消退素D1预处理对肝缺血再灌注损伤大鼠模型的保护作用及机制
DOI: 10.3969/j.issn.1001-5256.2021.06.030
Protective effect of resolvin D1 pretreatment in a rat model of hepatic ischemia-reperfusion injury and its mechanism
-
摘要:
目的 探究消退素D1(RvD1)对肝缺血再灌注(IR)损伤大鼠模型的保护作用及与血红素氧合酶-1(HO-1)之间的关系。 方法 Sprague-Dawley大鼠36只随机分为6组,分别为假手术(sham)+PBS组、sham+RvD1高剂量(10 μg/kg)组、IR+PBS组、IR+RvD1(2 μg/kg)低剂量组、IR+RvD1(5 μg/kg)中剂量组和IR+RvD1(10 μg/kg)高剂量组,每组6只。RvD1于缺血前1 h腹腔注射。生化仪测定ALT、AST水平,酶联免疫法检测血浆TNFα、IL-6、IL-8水平,HE染色观察肝组织学变化,Western Blot方法检测肝组织HO-1变化。计量资料多组间比较采用单因素方差分析,进一步两两比较采用LSD-t检验。 结果 与IR+PBS组相比,IR+RvD1中剂量组和IR+RvD1高剂量组大鼠ALT、AST水平以及炎症因子TNFα、IL-6、IL-8水平均明显降低(P值均<0.05),且中、高剂量两组间比较差异均无统计学意义(P值均>0.05)。Western Blot结果显示IR+RvD1中剂量组和IR+RvD1高剂量组肝脏HO-1蛋白表达较IR+PBS组升高(P值均<0.05)。HE染色观察肝组织学变化显示,与IR+PBS组相比,IR+RvD1中剂量组和IR+RvD1高剂量组细胞肿胀及肝索排列紊乱依然存在,但未见明显大片坏死区域。 结论 RvD1可能通过增加肝脏HO-1表达,降低炎症因子(TNFα、IL-6、IL-8)和转氨酶(ALT、AST)水平,发挥对大鼠肝脏IR损伤的保护作用。 -
关键词:
- 肝疾病 /
- 再灌注损伤 /
- 消退素D1 /
- 大鼠, Sprague-Dawley
Abstract:Objective To investigate the protective effect of resolvin D1 (RvD1) in a rat model of hepatic ischemia/reperfusion (IR) injury and its association with heme oxygenase-1 (HO-1). Methods A total of 36 Sprague-Dawley rats were randomly divided into sham-operation (sham)+phosphate-buffered saline (PBS) group, sham+high-dose RvD1 (10 μg/kg) group, IR+PBS group, IR+low-dose RvD1 (2 μg/kg) group, IR+middle-dose RvD1 (5 μg/kg) group, and IR+high-dose RvD1 (10 μg/kg) group, with 6 rats in each group. RvD1 were intraperitoneally injected at 1 hour before ischemia. A biochemical analyzer was used to measure the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST); ELISA was used to measure the plasma levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-8 (IL-8); HE staining was used to observe the histological changes of the liver; Western blot was used to measure the change in HO-1 in liver tissue. A one-way analysis of variance was used for comparison of continuous data between multiple groups, and the least significant difference t-test was used for further comparison between two groups. Results Compared with the IR+PBS group, the IR+middle-dose RvD1 group and the IR+high-dose RvD1 group had significant reductions in the levels of ALT, AST, and the inflammatory factors TNF-α, IL-6, and IL-8 (all P < 0.05), and there were no significant differences between the IR+middle-dose RvD1 group and the IR+high-dose RvD1 group (all P > 0.05). Western blot showed that compared with the IR+PBS group, the IR+middle-dose RvD1 group and the IR+high-dose RvD1 group had a significant increase in the protein expression of HO-1 in the liver (P < 0.05). HE staining showed that compared with the IR+PBS group, the IR+middle-dose RvD1 group and the IR+high-dose RvD1 group had cell swelling and disordered hepatic cords, without massive necrosis. Conclusion RvD1 exerts a protective effect against hepatic IR injury in rats by increasing the expression of HO-1 and reducing the levels of inflammatory factors (TNF-α, IL-6, and IL-8) and aminotransferases (ALT and AST). -
Key words:
- Liver Diseases /
- Reperfusion Injury /
- Resolvin D1 /
- Rats, Sprague-Dawley
-
表 1 实验动物分组
组别 过程 缺血前1 h(腹腔注射) 缺血 缺血45 min后再灌注 再灌注8 h sham+PBS组 PBS 1 ml 开关腹 取标本 sham+RvD1高剂量组 RvD1 10 μg/kg 开关腹 取标本 IR+PBS组 PBS 1 ml 钳夹缺血 再灌注,关腹 取标本 IR+RvD1低剂量组 RvD1 2 μg/kg 钳夹缺血 再灌注,关腹 取标本 IR+RvD1中剂量组 RvD1 5 μg/kg 钳夹缺血 再灌注,关腹 取标本 IR+RvD1高剂量组 RvD1 10 μg/kg 钳夹缺血 再灌注,关腹 取标本 表 2 各组大鼠血浆转氨酶水平比较
组别 动物数(只) ALT(U/L) AST(U/L) sham+PBS组 6 56.88±11.65 58.45±12.11 sham+RvD1高剂量组 6 56.98±14.56 49.78±15.04 IR+PBS组 6 498.68±111.581) 606.35±150.061) IR+RvD1低剂量组 6 578.23±89.50 610.92±77.30 IR+RvD1中剂量组 6 373.13±105.592) 350.72±95.422) IR+RvD1高剂量组 6 348.17±86.522) 369.72±94.252) F值 43.926 47.459 P值 <0.001 <0.001 注:与sham+PBS组比较,1)P<0.05;与IR+PBS组比较,2)P<0.05。 表 3 各组大鼠血浆炎症因子TNFα、IL-6、IL-8水平比较
组别 动物数(只) IL-6(pg/ml) IL-8(pg/ml) TNFα(pg/ml) sham+PBS组 6 26.32±7.05 120.83±19.17 37.30±6.59 sham+RvD1高剂量组 6 25.23±8.90 136.63±16.74 37.75±10.19 IR+PBS组 6 101.28±12.311) 697.88±152.131) 287.65±62.081) IR+RvD1低剂量组 6 86.83±18.39 580.65±94.91 318.67±76.37 IR+RvD1中剂量组 6 42.47±12.942) 399.13±75.172) 83.55±12.342) IR+RvD1高剂量组 6 41.22±9.992) 400.15±121.562) 86.68±18.802) F值 42.276 36.249 56.206 P值 <0.001 <0.001 <0.001 注:与sham+PBS组比较,1)P<0.05;与IR+PBS组比较,2)P<0.05。 -
[1] JIMÉNEZ-CASTRO MB, CORNIDE-PETRONIO ME, GRACIA-SANCHO J, et al. Inflammasome-mediated inflammation in liver ischemia-reperfusion injury[J]. Cells, 2019, 8(10): 1131. DOI: 10.3390/cells8101131. [2] ZABALA V, BOYLAN JM, THEVENOT P, et al. Transcriptional changes during hepatic ischemia-reperfusion in the rat[J]. PLoS One, 2019, 14(12): e0227038. DOI: 10.1371/journal.pone.0227038. [3] WEYLANDT KH, CHIU CY, GOMOLKA B, et al. Omega-3 fatty acids and their lipid mediators: Towards an understanding of resolvin and protectin formation[J]. Prostaglandins Other Lipid Mediat, 2012, 97(3-4): 73-82. DOI: 10.1016/j.prostaglandins.2012.01.005. [4] GIACOBBE J, BENOITON B, ZUNSZAIN P, et al. The anti-inflammatory role of omega-3 polyunsaturated fatty acids metabolites in pre-clinical models of psychiatric, neurodegenerative, and neurological disorders[J]. Front Psychiatry, 2020, 11: 122. DOI: 10.3389/fpsyt.2020.00122. [5] LUO X, GU Y, TAO X, et al. Resolvin D5 inhibits neuropathic and inflammatory pain in male but not female mice: Distinct actions of D-series resolvins in chemotherapy-induced peripheral neuropathy[J]. Front Pharmacol, 2019, 10: 745. DOI: 10.3389/fphar.2019.00745. [6] SUN Z, WANG F, YANG Y, et al. Resolvin D1 attenuates ventilator-induced lung injury by reducing HMGB1 release in a HO-1-dependent pathway[J]. Int Immunopharmacol, 2019, 75: 105825. DOI: 10.1016/j.intimp.2019.105825. [7] KRASHIA P, CORDELLA A, NOBILI A, et al. Blunting neuroinflammation with resolvin D1 prevents early pathology in a rat model of Parkinson's disease[J]. Nat Commun, 2019, 10(1): 3945. DOI: 10.1038/s41467-019-11928-w. [8] WANG YY, FENG ZJ, YUE YY, et al. Effect of heme oxygenase on apoptosis and apoptosis genes in hepatic ischemia reperfusion injury in rats[J]. Chin J Hepatol, 2007, 15(12): 922-925. DOI: 10.3760/j.issn:1007-3418.2007.12.011.王阳阳, 冯志杰, 岳媛媛, 等. 血红素氧合酶对大鼠肝脏缺血再灌注损伤细胞凋亡及相关基因的影响[J]. 中华肝脏病杂志, 2007, 15(12): 922-925. DOI: 10.3760/j.issn:1007-3418.2007. 12.011. [9] NAUTA RJ, TSIMOYIANNIS E, URIBE M, et al. Oxygen-derived free radicals in hepatic ischemia and reperfusion injury in the rat[J]. Surg Gynecol Obstet, 1990, 171(2): 120-125. http://europepmc.org/abstract/med/2382188 [10] LEE HJ, PARK MK, LEE EJ, et al. Resolvin D1 inhibits TGF-β1- induced epithelial mesenchymal transition of A549 lung cancer cells via lipoxin A4 receptor/formyl peptide receptor 2 and GPR32[J]. Int J Biochem Cell Biol, 2013, 45(12): 2801-2807. DOI: 10.1016/j.biocel.2013.09.018. [11] MUSSO G, GAMBINO R, CASSADER M, et al. Specialized proresolving mediators: Enhancing nonalcoholic steatohepatitis and fibrosis resolution[J]. Trends Pharmacol Sci, 2018, 39(4): 387-401. DOI: 10.1016/j.tips.2018.01.003. [12] ZHANG T, GU J, GUO J, et al. Renalase attenuates mouse fatty liver ischemia/reperfusion injury through mitigating oxidative stress and mitochondrial damage via activating SIRT1[J]. Oxid Med Cell Longev, 2019, 2019: 7534285. DOI: 10.1155/2019/7534285. [13] KONISHI T, LENTSCH AB. Hepatic ischemia/reperfusion: Mechanisms of tissue injury, repair, and regeneration[J]. Gene Expr, 2017, 17(4): 277-287. DOI: 10.3727/105221617X 15042750874156. [14] JOSEPHS SF, ICHIM TE, PRINCE SM, et al. Unleashing endogenous TNF-alpha as a cancer immunotherapeutic[J]. J Transl Med, 2018, 16(1): 242. DOI: 10.1186/s12967-018-1611-7. [15] KANY S, VOLLRATH JT, RELJA B. Cytokines in inflammatory disease[J]. Int J Mol Sci, 2019, 20(23): 6008. DOI: 10.3390/ijms20236008. [16] KHAN HA, AHMAD MZ, KHAN JA, et al. Crosstalk of liver immune cells and cell death mechanisms in different murine models of liver injury and its clinical relevance[J]. Hepatobiliary Pancreat Dis Int, 2017, 16(3): 245-256. DOI: 10.1016/s1499-3872(17)60014-6. [17] WANG YY, YU HL, LI TY, et al. Protective effect of HO-1 mediated mangiferin on liver ischemia/reperfusion injury in rats[J]. Chin Pharmacol Bull, 2015, 31(5): 736-737. DOI: 10.3969/j.issn.1001-1978.2015.05.028.王阳阳, 于惠玲, 李田阳, 等. HO-1介导芒果苷对大鼠肝脏缺血/再灌注损伤的保护作用[J]. 中国药理学通报, 2015, 31(5): 736-737. DOI: 10.3969/j.issn.1001-1978.2015.05.028. [18] WANG YY, MA YM, TIAN Y, et al. Effect of sEH inhibitor on hepatic I/R injury in rats and its mechanisms[J]. Chin Pharmacol Bull, 2013, 29(4): 590-591. DOI: 10.3969/j.issn.1001-1978.2013.04.033.王阳阳, 马幼敏, 田媛, 等. sEH抑制剂对大鼠肝缺血/再灌注损伤的影响及其机制[J]. 中国药理学通报, 2013, 29(4): 590-591. DOI: 10.3969/j.issn.1001-1978.2013.04.033. [19] YANG W, CHEN J, MENG Y, et al. Novel targets for treating ischemia-reperfusion injury in the liver[J]. Int J Mol Sci, 2018, 19(5): 1302. DOI: 10.3390/ijms19051302. [20] CORNIDE-PETRONIO ME, ÁLVAREZ-MERCADO AI, JIMÉNEZ-CASTRO MB, et al. Current knowledge about the effect of nutritional status, supplemented nutrition diet, and gut microbiota on hepatic ischemia-reperfusion and regeneration in liver surgery[J]. Nutrients, 2020, 12(2): 284. DOI: 10.3390/nu12020284. [21] ZHU LJ, YUAN SF, SHANGGUAN ZX, et al. miR-1304 inhibits non-small cell lung cancer cell invasion and prolifer-ation in vitro via targeting heme oxygenase-1[J]. Chin J Clin Pharmacol Ther, 2019, 24(4): 383-390. DOI: 10.12092/j.issn.1009-2501.2019.04.004.朱林佳, 原少斐, 上官宗校, 等. microRNA-1304通过靶向血红素氧合酶-1对人肺癌细胞的抑制作用[J]. 中国临床药理学与治疗学, 2019, 24(4): 383-390. DOI: 10.12092/j.issn.1009-2501.2019.04.004. [22] CREMERS NA, WEVER KE, WONG RJ, et al. Effects of remote ischemic preconditioning on heme oxygenase-1 expression and cutaneous wound repair[J]. Int J Mol Sci, 2017, 18(2): 438. DOI: 10.3390/ijms18020438. [23] LI L, LI CM, WU J, et al. Heat shock protein 32/heme oxygenase-1 protects mouse Sertoli cells from hyperthermia-induced apoptosis by CO activation of sGC signalling pathways[J]. Cell Biol Int, 2014, 38(1): 64-71. DOI: 10.1002/cbin.10177. [24] CHEN XP, FENG ZJ. System of heme oxygenase-carbon monoxide and liver oxidative stress[J]. J Clin Hepatol, 2005, 21(5): 309-311. http://lcgdbzz.org/article/id/LCGD200505029陈湘萍, 冯志杰. 血红素氧合酶-一氧化碳系统与肝脏的氧化应激[J]. 临床肝胆病杂志, 2005, 21(5): 309-311. http://lcgdbzz.org/article/id/LCGD200505029 [25] WEGIEL B, NEMETH Z, CORREA-COSTA M, et al. Heme oxygenase-1: A metabolic nike[J]. Antioxid Redox Signal, 2014, 20(11): 1709-1722. DOI: 10.1089/ars.2013.5667. [26] JIN HH, LI ZP. Correlational research of serum ferritin and hyaluronic acid in patients with cirrhosis[J]. J Clin Hepatol, 2012, 28(3): 216-218. http://lcgdbzz.org/article/id/LCGD201203017金宏慧, 李仲平. 血清铁蛋白与透明质酸和肝硬化的相关性[J]. 临床肝胆病杂志, 2012, 28(3): 216-218. http://lcgdbzz.org/article/id/LCGD201203017 [27] BARBAGALLO I, NICOLOSI A, CALABRESE G, et al. The role of the heme oxygenase system in the metabolic syndrome[J]. Curr Pharm Des, 2014, 20(31): 4970-4974. DOI: 10.2174/1381612819666131206103824. [28] LIN Q, WEIS S, YANG G, et al. Heme oxygenase-1 protein localizes to the nucleus and activates transcription factors important in oxidative stress[J]. J Biol Chem, 2007, 282(28): 20621-20633. DOI: 10.1074/jbc.M607954200. [29] MAHMOUD AM, HUSSEIN OE, HOZAYEN WG, et al. Ferulic acid prevents oxidative stress, inflammation, and liver injury via upregulation of Nrf2/HO-1 signaling in methotrexate-induced rats[J]. Environ Sci Pollut Res Int, 2020, 27(8): 7910-7921. DOI: 10.1007/s11356-019-07532-6.