中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

消退素D1预处理对肝缺血再灌注损伤大鼠模型的保护作用及机制

王阳阳 彭雪莹 孟杰 安博然 贺文娟 鲁素彩 陈岩 孔立文 牛川 刘丛 黄薇 侯英键

引用本文:
Citation:

消退素D1预处理对肝缺血再灌注损伤大鼠模型的保护作用及机制

DOI: 10.3969/j.issn.1001-5256.2021.06.030
基金项目: 

国家自然科学基金 (812000078);

保定市2019年度科技计划项目 (1951ZF092);

河北省卫生和计划生育委员会2018年医学科学研究重点课题计划项目 (20180704);

河北大学医学学科培育项目 (2020A12);

河北大学附属医院青年基金 (2016Q001)

利益冲突声明:本研究不存在研究者、伦理委员会成员、受试者监护人以及与公开研究成果有关的利益冲突。
作者贡献声明:王阳阳、安博然、贺文娟负责课题设计,资料分析,撰写论文;刘丛、黄薇、鲁素彩参与收集数据,修改论文;彭雪莹、陈岩负责数据整理,统计分析;孔立文、牛川、孟杰、侯英键负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    作者简介:

    王阳阳(1977—),女,副教授,博士,主要从事肝脏疾病的研究

    通信作者:

    孟杰,cenci@163.com

  • 中图分类号: R575

Protective effect of resolvin D1 pretreatment in a rat model of hepatic ischemia-reperfusion injury and its mechanism

  • 摘要:   目的  探究消退素D1(RvD1)对肝缺血再灌注(IR)损伤大鼠模型的保护作用及与血红素氧合酶-1(HO-1)之间的关系。  方法  Sprague-Dawley大鼠36只随机分为6组,分别为假手术(sham)+PBS组、sham+RvD1高剂量(10 μg/kg)组、IR+PBS组、IR+RvD1(2 μg/kg)低剂量组、IR+RvD1(5 μg/kg)中剂量组和IR+RvD1(10 μg/kg)高剂量组,每组6只。RvD1于缺血前1 h腹腔注射。生化仪测定ALT、AST水平,酶联免疫法检测血浆TNFα、IL-6、IL-8水平,HE染色观察肝组织学变化,Western Blot方法检测肝组织HO-1变化。计量资料多组间比较采用单因素方差分析,进一步两两比较采用LSD-t检验。  结果  与IR+PBS组相比,IR+RvD1中剂量组和IR+RvD1高剂量组大鼠ALT、AST水平以及炎症因子TNFα、IL-6、IL-8水平均明显降低(P值均<0.05),且中、高剂量两组间比较差异均无统计学意义(P值均>0.05)。Western Blot结果显示IR+RvD1中剂量组和IR+RvD1高剂量组肝脏HO-1蛋白表达较IR+PBS组升高(P值均<0.05)。HE染色观察肝组织学变化显示,与IR+PBS组相比,IR+RvD1中剂量组和IR+RvD1高剂量组细胞肿胀及肝索排列紊乱依然存在,但未见明显大片坏死区域。  结论  RvD1可能通过增加肝脏HO-1表达,降低炎症因子(TNFα、IL-6、IL-8)和转氨酶(ALT、AST)水平,发挥对大鼠肝脏IR损伤的保护作用。

     

  • 图  1  各组大鼠肝脏组织学结果(HE染色,×100)

    注:箭头所示为肝细胞坏死区域。

    图  2  Western Blot检测HO-1表达结果

    注:与sham+PBS组比较,*P<0.05;与IR+PBS组比较,#P<0.05。

    表  1  实验动物分组

    组别 过程
    缺血前1 h(腹腔注射) 缺血 缺血45 min后再灌注 再灌注8 h
    sham+PBS组 PBS 1 ml 开关腹 取标本
    sham+RvD1高剂量组 RvD1 10 μg/kg 开关腹 取标本
    IR+PBS组 PBS 1 ml 钳夹缺血 再灌注,关腹 取标本
    IR+RvD1低剂量组 RvD1 2 μg/kg 钳夹缺血 再灌注,关腹 取标本
    IR+RvD1中剂量组 RvD1 5 μg/kg 钳夹缺血 再灌注,关腹 取标本
    IR+RvD1高剂量组 RvD1 10 μg/kg 钳夹缺血 再灌注,关腹 取标本
    下载: 导出CSV

    表  2  各组大鼠血浆转氨酶水平比较

    组别 动物数(只) ALT(U/L) AST(U/L)
    sham+PBS组 6 56.88±11.65 58.45±12.11
    sham+RvD1高剂量组 6 56.98±14.56 49.78±15.04
    IR+PBS组 6 498.68±111.581) 606.35±150.061)
    IR+RvD1低剂量组 6 578.23±89.50 610.92±77.30
    IR+RvD1中剂量组 6 373.13±105.592) 350.72±95.422)
    IR+RvD1高剂量组 6 348.17±86.522) 369.72±94.252)
    F 43.926 47.459
    P <0.001 <0.001
    注:与sham+PBS组比较,1)P<0.05;与IR+PBS组比较,2)P<0.05。
    下载: 导出CSV

    表  3  各组大鼠血浆炎症因子TNFα、IL-6、IL-8水平比较

    组别 动物数(只) IL-6(pg/ml) IL-8(pg/ml) TNFα(pg/ml)
    sham+PBS组 6 26.32±7.05 120.83±19.17 37.30±6.59
    sham+RvD1高剂量组 6 25.23±8.90 136.63±16.74 37.75±10.19
    IR+PBS组 6 101.28±12.311) 697.88±152.131) 287.65±62.081)
    IR+RvD1低剂量组 6 86.83±18.39 580.65±94.91 318.67±76.37
    IR+RvD1中剂量组 6 42.47±12.942) 399.13±75.172) 83.55±12.342)
    IR+RvD1高剂量组 6 41.22±9.992) 400.15±121.562) 86.68±18.802)
    F 42.276 36.249 56.206
    P <0.001 <0.001 <0.001
    注:与sham+PBS组比较,1)P<0.05;与IR+PBS组比较,2)P<0.05。
    下载: 导出CSV
  • [1] JIMÉNEZ-CASTRO MB, CORNIDE-PETRONIO ME, GRACIA-SANCHO J, et al. Inflammasome-mediated inflammation in liver ischemia-reperfusion injury[J]. Cells, 2019, 8(10): 1131. DOI: 10.3390/cells8101131.
    [2] ZABALA V, BOYLAN JM, THEVENOT P, et al. Transcriptional changes during hepatic ischemia-reperfusion in the rat[J]. PLoS One, 2019, 14(12): e0227038. DOI: 10.1371/journal.pone.0227038.
    [3] WEYLANDT KH, CHIU CY, GOMOLKA B, et al. Omega-3 fatty acids and their lipid mediators: Towards an understanding of resolvin and protectin formation[J]. Prostaglandins Other Lipid Mediat, 2012, 97(3-4): 73-82. DOI: 10.1016/j.prostaglandins.2012.01.005.
    [4] GIACOBBE J, BENOITON B, ZUNSZAIN P, et al. The anti-inflammatory role of omega-3 polyunsaturated fatty acids metabolites in pre-clinical models of psychiatric, neurodegenerative, and neurological disorders[J]. Front Psychiatry, 2020, 11: 122. DOI: 10.3389/fpsyt.2020.00122.
    [5] LUO X, GU Y, TAO X, et al. Resolvin D5 inhibits neuropathic and inflammatory pain in male but not female mice: Distinct actions of D-series resolvins in chemotherapy-induced peripheral neuropathy[J]. Front Pharmacol, 2019, 10: 745. DOI: 10.3389/fphar.2019.00745.
    [6] SUN Z, WANG F, YANG Y, et al. Resolvin D1 attenuates ventilator-induced lung injury by reducing HMGB1 release in a HO-1-dependent pathway[J]. Int Immunopharmacol, 2019, 75: 105825. DOI: 10.1016/j.intimp.2019.105825.
    [7] KRASHIA P, CORDELLA A, NOBILI A, et al. Blunting neuroinflammation with resolvin D1 prevents early pathology in a rat model of Parkinson's disease[J]. Nat Commun, 2019, 10(1): 3945. DOI: 10.1038/s41467-019-11928-w.
    [8] WANG YY, FENG ZJ, YUE YY, et al. Effect of heme oxygenase on apoptosis and apoptosis genes in hepatic ischemia reperfusion injury in rats[J]. Chin J Hepatol, 2007, 15(12): 922-925. DOI: 10.3760/j.issn:1007-3418.2007.12.011.

    王阳阳, 冯志杰, 岳媛媛, 等. 血红素氧合酶对大鼠肝脏缺血再灌注损伤细胞凋亡及相关基因的影响[J]. 中华肝脏病杂志, 2007, 15(12): 922-925. DOI: 10.3760/j.issn:1007-3418.2007. 12.011.
    [9] NAUTA RJ, TSIMOYIANNIS E, URIBE M, et al. Oxygen-derived free radicals in hepatic ischemia and reperfusion injury in the rat[J]. Surg Gynecol Obstet, 1990, 171(2): 120-125. http://europepmc.org/abstract/med/2382188
    [10] LEE HJ, PARK MK, LEE EJ, et al. Resolvin D1 inhibits TGF-β1- induced epithelial mesenchymal transition of A549 lung cancer cells via lipoxin A4 receptor/formyl peptide receptor 2 and GPR32[J]. Int J Biochem Cell Biol, 2013, 45(12): 2801-2807. DOI: 10.1016/j.biocel.2013.09.018.
    [11] MUSSO G, GAMBINO R, CASSADER M, et al. Specialized proresolving mediators: Enhancing nonalcoholic steatohepatitis and fibrosis resolution[J]. Trends Pharmacol Sci, 2018, 39(4): 387-401. DOI: 10.1016/j.tips.2018.01.003.
    [12] ZHANG T, GU J, GUO J, et al. Renalase attenuates mouse fatty liver ischemia/reperfusion injury through mitigating oxidative stress and mitochondrial damage via activating SIRT1[J]. Oxid Med Cell Longev, 2019, 2019: 7534285. DOI: 10.1155/2019/7534285.
    [13] KONISHI T, LENTSCH AB. Hepatic ischemia/reperfusion: Mechanisms of tissue injury, repair, and regeneration[J]. Gene Expr, 2017, 17(4): 277-287. DOI: 10.3727/105221617X 15042750874156.
    [14] JOSEPHS SF, ICHIM TE, PRINCE SM, et al. Unleashing endogenous TNF-alpha as a cancer immunotherapeutic[J]. J Transl Med, 2018, 16(1): 242. DOI: 10.1186/s12967-018-1611-7.
    [15] KANY S, VOLLRATH JT, RELJA B. Cytokines in inflammatory disease[J]. Int J Mol Sci, 2019, 20(23): 6008. DOI: 10.3390/ijms20236008.
    [16] KHAN HA, AHMAD MZ, KHAN JA, et al. Crosstalk of liver immune cells and cell death mechanisms in different murine models of liver injury and its clinical relevance[J]. Hepatobiliary Pancreat Dis Int, 2017, 16(3): 245-256. DOI: 10.1016/s1499-3872(17)60014-6.
    [17] WANG YY, YU HL, LI TY, et al. Protective effect of HO-1 mediated mangiferin on liver ischemia/reperfusion injury in rats[J]. Chin Pharmacol Bull, 2015, 31(5): 736-737. DOI: 10.3969/j.issn.1001-1978.2015.05.028.

    王阳阳, 于惠玲, 李田阳, 等. HO-1介导芒果苷对大鼠肝脏缺血/再灌注损伤的保护作用[J]. 中国药理学通报, 2015, 31(5): 736-737. DOI: 10.3969/j.issn.1001-1978.2015.05.028.
    [18] WANG YY, MA YM, TIAN Y, et al. Effect of sEH inhibitor on hepatic I/R injury in rats and its mechanisms[J]. Chin Pharmacol Bull, 2013, 29(4): 590-591. DOI: 10.3969/j.issn.1001-1978.2013.04.033.

    王阳阳, 马幼敏, 田媛, 等. sEH抑制剂对大鼠肝缺血/再灌注损伤的影响及其机制[J]. 中国药理学通报, 2013, 29(4): 590-591. DOI: 10.3969/j.issn.1001-1978.2013.04.033.
    [19] YANG W, CHEN J, MENG Y, et al. Novel targets for treating ischemia-reperfusion injury in the liver[J]. Int J Mol Sci, 2018, 19(5): 1302. DOI: 10.3390/ijms19051302.
    [20] CORNIDE-PETRONIO ME, ÁLVAREZ-MERCADO AI, JIMÉNEZ-CASTRO MB, et al. Current knowledge about the effect of nutritional status, supplemented nutrition diet, and gut microbiota on hepatic ischemia-reperfusion and regeneration in liver surgery[J]. Nutrients, 2020, 12(2): 284. DOI: 10.3390/nu12020284.
    [21] ZHU LJ, YUAN SF, SHANGGUAN ZX, et al. miR-1304 inhibits non-small cell lung cancer cell invasion and prolifer-ation in vitro via targeting heme oxygenase-1[J]. Chin J Clin Pharmacol Ther, 2019, 24(4): 383-390. DOI: 10.12092/j.issn.1009-2501.2019.04.004.

    朱林佳, 原少斐, 上官宗校, 等. microRNA-1304通过靶向血红素氧合酶-1对人肺癌细胞的抑制作用[J]. 中国临床药理学与治疗学, 2019, 24(4): 383-390. DOI: 10.12092/j.issn.1009-2501.2019.04.004.
    [22] CREMERS NA, WEVER KE, WONG RJ, et al. Effects of remote ischemic preconditioning on heme oxygenase-1 expression and cutaneous wound repair[J]. Int J Mol Sci, 2017, 18(2): 438. DOI: 10.3390/ijms18020438.
    [23] LI L, LI CM, WU J, et al. Heat shock protein 32/heme oxygenase-1 protects mouse Sertoli cells from hyperthermia-induced apoptosis by CO activation of sGC signalling pathways[J]. Cell Biol Int, 2014, 38(1): 64-71. DOI: 10.1002/cbin.10177.
    [24] CHEN XP, FENG ZJ. System of heme oxygenase-carbon monoxide and liver oxidative stress[J]. J Clin Hepatol, 2005, 21(5): 309-311. http://lcgdbzz.org/article/id/LCGD200505029

    陈湘萍, 冯志杰. 血红素氧合酶-一氧化碳系统与肝脏的氧化应激[J]. 临床肝胆病杂志, 2005, 21(5): 309-311. http://lcgdbzz.org/article/id/LCGD200505029
    [25] WEGIEL B, NEMETH Z, CORREA-COSTA M, et al. Heme oxygenase-1: A metabolic nike[J]. Antioxid Redox Signal, 2014, 20(11): 1709-1722. DOI: 10.1089/ars.2013.5667.
    [26] JIN HH, LI ZP. Correlational research of serum ferritin and hyaluronic acid in patients with cirrhosis[J]. J Clin Hepatol, 2012, 28(3): 216-218. http://lcgdbzz.org/article/id/LCGD201203017

    金宏慧, 李仲平. 血清铁蛋白与透明质酸和肝硬化的相关性[J]. 临床肝胆病杂志, 2012, 28(3): 216-218. http://lcgdbzz.org/article/id/LCGD201203017
    [27] BARBAGALLO I, NICOLOSI A, CALABRESE G, et al. The role of the heme oxygenase system in the metabolic syndrome[J]. Curr Pharm Des, 2014, 20(31): 4970-4974. DOI: 10.2174/1381612819666131206103824.
    [28] LIN Q, WEIS S, YANG G, et al. Heme oxygenase-1 protein localizes to the nucleus and activates transcription factors important in oxidative stress[J]. J Biol Chem, 2007, 282(28): 20621-20633. DOI: 10.1074/jbc.M607954200.
    [29] MAHMOUD AM, HUSSEIN OE, HOZAYEN WG, et al. Ferulic acid prevents oxidative stress, inflammation, and liver injury via upregulation of Nrf2/HO-1 signaling in methotrexate-induced rats[J]. Environ Sci Pollut Res Int, 2020, 27(8): 7910-7921. DOI: 10.1007/s11356-019-07532-6.
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  772
  • HTML全文浏览量:  229
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-10
  • 录用日期:  2021-02-01
  • 出版日期:  2021-06-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回