中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

先天性非溶血性黄疸的研究进展

鲁杰 李武 刘叶

引用本文:
Citation:

先天性非溶血性黄疸的研究进展

DOI: 10.3969/j.issn.1001-5256.2021.01.048
基金项目: 

云南省自然科学基金 (2009CD087);

国家十二五科技重大专项协助课题 (2012ZX10002003);

云南省科技厅-昆明医科大学联合基金重点项目 (2017FE468〔-173〕)

作者贡献声明:鲁杰负责课题设计,资料分析,撰写论文;李武负责拟定写作思路,指导撰写文章并最后定稿; 刘叶参与收集数据,修改论文。
详细信息
    作者简介:

    鲁杰(1994—),女,主要从事肝纤维化的基础和临床研究

    通信作者:

    李武,liwukm@126.com

  • 中图分类号: R575

Research advances in congenital non-hemolytic jaundice

  • 摘要: 先天性非溶血性黄疸是黄疸性疾病中的一大类,除母乳性黄疸外,临床上相对罕见,多属遗传代谢类肝病,包括以非结合性胆红素升高为主的Gilbert综合征、Crigler-Najjar综合征、Lucey-Driscoll综合征,和以结合胆红素升高为主的Dubin-Johnson综合征、Rotor综合征等。回顾近期国内外文献,主要就六种遗传性先天性非结合性黄疸的发病机制、基因特点、诊治进展及鉴别诊断进行综述。

     

  • 表  1  先天性非溶血性黄疸的常见鉴别诊断

    疾病名称 病因机制 遗传方式 主要临床表现 治疗
    GS、CNS Ⅱ型 UGT1A1突变,肝细胞对胆红素醛酸化障碍 常染色体隐/显性 轻、中度的间歇、波动性黄疸 对症治疗(苯巴比妥等)
    CNS Ⅰ型 UGT1A1突变,肝细胞对胆红素醛酸化障碍 常染色体隐/显性 重度黄疸、胆红素脑病 血浆置换、肝移植、光疗
    Lucey-Driscoll综合征 机制不清(孕激素对新生儿UGT1A1抑制作用) 常染色体隐性 出生后重度黄疸、胆红素脑病 血浆置换、肝移植、光疗
    母乳性黄疸 UGT1A1突变、母乳、肠道菌群等多重因素作用 轻、中度黄疸 继续母乳喂养或改配方奶粉
    DJS ABCC2基因突变,肝细胞对胆红素排泄障碍 常染色体隐性 轻、中度的间歇、波动性黄疸,可伴胆汁淤积 熊去氧胆酸等对症治疗
    RS SLCO1B1、SLCO1B3基因突变,肝细胞对胆红素摄取障碍 常染色体隐性 轻、中度的间歇、波动性黄疸等 对症治疗
    Alagille综合征 JAG1或NOTCH2基因突变,NOTCH信号通路缺陷 常染色体显性 新生儿胆汁淤积、心血管异常、角膜后胚胎环、骨骼异常和特殊面容等 多学科联合治疗、胆汁分流术、肝移植[37]
    进行性家族性肝内胆汁淤积症(PFIC)/良性复发性肝内胆汁淤积症(BRIC) PFIC1或BRIC1:ATP8B1基因突变
    PFIC2或BRIC2:ABCB11基因突变
    PFIC3:ABCB4突变
    PFIC4:TJP2突变
    PFIC5:NR1H4突变
    PFIC6:MYO5B突变
    常染色体隐性 持续性黄疸、瘙痒、白陶土样便、生长发育障碍、脂溶性维生素缺乏等 药物治疗(熊去氧胆酸、利福平、4-苯基丁酸酯、补充脂溶性维生素等)手术引流、肝移植[38]
    Citrin缺陷病(新生儿肝内胆汁淤积症) SLC25A13基因突变,肝细胞利用葡萄糖、脂肪酸障碍 常染色体隐性 新生儿胆汁淤积、脂肪肝、低蛋白血症、凝血障碍、肝大、肝功能异常等 补充中链甘油三酯等对症治疗[39]
    先天性胆汁酸合成缺陷疾病 HSD3B7、AKR1D1、CYP7B1等基因突变,胆汁酸合成障碍 常染色体隐性 新生儿胆汁淤积、凝血功能障碍或脂溶性维生素吸收不良等 早期补充初级胆汁酸、肝移植[40]
    下载: 导出CSV
  • [1] BOSMA PJ, CHOWDHURY JR, BAKKER C, et al. The genetic basis of the reduced expression of bilirubin udp-glucuronosyltransferase 1 in gilbert's syndrome[J]. N Engl J Med, 1995, 333(18): 1171-1175. DOI: 10.1056/NEJM199511023331802
    [2] WAGNER KH, SHIELS RG, LANG CA, et al. Diagnostic criteria and contributors to gilbert's syndrome[J]. Crit Rev Clin Lab Sci, 2018, 55(2): 129-139. DOI: 10.1080/10408363.2018.1428526
    [3] BLACK M, BILLING BH. Hepatic bilirubin udp-glucuronyl transferase activity in liver disease and gilbert's syndrome[J]. N Engl J Med, 1969, 280(23): 1266-1271. DOI: 10.1056/NEJM196906052802303
    [4] MARUO Y, NAKAHARA S, YANAGI T, et al. Genotype of UGT1A1 and phenotype correlation between Crigler-Najjar syndrome type Ⅱ and gilbert syndrome[J]. J Gastroenterol Hepatol, 2016, 31(2): 403-408. DOI: 10.1111/jgh.13071
    [5] ARIAS IM, GARTNER LM, COHEN M, et al. Chronic nonhemolytic unconjugated hyperbilirubinemia with glucuronyl transferase deficiency. Clinical, biochemical, pharmacologic and genetic evidence for heterogeneity[J]. Am J Med, 1969, 47(3): 395-409. DOI: 10.1016/0002-9343(69)90224-1
    [6] KUI LY, WANG MY, ZHOU BI, et al. Study on UGT1A1 gene polymorphism in infantile hyperbilirubinemia of different nationalities in Yunnan Province[J]. J Mol Diagn Ther, 2020, 12(3): 386-390. (in Chinese) DOI: 10.3969/j.issn.1674-6929.2020.03.030

    奎莉越, 王明英, 周百灵, 等. 云南省婴儿期不同民族高非结合性胆红素血症UGT1A1基因多态性研究[J]. 分子诊断与治疗杂志, 2020, 12(3): 386-390. DOI: 10.3969/j.issn.1674-6929.2020.03.030
    [7] MATSUI K, MARUO Y, SATO H, et al. Combined effect of regulatory polymorphisms on transcription of UGT1A1 as a cause of gilbert syndrome[J]. BMC Gastroenterol, 2010, 10: 57. DOI: 10.1186/1471-230X-10-57
    [8] BOSMA PJ, CHOWDHURY JR, BAKKER C, et al. The genetic basis of the reduced expression of bilirubin udp-glucuronosyltransferase 1 in gilbert's syndrome[J]. N Engl J Med, 1995, 333(18): 1171-1175. DOI: 10.1056/NEJM199511023331802
    [9] THOGULUVA CV, JOHN S. Gilbert syndrome[M]. Treasure Island (FL): StatPearls Publishing, 2020.
    [10] LI LF, DENG GH, MAO Q. Linkage relationship of UGT1A1 pathogenic variation in Gilbert syndrome[J]. Third Mil Med Univ, 2020, 42(2): 168-175. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DSDX202002011.htm

    李露锋, 邓国宏, 毛青. Gilbert综合征UGT1A1致病变异的连锁关系研究[J]. 第三军医大学学报, 2020, 42(2): 168-175. https://www.cnki.com.cn/Article/CJFDTOTAL-DSDX202002011.htm
    [11] BORUCKI K, WEIKERT C, FISHER E, et al. Haplotypes in the UGT1A1 gene and their role as genetic determinants of bilirubin concentration in healthy german volunteers[J]. Clin Biochem, 2009, 42(16-17): 1635-1641. DOI: 10.1016/j.clinbiochem.2009.08.011
    [12] YAMAMOTO K, SATO H, FUJIYAMA Y, et al. Contribution of two missense mutations (g71r and y486d) of the bilirubin udp glycosyltransferase (UGT1A1) gene to phenotypes of gilbert's syndrome and crigler-najjar syndrome type Ⅱ[J]. Biochim Biophys Acta, 1998, 1406(3): 267-273. DOI: 10.1016/S0925-4439(98)00013-1
    [13] ERLINGER S, ARIAS IM, DHUMEAUX D. Inherited disorders of bilirubin transport and conjugation: New insights into molecular mechanisms and consequences[J]. Gastroenterology, 2014, 146(7): 1625-1638. DOI: 10.1053/j.gastro.2014.03.047
    [14] LIANG C, LUO L, BAI J, et al. Analysis of mutations in uridine diphosphate glucuronosyltransferase A1 gene associated with Gilbert syndrome and Crigler-Najjar syndrome[J]. Chin J Hepatol, 2020, 28(5): 428-433. (in Chinese) DOI: 10.3760/cma.j.cn501113-20200217-00051

    梁晨, 罗磊, 白洁, 等. Gilbert综合征和Crigler-Najjar综合征相关尿苷二磷酸葡糖醛酸转移酶A1基因突变位点特征分析[J]. 中华肝脏病杂志, 2020, 28(5): 428-433. DOI: 10.3760/cma.j.cn501113-20200217-00051
    [15] KANG LL, MA YJ, ZHANG HD. Carbon monoxide breath test assessment of mild hemolysis in Gilbert's syndrome[J]. Medicine (Baltimore), 2020, 99(7): e19109. DOI: 10.1097/MD.0000000000019109
    [16] ZHANG M. Analysis of the diagnostic value of UGT1A1 gene detection in Gilbert syndrome[D]. Wuhan: Huazhong University of Science and Technology, 2019. (in Chinese)

    张梦. UGT1A1基因检测在Gilbert综合征中的诊断价值分析[D]. 武汉: 华中科技大学, 2019.
    [17] VITEK L, BELLAROSA C, TIRIBELLI C. Induction of mild hyperbilirubinemia: Hype or real therapeutic opportunity?[J]. Clin Pharmacol Ther, 2019, 106(3): 568-575. DOI: 10.1002/cpt.1341
    [18] FATA CR, GILLIS LA, PACHECO MC. Liver fibrosis associated with crigler-najjar syndrome in a compound heterozygote: A case report[J]. Pediatr Dev Pathol, 2017, 20(6): 522-525. DOI: 10.1177/1093526617697059
    [19] RAZEK A, TAMAN SE, EL REGAL ME, et al. Diffusion tensor imaging of microstructural changes in the gray and white matter in patients with crigler-najjar syndrome type I[J]. J Comput Assist Tomogr, 2020, 44(3): 393-398. DOI: 10.1097/RCT.0000000000001008
    [20] APGAR JF, TANG JP, SINGH P, et al. Corrigendum: Quantitative systems pharmacology model of hugt1a1-modrna encoding for the ugt1a1 enzyme to treat crigler-najjar syndrome type 1[J]. CPT Pharmacometrics Syst Pharmacol, 2020, 9(3): 185. DOI: 10.1002/psp4.12484
    [21] MEMON N, WEINBERGER BI, HEGYI T, et al. Inherited disorders of bilirubin clearance[J]. Pediatr Res, 2016, 79(3): 378-386. DOI: 10.1038/pr.2015.247
    [22] ARIAS IM, WOLFSON S, LUCEY JF, et al. Transient familial neonatal hyperbilirubinemia[J]. J Clin Invest, 1965, 44: 1442-1450. DOI: 10.1172/JCI105250
    [23] BEVAN BR, HOLTON JB. Inhibition of bilirubin conjugation in rat liver slices by free fatty acids, with relevance to the problem of breast milk jaundice[J]. Clin Chim Acta, 1972, 41: 101-107. DOI: 10.1016/0009-8981(72)90501-3
    [24] PRAMEELA KK. Breastfeeding during breast milk jaundice - a pathophysiological perspective[J]. Med J Malaysia, 2019, 74(6): 527-533. http://www.researchgate.net/publication/338582429_Breastfeeding_during_breast_milk_jaundice_-_a_pathophysiological_perspective
    [25] BRATTON S, CANTU RM, STERN M. Breast milk jaundice[M]. Treasure Island (FL): StatPearls Publishing, 2020.
    [26] TOH S, WADA M, UCHIUMI T, et al. Genomic structure of the canalicular multispecific organic anion-transporter gene (MRP2/cMOAT) and mutations in the atp-binding-cassette region in dubin-johnson syndrome[J]. Am J Hum Genet, 1999, 64(3): 739-746. DOI: 10.1086/302292
    [27] MEMON N, WEINBERGER BI, HEGYI T, et al. Inherited disorders of bilirubin clearance[J]. Pediatr Res, 2016, 79(3): 378-386. DOI: 10.1038/pr.2015.247
    [28] WU L, LI Y, SONG Y, et al. A recurrent ABCC2 p.G693R mutation resulting in loss of function of MRP2 and hyperbilirubinemia in Dubin-Johnson syndrome in China[J]. Orphanet J Rare Dis, 2020, 15(1): 74. DOI: 10.1186/s13023-020-1346-4
    [29] van de STEEG E, STRÁNECKY V, HARTMANNOVÁ H, et al. Complete OATP1B1 and OATP1B3 deficiency causes human rotor syndrome by interrupting conjugated bilirubin reuptake into the liver[J]. J Clin Invest, 2012, 122(2): 519-528. DOI: 10.1172/JCI59526
    [30] AHMED P, PRATT A, LAND VJ, et al. Multiple plasma exchanges successfully maintain a young adult patient with crigler-najjar syndrome type I[J]. J Clin Apher, 1989, 5(1): 17-20. DOI: 10.1002/jca.2920050107
    [31] CORPECHOT C, BARBU V, CHAZOUILLÈRES O, et al. Genetic contribution of ABCC2 to dubin-johnson syndrome and inherited cholestatic disorders[J]. Liver Int, 2020, 40(1): 163-174. DOI: 10.1111/liv.14260
    [32] MORⅡ K, YAMAMOTO T. Images in clinical medicine. dubin-johnson syndrome[J]. N Engl J Med, 2016, 375(1): e1. DOI: 10.1056/NEJMicm1509529
    [33] BAR-MEIR S, BARON J, SELIGSON U, et al. 99mTC-HIDA cholescintigraphy in dubin-johnson and rotor syndromes[J]. Radiology, 1982, 142(3): 743-746. DOI: 10.1148/radiology.142.3.7063695
    [34] ZHOU D, QI S, ZHANG W, et al. Insertion of line-1 retrotransposon inducing exon inversion causes a rotor syndrome phenotype[J]. Front Genet, 2019, 10: 1399. http://www.ncbi.nlm.nih.gov/pubmed/32082363
    [35] KAGAWA T, OKA A, KOBAYASHI Y, et al. Recessive inheritance of population-specific intronic line-1 insertion causes a rotor syndrome phenotype[J]. Hum Mutat, 2015, 36(3): 327-332. DOI: 10.1002/humu.22745
    [36] DANIELSON ML, SAWADA GA, RAUB TJ, et al. In silico and in vitro assessment of oatp1b1 inhibition in drug discovery[J]. Mol Pharm, 2018, 15(8): 3060-3068. DOI: 10.1021/acs.molpharmaceut.8b00168
    [37] ANSAR S, TRAN K, PINNER J, et al. A rare cause of ductopenia: Adult onset alagille syndrome[J]. Pathology, 2020, 52(5): 610-612. DOI: 10.1016/j.pathol.2020.04.015
    [38] Li XS, SHU SN, HUANG ZH. Progress in diagnosis and treatment of progressive familial intrahepatic cholestasis[J]. Chin J Pract Pediatr, 2020, 35(4): 319-323. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSEK202004019.htm

    李雪松, 舒赛男, 黄志华. 进行性家族性肝内胆汁淤积症诊治进展[J]. 中国实用儿科杂志, 2020, 35(4): 319-323. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSEK202004019.htm
    [39] HAYASAKA K. Metabolic basis and treatment of citrin deficiency[J]. J Inherit Metab Dis, 2020.[Online ahead of print]. DOI: 10.1002/jimd.12294
    [40] CHEN JY, WU JF, KIMURA A, et al. AKR1D1 and CYP7B1 mutations in patients with inborn errors of bile acid metabolism: Possibly underdiagnosed diseases[J]. Pediatr Neonatol, 2020, 61(1): 75-83. http://www.sciencedirect.com/science/article/pii/S1875957219300956
  • 加载中
表(1)
计量
  • 文章访问数:  843
  • HTML全文浏览量:  530
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-27
  • 录用日期:  2020-08-31
  • 出版日期:  2021-01-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回