淋巴细胞活化基因3在肝脏相关疾病中的研究进展
DOI: 10.3969/j.issn.1001-5256.2021.04.056
利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:陈锐负责拟定写作思路,撰写论文;王志鑫负责资料收集及分析,修改论文;樊海宁、王海久指导撰写文章并最后定稿。
Research advances in the role of lymphocyte activation gene-3 in liver-related diseases
-
摘要: 免疫检查点抑制剂疗法在恶性肿瘤及传染性疾病的治疗中显现出广阔的前景,但应用过程中暴露出的问题驱使研究者探索潜在的免疫检查点。总结了新型免疫检查点淋巴细胞活化基因3在肝脏相关疾病中的研究进展,旨在为后续研究提供参考。淋巴细胞活化基因3有望成为下一代免疫检查点抑制剂疗法的经典靶点,在肝脏相关疾病的免疫治疗中发挥关键作用。Abstract: Immune checkpoint inhibitors (ICIs) therapy has shown broad prospects in the treatment of malignant tumors and infectious diseases, but problems encountered during application drive researchers to explore potential immune checkpoints. This article summarizes the research advances in the role of the new immune checkpoint lymphocyte activation gene-3 (LAG-3) in liver-related diseases, aiming to provide a reference for subsequent research. LAG-3 is expected to become the classic target of next-generation ICIs therapy and play a key role in immunotherapy for liver-related diseases.
-
Key words:
- Liver Diseases /
- Immunosuppression /
- Therapeutics
-
[1] LI X, SHAO C, SHI Y, et al. Lessons learned from the blockade of immune checkpoints in cancer immunotherapy[J]. J Hematol Oncol, 2018, 11(1): 31. DOI: 10.1186/s13045-018-0578-4. [2] COX MA, NECHANITZKY R, MAK TW. Check point inhibitors as therapies for infectious diseases[J]. Curr Opin Immunol, 2017, 48: 61-67. DOI: 10.1016/j.coi.2017.07.016. [3] SHERGOLD AL, MILLAR R, NIBBS R. Understanding and overcoming the resistance of cancer to PD-1/PD-L1 blockade[J]. Pharmacol Res, 2019, 145: 104258. DOI: 10.1016/j.phrs.2019.104258. [4] ZHAO X, SUBRAMANIAN S. Intrinsic resistance of solid tumors to immune checkpoint blockade therapy[J]. Cancer Res, 2017, 77(4): 817-822. DOI: 10.1158/0008-5472.CAN-16-2379. [5] WANG J, YUAN R, SONG W, et al. PD-1, PD-L1 (B7-H1) and tumor-site immune modulation therapy: The historical perspective[J]. J Hematol Oncol, 2017, 10(1): 34. DOI: 10.1186/s13045-017-0403-5. [6] JENKINS RW, BARBIE DA, FLAHERTY KT. Mechanisms of resistance to immune checkpoint inhibitors[J]. Br J Cancer, 2018, 118(1): 9-16. DOI: 10.1038/bjc.2017.434. [7] LEE SJ, BYEON SJ, LEE J, et al. LAG3 in solid tumors as a potential novel immunotherapy target[J]. J Immunother, 2019, 42(8): 279-283. DOI: 10.1097/CJI.0000000000000283. [8] YU X, ZHENG Y, MAO R, et al. BTLA/HVEM signaling: Milestones in research and role in chronic hepatitis B virus infection[J]. Front Immunol, 2019, 10: 617. DOI: 10.3389/fimmu.2019.00617. [9] SUN J, LU Q, SANMANMED MF, et al. Siglec-15 as an emerging target for next-generation cancer immunotherapy[J]. Clin Cancer Res, 2021, 27(3): 680-688. DOI: 10.1158/1078-0432.CCR-19-2925. [10] TRIEBEL F, JITSUKAWA S, BAIXERAS E, et al. LAG-3, a novel lymphocyte activation gene closely related to CD4[J]. J Exp Med, 1990, 171(5): 1393-1405. DOI: 10.1084/jem.171.5.1393. [11] CRISE B, ROSE JK. Identification of palmitoylation sites on CD4, the human immunodeficiency virus receptor[J]. J Biol Chem, 1992, 267(19): 13593-13597. DOI: 10.1016/S0021-9258(18)42253-3 [12] TURNER JM, BRODSKY MH, IRVING BA, et al. Interaction of the unique N-terminal region of tyrosine kinase p56lck with cytoplasmic domains of CD4 and CD8 is mediated by cysteine motifs[J]. Cell, 1990, 60(5): 755-765. DOI: 10.1016/0092-8674(90)90090-2. [13] KOUO T, HUANG L, PUCSEK AB, et al. Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells[J]. Cancer Immunol Res, 2015, 3(4): 412-423. DOI: 10.1158/2326-6066.CIR-14-0150. [14] XU F, LIU J, LIU D, et al. LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses[J]. Cancer Res, 2014, 74(13): 3418-3428. DOI: 10.1158/0008-5472.CAN-13-2690. [15] ANNUNZIATO F, MANETTI R, TOMASÉVIC I, et al. Expression and release of LAG-3-encoded protein by human CD4+ T cells are associated with IFN-gamma production[J]. FASEB J, 1996, 10(7): 769-776. DOI: 10.1096/fasebj.10.7.8635694. [16] LI N, WANG Y, FORBES K, et al. Metalloproteases regulate T-cell proliferation and effector function via LAG-3[J]. EMBO J, 2007, 26(2): 494-504. DOI: 10.1038/sj.emboj.7601520. [17] TIAN X, ZHANG A, QIU C, et al. The upregulation of LAG-3 on T cells defines a subpopulation with functional exhaustion and correlates with disease progression in HIV-infected subjects[J]. J Immunol, 2015, 194(8): 3873-3882. DOI: 10.4049/jimmunol.1402176. [18] BUTLER NS, MOEBIUS J, PEWE LL, et al. Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection[J]. Nat Immunol, 2011, 13(2): 188-195. DOI: 10.1038/ni.2180. [19] MATSUZAKI J, GNJATIC S, MHAWECH-FAUCEGLIA P, et al. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer[J]. Proc Natl Acad Sci U S A, 2010, 107(17): 7875-7880. DOI: 10.1073/pnas.1003345107. [20] WANG J, SANMAMED MF, DATAR I, et al. Fibrinogen-like protein 1 is a major immune inhibitory ligand of LAG-3[J]. Cell, 2019, 176(1-2): 334-347.e12. DOI: 10.1016/j.cell.2018.11.010. [21] MAEDA TK, SUGIURA D, OKAZAKI IM, et al. Atypical motifs in the cytoplasmic region of the inhibitory immune co-receptor LAG-3 inhibit T cell activation[J]. J Biol Chem, 2019, 294(15): 6017-6026. DOI: 10.1074/jbc.RA119.007455. [22] WORKMAN CJ, DUGGER KJ, VIGNALI DA. Cutting edge: Molecular analysis of the negative regulatory function of lymphocyte activation gene-3[J]. J Immunol, 2002, 169(10): 5392-5395. DOI: 10.4049/jimmunol.169.10.5392. [23] YE B, LI X, DONG Y, et al. Increasing LAG-3 expression suppresses T-cell function in chronic hepatitis B: A balance between immunity strength and liver injury extent[J]. Medicine (Baltimore), 2017, 96(1): e5275. DOI: 10.1097/MD.0000000000005275. [24] DONG Y, LI X, ZHANG L, et al. CD4+ T cell exhaustion revealed by high PD-1 and LAG-3 expression and the loss of helper T cell function in chronic hepatitis B[J]. BMC Immunol, 2019, 20(1): 27. DOI: 10.1186/s12865-019-0309-9. [25] ZIOGAS DC, KOSTANTINOU F, CHOLONGITAS E, et al. Reconsidering the management of patients with cancer with viral hepatitis in the era of immunotherapy[J]. J Immunother Cancer, 2020, 8(2): e000943. DOI: 10.1136/jitc-2020-000943. [26] CHEN N, LIU Y, GUO Y, et al. Lymphocyte activation gene 3 negatively regulates the function of intrahepatic hepatitis C virus-specific CD8+ T cells[J]. J Gastroenterol Hepatol, 2015, 30(12): 1788-1795. DOI: 10.1111/jgh.13017. [27] ZHANG J, LIU W, XIE T, et al. Elevated LAG-3 on CD4+ T cells negatively correlates with neutralizing antibody response during HCV infection[J]. Immunol Lett, 2019, 212: 46-52. DOI: 10.1016/j.imlet.2019.06.003. [28] KROY DC, CIUFFREDA D, COOPERRIDER JH, et al. Liver environment and HCV replication affect human T-cell phenotype and expression of inhibitory receptors[J]. Gastroenterology, 2014, 146(2): 550-561. DOI: 10.1053/j.gastro.2013.10.022. [29] WANG L, QIU JP, YU L, et al. Increased numbers of CD5+CD19+CD1dhighIL-10+ bregs, CD4+Foxp3+ tregs, CD4+CXCR5+Foxp3+ follicular regulatory T (TFR) cells in CHB or CHC patients[J]. J Transl Med, 2014, 12: 251. DOI: 10.1186/s12967-014-0251-9. [30] EBINUMA H, NAKAMOTO N, LI Y, et al. Identification and in vitro expansion of functional antigen-specific CD25+ FoxP3+ regulatory T cells in hepatitis C virus infection[J]. J Virol, 2008, 82(10): 5043-5053. DOI: 10.1128/JVI.01548-07. [31] OKWOR C, OH JS, CRAWLEY AM, et al. Expression of inhibitory receptors on T and NK cells defines immunological phenotypes of HCV patients with advanced liver fibrosis[J]. iScience, 2020, 23(9): 101513. DOI: 10.1016/j.isci.2020.101513. [32] FEDERICO P, PETRILLO A, GIORDANO P, et al. Immune checkpoint inhibitors in hepatocellular carcinoma: Current status and novel perspectives[J]. Cancers (Basel), 2020, 12(10): 3025. DOI: 10.3390/cancers12103025. [33] YUEN MF, HOU JL, CHUTAPUTTI A, et al. Hepatocellular carcinoma in the Asia Pacific region[J]. Gastroenterol Hepatol, 2009, 24(3): 346-353. DOI: 10.1111/j.1440-1746.2009.05784.x. [34] WANG X, HE Q, SHEN H, et al. Genetic and phenotypic difference in CD8+ T cell exhaustion between chronic hepatitis B infection and hepatocellular carcinoma[J]. J Med Genet, 2019, 56(1): 18-21. DOI: 10.1136/jmedgenet-2018-105267. [35] GUO M, YUAN F, QI F, et al. Expression and clinical significance of LAG-3, FGL1, PD-L1 and CD8+T cells in hepatocellular carcinoma using multiplex quantitative analysis[J]. J Transl Med, 2020, 18(1): 306. DOI: 10.1186/s12967-020-02469-8. [36] CHEN X, ZOU J, SHEN B, et al. Differences between exhausted CD8+T cells in hepatocellular carcinoma patients with and without Uremia[J]. Can J Physiol Pharmacol, 2020. DOI: 10.1139/cjpp-2019-0641.[Online ahead of print] [37] WANG J, WEI W, TANG Q, et al. Oxysophocarpine suppresses hepatocellular carcinoma growth and sensitizes the therapeutic blockade of anti-Lag-3 via reducing FGL1 expression[J]. Cancer Med, 2020, 9(19): 7125-7136. DOI: 10.1002/cam4.3151. [38] KRAMAN M, FAROUDI M, ALLEN NL, et al. FS118, a bispecific antibody targeting LAG-3 and PD-L1, enhances T-Cell activation resulting in potent antitumor activity[J]. Clin Cancer Res, 2020, 26(13): 3333-3344. DOI: 10.1158/1078-0432.CCR-19-3548. [39] WANG P, ZHENG SG. Regulatory T cells and B cells: Implication on autoimmune diseases[J]. Int J Clin Exp Pathol, 2013, 6(12): 2668-2674. http://europepmc.org/abstract/med/24294353 [40] LIBERAL R, GRANT CR, HOLDER BS, et al. The impaired immune regulation of autoimmune hepatitis is linked to a defective galectin-9/tim-3 pathway[J]. Hepatology, 2012, 56(2): 677-686. DOI: 10.1002/hep.25682. [41] SEBODE M, PEISELER M, FRANKE B, et al. Reduced FOXP3(+) regulatory T cells in patients with primary sclerosing cholangitis are associated with IL2RA gene polymorphisms[J]. J Hepatol, 2014, 60(5): 1010-1016. DOI: 10.1016/j.jhep.2013.12.027. [42] WOO SR, TURNIS ME, GOLDBERG MV, et al. 2012. Immune inhibitorymolecules LAG-3 and PD-1 synergistically regulate T-cell function to promotetumoral immune escape[J]. Cancer Res, 2012, 72(4): 917-927. DOI: 10.1158/0008-5472.CAN-11-1620. [43] COMONT T, BELLIERE J, SIBAUD V, et al. Immune-related adverse events after immune checkpoints inhibitors in 2019: An update[J]. Rev Med Interne, 2020, 41(1): 37-45. DOI: 10.1016/j.revmed.2019.09.005. [44] LIBERAL R, GRANT CR, YUKSEL M, et al. Regulatory T-cell conditioning endows activated effector T cells with suppressor function in autoimmune hepatitis/autoimmune sclerosing cholangitis[J]. Hepatology, 2017, 66(5): 1570-1584. DOI: 10.1002/hep.29307. [45] LIN L, SHEN M, RUAN JW. Expression of programmed death receptor 1 in liver tissue of patients with autoimmune hepatitis and its clinical implications[J]. J Prac Hepatol, 2019, 22(2): 204-207. DOI: 10.3969/j.issn.1672-5069.2019.02.013.林兰, 沈敏, 阮健文. 自身免疫性肝炎患者肝组织程序性死亡受体1表达及其临床意义探讨[J]. 实用肝脏病杂志, 2019, 22(2): 204-207. DOI: 10.3969/j.issn.1672-5069.2019.02.013. [46] WANG H, MEHAL W, NAGY LE, et al. Immunological mechanisms and therapeutic targets of fatty liver diseases[J]. Cell Mol Immunol, 2021, 18(1): 73-91. DOI: 10.1038/s41423-020-00579-3. [47] SHALAPOUR S, LIN XJ, BASTIAN IN, et al. Author correction: Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity[J]. Nature, 2018, 561(7721): e1. DOI: 10.1038/s41586-018-0304-y. [48] Chinese Doctor Association, Chinese College of Surgeon(CCS), Chinese Committee for Hadytidology(CCH). Expert consensus on diagnosis and treatment of hepatic cystic and alveolar echinococcosis (2019 edition)[J]. Chin J Dig Surg, 2019, 18(8): 711-721. DOI: 10.3760/cma.j.issn.1673-9752.2019.08.002.中国医师协会外科医师分会包虫病外科专业委员会. 肝两型包虫病诊断与治疗专家共识(2019版)[J]. 中华消化外科杂志, 2019, 18(8): 711-721. DOI: 10.3760/cma.j.issn.1673-9752.2019.08.002. [49] LIU HD, WANG HB, FAN HN, et al. Alveolar echinococcosis and immune evasion[J]. Chin J Parasitol Parasit Dis, 2018, 36(6): 655-660. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSB201806024.htm刘寒冬, 王宏宾, 樊海宁, 等. 多房棘球蚴病的免疫逃避机制[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(6): 655-660. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSB201806024.htm [50] BELLANGER AP, COURQUET S, PALLANDRE JR, et al. Echinococcus multilocularis vesicular fluid induces the expression of immune checkpoint proteins in vitro[J]. Parasite Immunol, 2020, 42(6): e12711. DOI: 10.1111/pim.12711. [51] WANG ZX, LI Y, WANG JY, et al. Hepatic alveolarechinococcosis recurring after autologous liver transplanta-tion: A case report[J]. J Clin Hepatol, 2020, 36(8): 1832-1834. DOI: 10.3969/j.issn.1001-5256.2020.08.033.王志鑫, 李姚, 王江瑜, 等. 肝泡型包虫病自体肝移植术后复发1例报告[J]. 临床肝胆病杂志, 2020, 36(8): 1832-1834. DOI: 10.3969/j.issn.1001-5256.2020.08.033.
本文二维码
计量
- 文章访问数: 636
- HTML全文浏览量: 118
- PDF下载量: 36
- 被引次数: 0