急性间歇性卟啉病并发肝细胞癌的发病机制与预防策略
DOI: 10.3969/j.issn.1001-5256.2021.05.049
利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:曹茜茜负责资料收集,撰写论文;任毅、刘思敏参与资料收集,修改论文;杨静负责拟定写作思路,指导撰写文章并最后定稿。
Pathogenesis and prevention strategy of hepatocellular carcinoma in acute intermittent porphyria
-
摘要: 随着遗传学、分子生物学的发展,急性间歇性卟啉病(AIP)的相关研究不断深入,其并发肝细胞癌(HCC)也日益引起关注。主要总结了AIP并发HCC的发病机制及预防研究进展。AIP并发HCC的机制包括氧化应激、p53突变、B淋巴细胞瘤-2下调、致炎细胞因子增多、铁超载等有关。其预防策略包括他汀类药物的应用、严格管理、肝移植和基因及酶替代治疗。对AIP并发HCC的发病机制及预防新进展作一综述。Abstract: With the development of genetics and molecular biology, the research on acute intermittent porphyria (AIP) has been gradually deepened, and its complication hepatocellular carcinoma (HCC) has attracted more and more attention. This article mainly summarizes the research advances in the pathogenesis and prevention of HCC in AIP. The pathogenesis of AIP with HCC is associated with oxidative stress, p53 mutation, downregulation of Bcl-2, increase in inflammatory cytokines, and iron overload, and its prevention strategies include the use of statins, strict management, liver transplantation, gene therapy, and enzyme replacement therapy. This article reviews the latest advances in the pathogenesis and prevention of AIP with HCC.
-
[1] SZLENDAK U, BYKOWSKA K, LIPNIACKA A. Clinical, biochemical and molecular characteristics of the main types of porphyria[J]. Adv Clin Exp Med, 2016, 25(2): 361-368. DOI: 10.17219/acem/58955. [2] OMATA M, CHENG AL, KOKUDO N, et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: A 2017 update[J]. Hepatol Int, 2017, 11(4): 317-370. DOI: 10.1007/s12072-017-9799-9. [3] STEWART MF. Review of hepatocellular cancer, hypertension and renal impairment as late complications of acute porphyria and recommendations for patient follow-up[J]. J Clin Pathol, 2012, 65(11): 976-980. DOI: 10.1136/jclinpath-2012-200791. [4] SARDH E, WAHLIN S, BJÖRNSTEDT M, et al. High risk of primary liver cancer in a cohort of 179 patients with acute hepatic porphyria[J]. J Inherit Metab Dis, 2013, 36(6): 1063-1071. DOI: 10.1007/s10545-012-9576-9. [5] PUY H, GOUYA L, DEYBACH JC. Porphyrias[J]. Lancet, 2010, 375(9718): 924-937. DOI: 10.1016/S0140-6736(09)61925-5. [6] LITHNER F, WETTERBERG L. Hepatocellular carcinoma in patients with acute intermittent porphyria[J]. Acta Med Scand, 1984, 215(3): 271-274. DOI: 10.1111/j.0954-6820.1984.tb05005.x. [7] INNALA E, ANDERSSON C. Screening for hepatocellular carcinoma in acute intermittent porphyria: A 15-year follow-up in northern Sweden[J]. J Intern Med, 2011, 269(5): 538-545. DOI: 10.1111/j.1365-2796.2010.02335.x. [8] KAUPPINEN R, MUSTAJOKI P. Acute hepatic porphyria and hepatocellular carcinoma[J]. Br J Cancer, 1988, 57(1): 117-120. DOI: 10.1038/bjc.1988.23. [9] ANDANT C, PUY H, BOGARD C, et al. Hepatocellular carcinoma in patients with acute hepatic porphyria: Frequency of occurrence and related factors[J]. J Hepatol, 2000, 32(6): 933-939. DOI: 10.1016/s0168-8278(00)80097-5. [10] SCHNEIDER-YIN X, HARMS J, MINDER EI. Porphyria in Switzerland, 15 years experience[J]. Swiss Med Wkly, 2009, 139(13-14): 198-206. http://europepmc.org/abstract/MED/19350426 [11] ELDER G, HARPER P, BADMINTON M, et al. The incidence of inherited porphyrias in Europe[J]. J Inherit Metab Dis, 2013, 36(5): 849-857. DOI: 10.1007/s10545-012-9544-4. [12] ANDERSSON C, BJERSING L, LITHNER F. The epidemiology of hepatocellular carcinoma in patients with acute intermittent porphyria[J]. J Intern Med, 1996, 240(4): 195-201. DOI: 10.1046/j.1365-2796.1996.21847000.x. [13] SMITH AG, FOSTER JR. The association between chemical-induced porphyria and hepatic cancer[J]. Toxicol Res (Camb), 2018, 7(4): 647-663. DOI: 10.1039/c8tx00019k. [14] DEYBACH JC, PUY H. Hepatocellular carcinoma without cirrhosis: Think acute hepatic porphyrias and vice versa[J]. J Intern Med, 2011, 269(5): 521-524. DOI: 10.1111/j.1365-2796.2011.02358.x. [15] MENEZES PR, GONZÁLEZ CB, DESOUZA AO, et al. Effect of 5-aminolevulinic acid on the expression of carcinogenesis-related proteins in cultured primary hepatocytes[J]. Mol Biol Rep, 2018, 45(6): 2801-2809. DOI: 10.1007/s11033-018-4367-5. [16] HE P, LI Z, XU F, et al. AMPK activity contributes to G2 arrest and DNA damage decrease via p53/p21 pathways in oxidatively damaged mouse zygotes[J]. Front Cell Dev Biol, 2020, 8: 539485. DOI: 10.3389/fcell.2020.539485. [17] MOXLEY AH, REISMAN D. Context is key: Understanding the regulation, functional control, and activities of the p53 tumour suppressor[J]. Cell Biochem Funct, 2021, 39(2): 235-247. DOI: 10.1002/cbf.3590. [18] HOLLSTEIN M, SIDRANSKY D, VOGELSTEIN B, et al. p53 mutations in human cancers[J]. Science, 1991, 253(5015): 49-53. DOI: 10.1126/science.1905840. [19] KØNIG SM, RISSLER V, TERKELSEN T, et al. Alterations of the interactome of Bcl-2 proteins in breast cancer at the transcriptional, mutational and structural level[J]. PLoS Comput Biol, 2019, 15(12): e1007485. DOI: 10.1371/journal.pcbi.1007485. [20] MURPHY KL, KITTRELL FS, GAY JP, et al. Bcl-2 expression delays mammary tumor development in dimethylbenz(a)anthracene-treated transgenic mice[J]. Oncogene, 1999, 18(47): 6597-6604. DOI: 10.1038/sj.onc.1203099. [21] PIERCE RH, VAIL ME, RALPH L, et al. Bcl-2 expression inhibits liver carcinogenesis and delays the development of proliferating foci[J]. Am J Pathol, 2002, 160(5): 1555-1560. DOI: 10.1016/S0002-9440(10)61101-7. [22] PALLET N, MAMI I, SCHMITT C, et al. High prevalence of and potential mechanisms for chronic kidney disease in patients with acute intermittent porphyria[J]. Kidney Int, 2015, 88(2): 386-395. DOI: 10.1038/ki.2015.97. [23] LIU Z, CHEN D, NING F, et al. EGF is highly expressed in hepatocellular carcinoma (HCC) and promotes motility of HCC cells via fibronectin[J]. J Cell Biochem, 2018, 119(5): 4170-4183. DOI: 10.1002/jcb.26625. [24] LIANG J, LIAO J, LIU T, et al. Comprehensive analysis of TGF-β-induced mRNAs and ncRNAs in hepatocellular carcinoma[J]. Aging (Albany NY), 2020, 12(19): 19399-19420. DOI: 10.18632/aging.103826. [25] TAKAKI A, YAMAMOTO K. Control of oxidative stress in hepatocellular carcinoma: Helpful or harmful?[J]. World J Hepatol, 2015, 7(7): 968-979. DOI: 10.4254/wjh.v7.i7.968. [26] HOMEDAN C, SCHMITT C, LAAFI J, et al. Mitochondrial energetic defects in muscle and brain of a Hmbs-/- mouse model of acute intermittent porphyria[J]. Hum Mol Genet, 2015, 24(17): 5015-5023. DOI: 10.1093/hmg/ddv222. [27] EMANUELLI T, PAGEL FW, PORCI U ' NCULA LO, et al. Effects of 5-aminolevulinic acid on the glutamatergic neurotransmission[J]. Neurochem Int, 2003, 42(2): 115-121. DOI: 10.1016/s0197-0186(02)00074-8. [28] NIEDERAU C, FISCHER R, PVRSCHEL A, et al. Long-term survival in patients with hereditary hemochromatosis[J]. Gastroenterology, 1996, 110(4): 1107-1119. DOI: 10.1053/gast.1996.v110.pm8613000. [29] MIYANISHI K, TANAKA S, SAKAMOTO H, et al. The role of iron in hepatic inflammation and hepatocellular carcinoma[J]. Free Radic Biol Med, 2019, 133: 200-205. DOI: 10.1016/j.freeradbiomed.2018.07.006. [30] WILLANDT B, LANGENDONK JG, BIERMANN K, et al. Liver fibrosis associated with iron accumulation due to long-term heme-arginate treatment in acute intermittent porphyria: A Case Series[J]. JIMD Rep, 2016, 25: 77-81. DOI: 10.1007/8904_2015_458. [31] AGREN R, MARDINOGLU A, ASPLUND A, et al. Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling[J]. Mol Syst Biol, 2014, 10(3): 721. DOI: 10.1002/msb.145122. [32] SINGH S, SINGH PP. Statins for prevention of hepatocellular cancer: One step closer?[J]. Hepatology, 2014, 59(2): 724-726. DOI: 10.1002/hep.26614. [33] DAR FS, ASAI K, HAQUE AR, et al. Liver transplantation for acute intermittent porphyria: A viable treatment?[J]. Hepatobiliary Pancreat Dis Int, 2010, 9(1): 93-96. http://europepmc.org/abstract/MED/20133237 [34] MALINZAK EB, KNUDSEN NW, UDANI AD, et al. Perioperative challenges in liver transplantation for a patient with acute intermittent porphyria[J]. J Cardiothorac Vasc Anesth, 2018, 32(6): 2716-2720. DOI: 10.1053/j.jvca.2017.11.045. [35] D'AVOLA D, LÓPEZ-FRANCO E, SANGRO B, et al. Phase Ⅰ open label liver-directed gene therapy clinical trial for acute intermittent porphyria[J]. J Hepatol, 2016, 65(4): 776-783. DOI: 10.1016/j.jhep.2016.05.012. [36] SERRANO-MENDIOROZ I, SAMPEDRO A, SERNA N, et al. Bioengineered PBGD variant improves the therapeutic index of gene therapy vectors for acute intermittent porphyria[J]. Hum Mol Genet, 2018, 27(21): 3688-3696. DOI: 10.1093/hmg/ddy283. [37] JIANG L, BERRAONDO P, JERICÓ D, et al. Systemic messenger RNA as an etiological treatment for acute intermittent porphyria[J]. Nat Med, 2018, 24(12): 1899-1909. DOI: 10.1038/s41591-018-0199-z. [38] de PAULA BRANDÃO PR, TITZE-de-ALMEIDA SS, TITZE-de-ALMEIDA R. Leading RNA interference therapeutics part 2: Silencing delta-aminolevulinic acid synthase 1, with a focus on givosiran[J]. Mol Diagn Ther, 2020, 24(1): 61-68. DOI: 10.1007/s40291-019-00438-6. [39] SARDH E, HARPER P, BALWANI M, et al. Phase 1 trial of an RNA interference therapy for acute intermittent porphyria[J]. N Engl J Med, 2019, 380(6): 549-558. DOI: 10.1056/NEJMoa1807838. [40] SCOTT LJ. Givosiran: First approval[J]. Drugs, 2020, 80(3): 335-339. DOI: 10.1007/s40265-020-01269-0. [41] BUSTAD HJ, TOSKA K, SCHMITT C, et al. A pharmacological chaperone therapy for acute intermittent porphyria[J]. Mol Ther, 2020, 28(2): 677-689. DOI: 10.1016/j.ymthe.2019.11.010. [42] CHEN B, SOLIS-VILLA C, HAKENBERG J, et al. Acute intermittent porphyria: Predicted pathogenicity of HMBS variants indicates extremely low penetrance of the autosomal dominant disease[J]. Hum Mutat, 2016, 37(11): 1215-1222. DOI: 10.1002/humu.23067. [43] MUTLUAY B, KÖKSAL A, ÇELIK R, et al. A case of acute intermittent porphyria mimicking guillain-barré syndrome[J]. Noro Psikiyatr Ars, 2019, 56(4): 311-312. DOI: 10.5152/npa.2017.19474.
本文二维码
计量
- 文章访问数: 526
- HTML全文浏览量: 277
- PDF下载量: 29
- 被引次数: 0