肝癌微环境对髓源性抑制细胞的影响
DOI: 10.3969/j.issn.1001-5256.2021.06.053
利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:李雪艳负责论文构思和撰写;李雪艳、王昌俊参与论文修改;李雪艳拟定写作思路,撰写文章并最后定稿。
Influence of hepatocellular carcinoma microenvironment on myeloid-derived suppressor cells
-
摘要: 髓源性抑制细胞(MDSC)是一群具有免疫抑制作用的未成熟骨髓细胞,其大量存在于肿瘤患者体内,诱导肿瘤细胞逃脱免疫细胞的杀伤,促进肿瘤的发生、进展、转移。近年来,其在肝癌微环境中的作用受到广泛关注,但其在肝癌微环境中募集、分化的相关机制仍未有清晰的阐述。主要总结了肝癌微环境中的肿瘤细胞和肿瘤基质细胞如肝星状细胞、肿瘤相关成纤维细胞、肿瘤相关内皮细胞等对MDSC分化、募集的作用机制,提出靶向MDSC作为辅助疗法以增强肝癌免疫治疗的潜在价值。Abstract: Myeloid-derived suppressor cells (MDSCs) are a group of immature bone marrow cells with an immunosuppressive effect, and they are abundant in tumor patients and can induce tumor cells to escape the killing of immune cells and thus promote the development, progression, and metastasis of tumor. In recent years, its role in hepatocellular carcinoma microenvironment has attracted more and more attention, but the mechanisms of its recruitment and differentiation in hepatocellular carcinoma microenvironment have not been clearly elucidated. This article mainly summarizes the mechanism of action of tumor cells and tumor stromal cells in hepatocellular carcinoma microenvironment (such as hepatic stellate cells, tumor-associated fibroblasts, and tumor-associated endothelial cells) in the recruitment and differentiation of MDSCs, and it is proposed to target MDSCs as an adjuvant therapy to enhance the potential value of immunotherapy for liver cancer.
-
[1] SINGAL AG, LAMPERTICO P, NAHON P. Epidemiology and surveillance for hepatocellular carcinoma: New trends[J]. J Hepatol, 2020, 72(2): 250-261. DOI: 10.1016/j.jhep.2019.08.025. [2] HOECHST B, ORMANDY LA, BALLMAIER M, et al. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells[J]. Gastroenterology, 2008, 135(1): 234-243. DOI: 10.1053/j.gastro.2008.03.020. [3] IWATA T, KONDO Y, KIMURA O, et al. PD-L1+MDSCs are increased in HCC patients and induced by soluble factor in the tumor microenvironment[J]. Sci Rep, 2016, 6: 39296. DOI: 10.1038/srep39296. [4] ZHANG X, FU X, LI T, et al. The prognostic value of myeloid derived suppressor cell level in hepatocellular carcinoma: A systematic review and meta-analysis[J]. PLoS One, 2019, 14(12): e0225327. DOI: 10.1371/journal.pone.0225327. [5] TALMADGE JE, GABRILOVICH DI. History of myeloid-derived suppressor cells[J]. Nat Rev Cancer, 2013, 13(10): 739-752. DOI: 10.1038/nrc3581. [6] LU C, RONG D, ZHANG B, et al. Current perspectives on the immunosuppressive tumor microenvironment in hepatocellular carcinoma: Challenges and opportunities[J]. Mol Cancer, 2019, 18(1): 130. DOI: 10.1186/s12943-019-1047-6. [7] NAN J, XING YF, HU B, et al. Endoplasmic reticulum stress induced LOX-1+ CD15+ polymorphonuclear myeloid-derived suppressor cells in hepatocellular carcinoma[J]. Immunology, 2018, 154(1): 144-155. DOI: 10.1111/imm.12876. [8] WAN S, KUO N, KRYCZEK I, et al. Myeloid cells in hepatocellular carcinoma[J]. Hepatology, 2015, 62(4): 1304-1312. DOI: 10.1002/hep.27867. [9] VEGLIA F, PEREGO M, GABRILOVICH D. Myeloid-derived suppressor cells coming of age[J]. Nat Immunol, 2018, 19(2): 108-119. DOI: 10.1038/s41590-017-0022-x. [10] GIANNELLI G, RANI B, DITURI F, et al. Moving towards personalised therapy in patients with hepatocellular carcinoma: The role of the microenvironment[J]. Gut, 2014, 63(10): 1668-1676. DOI: 10.1136/gutjnl-2014-307323. [11] EGGERT T, WOLTER K, JI J, et al. Distinct functions of senescence-associated immune responses in liver tumor surveillance and tumor progression[J]. Cancer Cell, 2016, 30(4): 533-547. DOI: 10.1016/j.ccell.2016.09.003. [12] LI YM, LIU ZY, WANG JC, et al. Receptor-interacting protein kinase 3 deficiency recruits myeloid-derived suppressor cells to hepatocellular carcinoma through the chemokine (C-X-C Motif) ligand 1-chemokine (C-X-C Motif) receptor 2 axis[J]. Hepatology, 2019, 70(5): 1564-1581. DOI: 10.1002/hep.30676. [13] WANG D, LI X, LI J, et al. APOBEC3B interaction with PRC2 modulates microenvironment to promote HCC progression[J]. Gut, 2019, 68(10): 1846-1857. DOI: 10.1136/gutjnl-2018-317601. [14] SUN H, YANG W, TIAN Y, et al. An inflammatory-CCRK circuitry drives mTORC1-dependent metabolic and immunosuppressive reprogramming in obesity-associated hepatocellular carcinoma[J]. Nat Commun, 2018, 9(1): 5214. DOI: 10.1038/s41467-018-07402-8. [15] ZHOU J, LIU M, SUN H, et al. Hepatoma-intrinsic CCRK inhibition diminishes myeloid-derived suppressor cell immunosuppression and enhances immune-checkpoint blockade efficacy[J]. Gut, 2018, 67(5): 931-944. DOI: 10.1136/gutjnl-2017-314032. [16] ZENG X, ZHOU J, XIONG Z, et al. Cell cycle-related kinase reprograms the liver immune microenvironment to promote cancer metastasis[J]. Cell Mol Immunol, 2021, 18(4): 1005-1015. DOI: 10.1038/s41423-020-00534-2. [17] LIU LZ, ZHANG Z, ZHENG BH, et al. CCL15 recruits suppressive monocytes to facilitate immune escape and disease progression in hepatocellular carcinoma[J]. Hepatology, 2019, 69(1): 143-159. DOI: 10.1002/hep.30134. [18] LIN Y, YANG X, LIU W, et al. Chemerin has a protective role in hepatocellular carcinoma by inhibiting the expression of IL-6 and GM-CSF and MDSC accumulation[J]. Oncogene, 2017, 36(25): 3599-3608. DOI: 10.1038/onc.2016.516. [19] YANG X, YE X, ZHANG L, et al. Disruption of LTBP4 induced activated TGFβ1, immunosuppression signal and promoted pulmonary metastasis in hepatocellular carcinoma[J]. Onco Targets Ther, 2020, 13: 7007-7017. DOI: 10.2147/OTT.S246766. [20] LIU M, ZHOU J, LIU X, et al. Targeting monocyte-intrinsic enhancer reprogramming improves immunotherapy efficacy in hepatocellular carcinoma[J]. Gut, 2020, 69(2): 365-379. DOI: 10.1136/gutjnl-2018-317257. [21] HÖCHST B, SCHILDBERG FA, SAUERBORN P, et al. Activated human hepatic stellate cells induce myeloid derived suppressor cells from peripheral blood monocytes in a CD44-dependent fashion[J]. J Hepatol, 2013, 59(3): 528-535. DOI: 10.1016/j.jhep.2013.04.033. [22] CHOU HS, HSIEH CC, YANG HR, et al. Hepatic stellate cells regulate immune response by way of induction of myeloid suppressor cells in mice[J]. Hepatology, 2011, 53(3): 1007-1019. DOI: 10.1002/hep.24162. [23] HSIEH CC, HUNG CH, CHIANG M, et al. Hepatic stellate cells enhance liver cancer progression by inducing myeloid-derived suppressor cells through interleukin-6 signaling[J]. Int J Mol Sci, 2019, 20(20): 5079. DOI: 10.3390/ijms20205079. [24] XU Y, FANG F, JIAO H, et al. Activated hepatic stellate cells regulate MDSC migration through the SDF-1/CXCR4 axis in an orthotopic mouse model of hepatocellular carcinoma[J]. Cancer Immunol Immunother, 2019, 68(12): 1959-1969. DOI: 10.1007/s00262-019-02414-9. [25] XU Y, ZHAO W, XU J, et al. Activated hepatic stellate cells promote liver cancer by induction of myeloid-derived suppressor cells through cyclooxygenase-2[J]. Oncotarget, 2016, 7(8): 8866-8878. DOI: 10.18632/oncotarget.6839. [26] XU Y, HUANG Y, XU W, et al. Activated hepatic stellate cells (HSCs) exert immunosuppressive effects in hepatocellular carcinoma by producing complement C3[J]. Onco Targets Ther, 2020, 13: 1497-1505. DOI: 10.2147/OTT.S234920. [27] LI J, LI H, YU Y, et al. Mannan-binding lectin suppresses growth of hepatocellular carcinoma by regulating hepatic stellate cell activation via the ERK/COX-2/PGE2 pathway[J]. Oncoimmunology, 2019, 8(2): e1527650. DOI: 10.1080/2162402X.2018.1527650. [28] CHENG JT, DENG YN, YI HM, et al. Hepatic carcinoma-associated fibroblasts induce IDO-producing regulatory dendritic cells through IL-6-mediated STAT3 activation[J]. Oncogenesis, 2016, 5: e198. DOI: 10.1038/oncsis.2016.7. [29] DENG Y, CHENG J, FU B, et al. Hepatic carcinoma-associated fibroblasts enhance immune suppression by facilitating the generation of myeloid-derived suppressor cells[J]. Oncogene, 2017, 36(8): 1090-1101. DOI: 10.1038/onc.2016.273. [30] YIN Z, JIANG K, LI R, et al. Multipotent mesenchymal stromal cells play critical roles in hepatocellular carcinoma initiation, progression and therapy[J]. Mol Cancer, 2018, 17(1): 178. DOI: 10.1186/s12943-018-0926-6. [31] LACOTTE S, SLITS F, ORCI LA, et al. Impact of myeloid-derived suppressor cell on Kupffer cells from mouse livers with hepatocellular carcinoma[J]. Oncoimmunology, 2016, 5(11): e1234565. DOI: 10.1080/2162402X.2016.1234565. [32] HOECHST B, VOIGTLAENDER T, ORMANDY L, et al. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor[J]. Hepatology, 2009, 50(3): 799-807. DOI: 10.1002/hep.23054. [33] HU CE, GAN J, ZHANG RD, et al. Up-regulated myeloid-derived suppressor cell contributes to hepatocellular carcinoma development by impairing dendritic cell function[J]. Scand J Gastroenterol, 2011, 46(2): 156-164. DOI: 10.3109/00365521.2010.516450. [34] CHIU DK, TSE AP, XU IM, et al. Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma[J]. Nat Commun, 2017, 8(1): 517. DOI: 10.1038/s41467-017-00530-7. [35] CHIU DK, XU IM, LAI RK, et al. Hypoxia induces myeloid-derived suppressor cell recruitment to hepatocellular carcinoma through chemokine (C-C motif) ligand 26[J]. Hepatology, 2016, 64(3): 797-813. DOI: 10.1002/hep.28655. [36] YU SJ, MA C, HEINRICH B, et al. Targeting the crosstalk between cytokine-induced killer cells and myeloid-derived suppressor cells in hepatocellular carcinoma[J]. J Hepatol, 2019, 70(3): 449-457. DOI: 10.1016/j.jhep.2018.10.040. [37] WU H, LI SS, ZHOU M, et al. Palliative radiofrequency ablation accelerates the residual tumor progression through increasing tumor-infiltrating MDSCs and reducing T-Cell-mediated anti-tumor immune responses in animal model[J]. Front Oncol, 2020, 10: 1308. DOI: 10.3389/fonc.2020.01308.
本文二维码
计量
- 文章访问数: 460
- HTML全文浏览量: 219
- PDF下载量: 43
- 被引次数: 0