j.cyto.2020.155076 [19] FAN Z, ZHANG Q, CHEN H, et al. Circulating microRNAs as a biomarker to predict therapy efficacy in hepatitis C patients with different genotypes[J]. Microb Pathog, 2017, 112: 320-326. DOI: 10.1016/j.micpath.2017.10.003 [20] TRUNG NT, HOAN NX, TRUNG PQ, et al. Clinical significance of combined circulating TERT promoter mutations and miR-122 expression for screening HBV-related hepatocellular carcinoma[J]. Sci Rep, 2020, 10(1): 8181. DOI: 10.1038/s41598-020-65213-8 [21] MIGITA K, KOMORI A, KOZURU H, et al. Circulating microRNA Profiles in Patients with Type-1 Autoimmune Hepatitis[J]. PLoS One, 2015, 10(11): e0136908. DOI: 10.1371/journal.pone.0136908 [22] YAN Y, DENG X, NING X, et al. Pathogenic mechanism of miR-21 in autoimmune lymphoid hyperplasia syndrome[J]. Oncol Lett, 2017, 13(6): 4734-4740. DOI: 10.3892/ol.2017.6039 [23] CAREY EJ, ALI AH, LINDOR KD. Primary biliary cirrhosis[J]. Lancet, 2015, 386(10003): 1565-1575. DOI: 10.1016/S0140-6736(15)00154-3 [24] TANAKA A, LEUNG P, GERSHWIN ME. The genetics and epigenetics of primary biliary cholangitis[J]. Clin Liver Dis, 2018, 22(3): 443-455. DOI: 10.1016/j.cld.2018.03.002 [25] RODRIGUES PM, PERUGORRIA MJ, SANTOS-LASO A, et al. Primary biliary cholangitis: A tale of epigenetically-induced secretory failure?[J]. J Hepatol, 2018, 69(6): 1371-1383. DOI: 10.1016/j.jhep.2018.08.020 [26] GULAMHUSEIN AF, HIRSCHFIELD GM. Primary biliary cholangitis: Pathogenesis and therapeutic opportunities[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(2): 93-110. DOI: 10.1038/s41575-019-0226-7 [27] CHANG JC, GO S, DE WAART DR, et al. Soluble adenylyl cyclase regulates bile salt-induced apoptosis in human cholangiocytes[J]. Hepatology, 2016, 64(2): 522-534. DOI: 10.1002/hep.28550 [28] BANALES JM, SÁEZ E, URIZ M, et al. Up-regulation of microRNA 506 leads to decreased Cl-/HCO3- anion exchanger 2 expression in biliary epithelium of patients with primary biliary cirrhosis[J]. Hepatology, 2012, 56(2): 687-697. DOI: 10.1002/hep.25691 [29] ANANTHANARAYANAN M, BANALES JM, GUERRA MT, et al. Post-translational regulation of the type Ⅲ inositol 1, 4, 5-trisphosphate receptor by miRNA-506[J]. J Biol Chem, 2015, 290(1): 184-196. DOI: 10.1074/jbc.M114.587030 [30] GULAMHUSEIN AF, HIRSCHFIELD GM. Pathophysiology of primary biliary cholangitis[J]. Best Pract Res Clin Gastroenterol, 2018, 34-35: 17-25. DOI: 10.1016/j.bpg.2018.05.012 [31] WANG L, SUN Y, ZHANG Z, et al. CXCR5+ CD4+ T follicular helper cells participate in the pathogenesis of primary biliary cirrhosis[J]. Hepatology, 2015, 61(2): 627-638. DOI: 10.1002/hep.27306 [32] NAKAGAWA R, MUROYAMA R, SAEKI C, et al. miR-425 regulates inflammatory cytokine production in CD4+ T cells via N-Ras upregulation in primary biliary cholangitis[J]. J Hepatol, 2017, 66(6): 1223-1230. DOI: 10.1016/j.jhep.2017.02.002 [33] TABIBIAN JH, O'HARA SP, SPLINTER PL, et al. Cholangiocyte senescence by way of N-ras activation is a characteristic of primary sclerosing cholangitis[J]. Hepatology, 2014, 59(6): 2263-2275. DOI: 10.1002/hep.26993 [34] YANG CY, MA X, TSUNEYAMA K, et al. IL-12/Th1 and IL-23/Th17 biliary microenvironment in primary biliary cirrhosis: implications for therapy[J]. Hepatology, 2014, 59(5): 1944-1953. DOI: 10.1002/hep.26979 [35] SONG Y, YANG H, JIANG K, et al. miR-181a regulates Th17 cells distribution via up-regulated BCL-2 in primary biliary cholangitis[J]. Int Immunopharmacol, 2018, 64: 386-393. DOI: 10.1016/j.intimp.2018.09.027 [36] LIANG DY, HOU YQ, LUO LJ, et al. Altered expression of miR-92a correlates with Th17 cell frequency in patients with primary biliary cirrhosis[J]. Int J Mol Med, 2016, 38(1): 131-138. DOI: 10.3892/ijmm.2016.2610 [37] DYSON JK, BEUERS U, JONES DEJ, et al. Primary sclerosing cholangitis[J]. Lancet, 2018, 391(10139): 2547-2559. DOI: 10.1016/S0140-6736(18)30300-3 [38] VESTERHUS M, KARLSEN TH. Emerging therapies in primary sclerosing cholangitis: Pathophysiological basis and clinical opportunities[J]. J Gastroenterol, 2020, 55(6): 588-614. DOI: 10.1007/s00535-020-01681-z [39] LIU SP, BIAN ZH, ZHAO ZB, et al. animal models of autoimmune liver diseases: A comprehensive review[J]. Clin Rev Allergy Immunol, 2020, 58(2): 252-271. DOI: 10.1007/s12016-020-08778-6 [40] WU N, MENG F, ZHOU T, et al. Prolonged darkness reduces liver fibrosis in a mouse model of primary sclerosing cholangitis by miR-200b down-regulation[J]. FASEB J, 2017, 31(10): 4305-4324. DOI: 10.1096/fj.201700097R [41] HALL C, EHRLICH L, MENG F, et al. Inhibition of microRNA-24 increases liver fibrosis by enhanced menin expression in Mdr2-/- mice[J]. J Surg Res, 2017, 217: 160-169. DOI: 10.1016/j.jss.2017.05.020 [42] EHRLICH L, HALL C, VENTER J, et al. Tu1616 miR-125b negatively regulates menin expression and protects from liver fibrosis[J]. Gastroenterology, 2016, 150(4): s1150.
本文二维码
计量
- 文章访问数: 536
- HTML全文浏览量: 137
- PDF下载量: 37
- 被引次数: 0