中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

细胞自噬及其在肝纤维化中的作用

代倩兰 刘绍能

引用本文:
Citation:

细胞自噬及其在肝纤维化中的作用

DOI: 10.3969/j.issn.1001-5256.2021.06.046
基金项目: 

国家自然科学基金 (81973832)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:代倩兰负责查找文献,资料分析,撰写论文;刘绍能负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    作者简介:

    代倩兰(1991—),女,主要从事肝纤维化的基础和临床研究

    通信作者:

    刘绍能,liushaoneng@126.com

  • 中图分类号: R575.2

Role of autophagy in liver fibrosis

  • 摘要: 自噬是指真核细胞内细胞器、蛋白质等在溶酶体中被降解及其降解产物被重新利用的过程,其对细胞的增殖、分化及稳态起着重要作用。近年来,自噬在肝纤维化中的作用受到越来越多的关注,干预自噬也许成为治疗肝纤维化的新方法。总结了自噬的过程、功能及在肝纤维化中作用,这些研究揭示了自噬对肝纤维化作用机制的复杂性,也启示未来需要找到干预自噬更加可靠、确定的机制和靶点,进而为治疗肝纤维化提供新途径。

     

  • [1] WYNN TA. Cellular and molecular mechanisms of fibrosis[J]. J Pathol, 2008, 214(2): 199-210. DOI: 10.1002/path.2277.
    [2] HERNANDEZ-GEA V, FRIEDMAN SL. Pathogenesis of liver fibrosis[J]. Annu Rev Pathol, 2011, 6: 425-456. DOI: 10.1146/annurev-pathol-011110-130246.
    [3] TSUCHIDA T, FRIEDMAN SL. Mechanisms of hepatic stellate cell activation[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(7): 397-411. DOI: 10.1038/nrgastro.2017.38.
    [4] GALLUZZI L, BAEHRECKE EH, BALLABIO A, et al. Molecular definitions of autophagy and related processes[J]. EMBO J, 2017, 36(13): 1811-1836. DOI: 10.15252/embj.201796697.
    [5] DIKIC I, ELAZAR Z. Mechanism and medical implications of mammalian autophagy[J]. Nat Rev Mol Cell Biol, 2018, 19(6): 349-364. DOI: 10.1038/s41580-018-0003-4.
    [6] ASHFORD TP, PORTER KR. Cytoplasmic components in hepatic cell lysosomes[J]. J Cell Biol, 1962, 12(1): 198-202. DOI: 10.1083/jcb.12.1.198.
    [7] de DUVE C, WATTIAUX R. Functions of lysosomes[J]. Annu Rev Physiol, 1966, 28: 435-492. DOI: 10.1146/annurev.ph.28.030166.002251.
    [8] LOOS B, ENGELBRECHT AM, LOCKSHIN RA, et al. The variability of autophagy and cell death susceptibility: Unanswered questions[J]. Autophagy, 2013, 9(9): 1270-1285. DOI: 10.4161/auto.25560.
    [9] YANG Z, HUANG J, GENG J, et al. Atg22 recycles amino acids to link the degradative and recycling functions of autophagy[J]. Mol Biol Cell, 2006, 17(12): 5094-5104. DOI: 10.1091/mbc.e06-06-0479.
    [10] XIE Z, KLIONSKY DJ. Autophagosome formation: Core machinery and adaptations[J]. Nat Cell Biol, 2007, 9(10): 1102-1109. DOI: 10.1038/ncb1007-1102.
    [11] MIZUSHIMA N, LEVINE B, CUERVO AM, et al. Autophagy fights disease through cellular self-digestion[J]. Nature, 2008, 451(7182): 1069-1075. DOI: 10.1038/nature06639.
    [12] ARIAS E, CUERVO AM. Chaperone-mediated autophagy in protein quality control[J]. Curr Opin Cell Biol, 2011, 23(2): 184-189. DOI: 10.1016/j.ceb.2010.10.009.
    [13] von MUHLINEN N, AKUTSU M, RAVENHILL BJ, et al. LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy[J]. Mol Cell, 2012, 48(3): 329-342. DOI: 10.1016/j.molcel.2012.08.024.
    [14] QIN ZH, LE WD. Autophagy: Biology and disease[M]. Beijing: Science Press, 2011: 77-87.

    秦正红, 乐卫东. 自噬: 生物学与疾病[M]. 北京: 科学出版社, 2011: 77-87.
    [15] WANG WL, MAO YC, ZHU YZ. Research progress of autophagy in viral pneumonia[J]. Chin J Clin Pharmacol Ther, 2020, 25(11): 1315-1320. DOI: 10.12092/j.issn.1009-2501.2020.11.013.

    王纬璐, 茅以诚, 朱依谆. 自噬在病毒性肺炎中的研究进展[J]. 中国临床药理学与治疗学, 2020, 25(11): 1315-1320. DOI: 10.12092/j.issn.1009-2501.2020.11.013.
    [16] LYU MJ, MA XD, REN L. Effect of acupuncture combined with medicine-induced autophagy on cognitive function of mice with ApoE gene knockout[J]. J Jilin Univ(Med Edit), 2020, 46(6): 1124-1130, 1345-1346. DOI: 10.13481/j.1671-587x.20200603.

    吕美娟, 马贤德, 任路. 针药并用诱导自噬对ApoE基因敲除小鼠认知功能的影响[J]. 吉林大学学报(医学版), 2020, 6(6): 1124-1130, 1345-1346. DOI: 10.13481/j.1671-587x.20200603.
    [17] UENO T, KOMATSU M. Autophagy in the liver: Functions in health and disease[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(3): 170-184. DOI: 10.1038/nrgastro.2016.185.
    [18] ZHOU WC, ZHANG QB, QIAO L. Pathogenesis of liver cirrhosis[J]. World J Gastroenterol, 2014, 20(23): 7312-7324. DOI: 10.3748/wjg.v20.i23.7312.
    [19] ZHOU B, LING L, ZHANG F, et al. Fibronectin type Ⅲ domain-containing 5 attenuates liver fibrosis via inhibition of hepatic stellate cell activation[J]. Cell Physiol Biochem, 2018, 48(1): 227-236. DOI: 10.1159/000491722.
    [20] HIRABARU M, MOCHIZUKI K, TAKATSUKI M, et al. Expression of alpha smooth muscle actin in living donor liver transplant recipients[J]. World J Gastroenterol, 2014, 20(22): 7067-7074. DOI: 10.3748/wjg.v20.i22.7067.
    [21] THOEN LF, GUIMARÃES EL, DOLLÉ L, et al. A role for autophagy during hepatic stellate cell activation[J]. J Hepatol, 2011, 55(6): 1353-1360. DOI: 10.1016/j.jhep.2011.07.010.
    [22] HONG Y, LI S, WANG J, et al. Author Correction: In vitro inhibition of hepatic stellate cell activation by the autophagy-related lipid droplet protein ATG2A[J]. Sci Rep, 2018, 8(1): 14569. DOI: 10.1038/s41598-018-32560-6.
    [23] CHEN Y, AZAD MB, GIBSON SB. Methods for detecting autophagy and determining autophagy-induced cell death[J]. Can J Physiol Pharmacol, 2010, 88(3): 285-295. DOI: 10.1139/Y10-010.
    [24] HERNÁNDEZ-GEA V, GHIASSI-NEJAD Z, ROZENFELD R, et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues[J]. Gastroenterology, 2012, 142(4): 938-946. DOI: 10.1053/j.gastro.2011.12.044.
    [25] HERNÁNDEZ-GEA V, HILSCHER M, ROZENFELD R, et al. Endoplasmic reticulum stress induces fibrogenic activity in hepatic stellate cells through autophagy[J]. J Hepatol, 2013, 59(1): 98-104. DOI: 10.1016/j.jhep.2013.02.016.
    [26] THOEN LF, GUIMARÃES EL, DOLLÉ L, et al. A role for autophagy during hepatic stellate cell activation[J]. J Hepatol, 2011, 55(6): 1353-1360. DOI: 10.1016/j.jhep.2011.07.010.
    [27] CHU Z, WITTE DP, QI X. Saposin C-LBPA interaction in late-endosomes/lysosomes[J]. Exp Cell Res, 2005, 303(2): 300-307. DOI: 10.1016/j.yexcr.2004.09.029.
    [28] LIU J. Mechanism of Hif-1 target gene Bnip3 regulating autophagy and activation of hepatic stellate cells[D]. Wuhan: Huazhong University of Science and Technology, 2019.

    刘洁. Hif-1靶基因Bnip3在肝星状细胞活化中调控自噬机制的研究[D]. 武汉: 华中科技大学, 2019.
    [29] HAZARI Y, BRAVO-SAN PEDRO JM, HETZ C, et al. Autophagy in hepatic adaptation to stress[J]. J Hepatol, 2020, 72(1): 183-196. DOI: 10.1016/j.jhep.2019.08.026.
    [30] BOUCHARD MJ, WANG L, SCHNEIDER RJ. Activation of focal adhesion kinase by hepatitis B virus HBx protein: Multiple functions in viral replication[J]. J Virol, 2006, 80(9): 4406-4414. DOI: 10.1128/JVI.80.9.4406-4414.2006.
    [31] WOBSER H, DORN C, WEISS TS, et al. Lipid accumulation in hepatocytes induces fibrogenic activation of hepatic stellate cells[J]. Cell Res, 2009, 19(8): 996-1005. DOI: 10.1038/cr.2009.73.
    [32] BECHMANN LP, HANNIVOORT RA, GERKEN G, et al. The interaction of hepatic lipid and glucose metabolism in liver diseases[J]. J Hepatol, 2012, 56(4): 952-964. DOI: 10.1016/j.jhep.2011.08.025.
    [33] DING WX, MANLEY S, NI HM. The emerging role of autophagy in alcoholic liver disease[J]. Exp Biol Med (Maywood), 2011, 236(5): 546-556. DOI: 10.1258/ebm.2011.010360.
    [34] NI HM, BOCKUS A, BOGGESS N, et al. Activation of autophagy protects against acetaminophen-induced hepatotoxicity[J]. Hepatology, 2012, 55(1): 222-232. DOI: 10.1002/hep.24690.
    [35] SCHOLTEN D, OSTERREICHER CH, SCHOLTEN A, et al. Genetic labeling does not detect epithelial-to-mesenchymal transition of cholangiocytes in liver fibrosis in mice[J]. Gastroenterology, 2010, 139(3): 987-998. DOI: 10.1053/j.gastro.2010.05.005.
    [36] KAUSHAL S, ANNAMALI M, BLOMENKAMP K, et al. Rapamycin reduces intrahepatic alpha-1-antitrypsin mutant Z protein polymers and liver injury in a mouse model[J]. Exp Biol Med (Maywood), 2010, 235(6): 700-709. DOI: 10.1258/ebm.2010.009297.
    [37] HIDVEGI T, EWING M, HALE P, et al. An autophagy-enhancing drug promotes degradation of mutant alpha1-antitrypsin Z and reduces hepatic fibrosis[J]. Science, 2010, 329(5988): 229-232. DOI: 10.1126/science.1190354.
    [38] NI Y, LI JM, LIU MK, et al. Pathological process of liver sinusoidal endothelial cells in liver diseases[J]. World J Gastroenterol, 2017, 23(43): 7666-7677. DOI: 10.3748/wjg.v23.i43.7666.
    [39] MARETTI-MIRA AC, WANG X, WANG L, et al. Incomplete differentiation of engrafted bone marrow endothelial progenitor cells initiates hepatic fibrosis in the rat[J]. Hepatology, 2019, 69(3): 1259-1272. DOI: 10.1002/hep.30227.
    [40] RUART M, CHAVARRIA L, CAMPRECIÓS G, et al. Impaired endothelial autophagy promotes liver fibrosis by aggravating the oxidative stress response during acute liver injury[J]. J Hepatol, 2019, 70(3): 458-469. DOI: 10.1016/j.jhep.2018.10.015.
    [41] HAMMOUTENE A, BIQUARD L, LASSELIN J, et al. A defect in endothelial autophagy occurs in patients with non-alcoholic steatohepatitis and promotes inflammation and fibrosis[J]. J Hepatol, 2020, 72(3): 528-538. DOI: 10.1016/j.jhep.2019.10.028.
    [42] LUO X, WANG D, ZHU X, et al. Autophagic degradation of caveolin-1 promotes liver sinusoidal endothelial cells defenestration[J]. Cell Death Dis, 2018, 9(5): 576. DOI: 10.1038/s41419-018-0567-0.
    [43] GOMEZ PERDIGUERO E, KLAPPROTH K, SCHULZ C, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors[J]. Nature, 2015, 518(7540): 547-551. DOI: 10.1038/nature13989.
    [44] KOYAMA Y, BRENNER DA. Liver inflammation and fibrosis[J]. J Clin Invest, 2017, 127(1): 55-64. DOI: 10.1172/JCI88881.
    [45] LOCATELLI L, CADAMURO M, SPIRLì C, et al. Macrophage recruitment by fibrocystin-defective biliary epithelial cells promotes portal fibrosis in congenital hepatic fibrosis[J]. Hepatology, 2016, 63(3): 965-982. DOI: 10.1002/hep.28382.
    [46] MRIDHA AR, WREE A, ROBERTSON A, et al. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice[J]. J Hepatol, 2017, 66(5): 1037-1046. DOI: 10.1016/j.jhep.2017.01.022.
    [47] ILYAS G, ZHAO E, LIU K, et al. Macrophage autophagy limits acute toxic liver injury in mice through down regulation of interleukin-1β[J]. J Hepatol, 2016, 64(1): 118-127. DOI: 10.1016/j.jhep.2015.08.019.
    [48] LODDER J, DENAËS T, CHOBERT MN, et al. Macrophage autophagy protects against liver fibrosis in mice[J]. Autophagy, 2015, 11(8): 1280-1292. DOI: 10.1080/15548627.2015.1058473.
    [49] TAO Y, QIU T, YAO X, et al. Autophagic-CTSB-inflammasome axis modulates hepatic stellate cells activation in arsenic-induced liver fibrosis[J]. Chemosphere, 2020, 242: 124959. DOI: 10.1016/j.chemosphere.2019.124959.
    [50] SUN K, XU L, JING Y, et al. Autophagy-deficient Kupffer cells promote tumorigenesis by enhancing mtROS-NF-κB-IL1α/β-dependent inflammation and fibrosis during the preneoplastic stage of hepatocarcinogenesis[J]. Cancer Lett, 2017, 388: 198-207. DOI: 10.1016/j.canlet.2016.12.004.
    [51] CASTILLO EF, DEKONENKO A, ARKO-MENSAH J, et al. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation[J]. Proc Natl Acad Sci U S A, 2012, 109(46): e3168-e3176. DOI: 10.1073/pnas.1210500109.
    [52] PERAL DE CASTRO C, JONES SA, NÍCHEALLAIGH C, et al. Autophagy regulates IL-23 secretion and innate T cell responses through effects on IL-1 secretion[J]. J Immunol, 2012, 189(8): 4144-4153. DOI: 10.4049/jimmunol.1201946.
    [53] CASSIDY LD, YOUNG AR, PÉREZ-MANCERA PA, et al. A novel Atg5-shRNA mouse model enables temporal control of Autophagy in vivo[J]. Autophagy, 2018, 14(7): 1256-1266. DOI: 10.1080/15548627.2018.1458172.
    [54] ZHAO J, QI YF, YU YR. Research advances in the role of oxidative stress in the development and progression of liver fibrosis[J]. J Clin Hepatol, 2019, 35(9): 2067-2071. DOI: 10.3969/j.issn.1001-5256.2019.09.040.

    赵杰, 齐永芬, 鱼艳荣. 氧化应激在肝纤维化发生发展中的作用[J]. 临床肝胆病杂志, 2019, 35(9): 2067-2071. DOI: 10.3969/j.issn.1001-5256.2019.09.040.
    [55] WANG Y, XU KY, BAO JF. Regulation of autophagy on oxidative stress pathwayand its effect on liver fibrosis[J]. Chin J Health Lab Technol, 2020, 30(14): 1716-1718. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWJZ202014016.htm

    王莹, 徐渴阳, 包剑锋. 细胞自噬对氧化应激通路的调节及其对肝纤维化的影响[J]. 中国卫生检验杂志, 2020, 30(14): 1716-1718. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWJZ202014016.htm
    [56] LI J, CHEN K, LI S, et al. Protective effect of fucoidan from Fucus vesiculosus on liver fibrosis via the TGF-β1/Smad pathway-mediated inhibition of extracellular matrix and autophagy[J]. Drug Des Devel Ther, 2016, 10: 619-630. DOI: 10.2147/DDDT.S98740.
    [57] PARK M, KIM YH, WOO SY, et al. Tonsil-derived mesenchymal stem cells ameliorate CCl4-induced liver fibrosis in mice via autophagy activation[J]. Sci Rep, 2015, 5: 8616. DOI: 10.1038/srep08616.
    [58] LI J, ZENG C, ZHENG B, et al. HMGB1-induced autophagy facilitates hepatic stellate cells activation: A new pathway in liver fibrosis[J]. Clin Sci (Lond), 2018, 132(15): 1645-1667. DOI: 10.1042/CS20180177.
    [59] HUANG Q, LI JT, LIU YG, et al. Regulatory effectof mTOR pathway-mediated autophagy in liver injury[J]. J Clin Hepatol, 2020, 36(11): 2621-2625. DOI: 10.3969/j.issn.1001-5256.2020.11.051.

    黄倩, 李京涛, 刘永刚, 等. mTOR相关信号通路介导的自噬对肝损伤的调控作用[J]. 临床肝胆病杂志, 2020, 36(11): 2621-2625. DOI: 10.3969/j.issn.1001-5256.2020.11.051.
    [60] GAO J, WEI B, de ASSUNCAO TM, et al. Hepatic stellate cell autophagy inhibits extracellular vesicle release to attenuate liver fibrosis[J]. J Hepatol, 2020, 73(5): 1144-1154. DOI: 10.1016/j.jhep.2020.04.044.
  • 加载中
计量
  • 文章访问数:  901
  • HTML全文浏览量:  355
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-23
  • 录用日期:  2020-12-16
  • 出版日期:  2021-06-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回