基于网络药理学探析5种经典方剂治疗肝细胞癌的作用机制
DOI: 10.3969/j.issn.1001-5256.2021.08.020
Mechanism of action of five classic prescriptions in treatment of hepatocellular carcinoma based on network pharmacology
-
摘要:
目的 运用网络药理学及分子对接技术探究逍遥散合四君子汤、茵陈蒿汤、龙胆泻肝汤合下瘀血汤、五皮饮合四君子汤、一贯煎治疗肝细胞癌的作用机制。 方法 运用TCMSP、TCMID、BATMAN-TCM、TCM-MESH等数据库筛选中药有效成分并预测其作用靶点, 通过TTD、Drugbank、Disgenet、Liverome、OncoDB.HCC、GEO等数据库挖掘肝癌相关靶点; 将药物和疾病靶点进行映射获得交集靶点, 通过可视化软件Cytoscape3.7.1构建核心成分-交集靶点网络以及蛋白相互作用网络, 筛选核心成分及关键基因并在GEPIA数据库进行生存分析, 将筛选出的活性成分和关键基因导入DockThor在线网站进行分子对接。此外, 利用David数据库对交集靶点进行基因本体(GO)富集分析以及基因组百科全书(KEGG)通路分析。 结果 经过筛选去重获得5种经典方剂活性成分分别为110、19、154、121、51个, 药物作用靶点分别为7426、1435、9544、6619、2427个。筛选去重后获得肝癌疾病靶点4001个。5种方剂经典方剂的成分靶点与肝癌疾病靶点的交集靶点分别为260、169、276、242、192个, 共同Hub基因在GEPIA在线网站生存分析结果为PIK3CA、SRC、MAPK1、MAPK3(P值均<0.05)、AKT1(P>0.05)。5种方剂共同活性成分是槲皮素, 其中3种经典方剂(逍遥散合四君子汤、龙胆泻肝汤合下瘀血汤、五皮饮合四君子汤)的共同活性成分是异补骨脂黄酮、Kanzonol W。分子对接结果从总体趋势来看3种成分与PIK3CA、SRC结合能力相对较好。GO富集分析显示这些靶点共同参与对药物的反应、蛋白质磷酸化、炎症反应、血管生成等生物学过程。KEGG富集分析显示共同参与的通路为癌症通路、PI3K-AKT通路、MAPK通路、Ras通路、HIF-1通路、乙型肝炎通路、丙型肝炎通路。 结论 槲皮素、异补骨脂黄酮和Kanzonol W抗肝癌具有多靶点、多通路的潜在作用机制。 Abstract:Objective To investigate the mechanism of action of Xiaoyao powder combined with Sijunzi decoction, Artemisia capillaris Thunb. decoction, Longdan Xiegan decoction combined with Xiayuxue decoction, Wupi decoction combined with Sijunzi decoction, and Yiguan decoction in the treatment of hepatocellular carcinoma (HCC) based on network pharmacology and molecular docking. Methods Databases including TCMSP, TCMID, BATMAN-TCM, and TCM-MESH were used to screen out effective components and predict their targets, and databases including TTD, Drugbank, Disgenet, Liverome, OncoDB.HCC, and GEO were used to investigate HCC-related targets. The drug and disease targets were mapped to obtain the intersecting targets, and the visualization software Cytoscape 3.7.1 was used to construct the core component-intersecting target network and the protein-protein interaction (PPI) network. The core components and key genes were screened out and a survival analysis was performed in the GEPIA database. The active components and key genes screened out were imported into the DockThor online website for molecular docking. In addition, David database was used to perform gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the intersecting targets. Results The analysis showed that 110, 19, 154, 121, and 51 active components, respectively, were obtained for the above five classic prescriptions, and the numbers of drug targets were 7426, 1435, 9544, 6619, and 2427, respectively. Finally 4001 HCC disease targets were screened out. There were 260, 169, 276, 242, and 192 intersecting targets, respectively, between the five prescriptions and the HCC disease targets, and the survival analysis on the GEPIA online website obtained the common hub genes of PIK3CA, SRC, MAPK1, MAPK3 (all P < 0.05) and AKT1 (P > 0.05). Quercetin was the common active component of the five prescriptions, and isobavachin and Kanzonol W were the common active components of Xiaoyao powder combined with Sijunzi decoction, Longdan Xiegan decoction combined with Xiayuxue decoction, and Wupi decoction combined with Sijunzi decoction; the results of molecular docking showed that the above three components had a strong ability of binding to PIK3CA and SRC. GO enrichment analysis showed that these targets were involved in various biological processes including drug response, protein phosphorylation, inflammatory response, and angiogenesis, and KEGG enrichment analysis showed that the common pathways involved were cancer pathway, PI3K-Akt signaling pathway, MAPK signaling pathway, Ras signaling pathway, HIF-1 signaling pathway, hepatitis B pathway, and hepatitis C pathway. Conclusion Quercetin, isoflavone, and Kanzonol W have the potential mechanism of action involving multiple targets and pathways in the treatment of HCC. -
Key words:
- Carcinoma, Hepatocellular /
- Network Pharmacology /
- Signal Transduction
-
表 1 5种经典方剂度值靠前成分及其MOLID编号
项目 逍遥散合四君子汤 茵陈蒿汤 龙胆泻肝汤合下瘀血汤 五皮饮合四君子汤 一贯煎 自由度中位数 30 36 35 28 18 成分MOLID编号及度值 MOL004945
异补骨脂黄酮
(度值: 43)MOL001406
藏花酸
(度值: 42)MOL000552
Tenaxin I
(度值: 44)MOL004945
异补骨脂黄酮
(度值: 43)MOL005384
苏奇内酯
(度值: 43)MOL004820
Kanzonol W
(度值: 42)MOL008041
Eupatolitin
(度值: 41)MOL002932
Panicolin
(度值: 44)MOL004820
Kanzonol W
(度值: 42)MOL000098
槲皮素
(度值: 38)MOL001689
刺槐素
(度值: 42)MOL008040
泽兰素
(度值: 41)MOL004945
异补骨脂黄酮
(度值: 43)MOL000098
槲皮素
(度值: 41)MOL002056
蛇菰宁
(度值: 37)MOL002881
香叶木素
(度值: 41)MOL000354
异鼠李素
(度值: 41)MOL002925
5, 7, 2′, 6′-四羟基黄酮
(度值: 43)MOL009650
莨菪碱
(度值: 28)MOL000098
槲皮素
(度值: 38)MOL000098
槲皮素
(度值: 38)MOL004820
Kanzonol W
(度值: 42)MOL008647
N-反式-阿魏酸酪胺
(度值: 28)MOL000098
槲皮素
(度值: 41)表 2 5种经典方剂PPI网络中Hub基因度值
方剂 逍遥散合四君子汤 茵陈蒿汤 龙胆泻肝汤合下瘀血汤 五皮饮合四君子汤 一贯煎 靶点 PIK3CA (度值: 51) SRC (度值: 36) PIK3CA (度值: 49) SRC (度值: 48) MAPK1 (度值: 36) MAPK1 (度值: 48) PIK3CA (度值: 36) MAPK1 (度值: 48) PIK3CA (度值: 48) PIK3CA (度值: 35) SRC (度值: 48) MAPK1 (度值: 34) SRC (度值: 45) MAPK1 (度值: 43) AKT1 (度值: 34) AKT1 (度值: 43) MAPK3 (度值: 28) MAPK3 (度值: 44) MAPK3 (度值: 42) SRC (度值: 34) MAPK3 (度值: 43) AKT1 (度值: 26) AKT1 (度值: 43) AKT1 (度值: 42) MAPK3 (度值: 31) 表 3 5种经典方剂关键活性成分与关键基因的分子对接结果
序号 活性成分 相对分子质量(g/mol) 基因(蛋白库编号) PIK3CA(3ZIM) MAPK1(3W55) MAPK3(4QTB) SRC(3EL7) LOXL2(5ZE3) 1 槲皮素 302.2 -7.384 -7.220 -6.522 -8.484 -6.460 2 异补骨脂黄酮 324.4 -7.398 -7.203 -7.109 -7.433 -7.219 3 Kanzonol W 336.3 -7.901 -7.454 -7.330 -9.191 -7.567 -
[1] TORRE LA, BRAY F, SIEGEL RL, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65(2): 87-108. DOI: 10.3322/caac.21262. [2] FLORES A, MARRERO JA. Emerging trends in hepatocellular carcinoma: Focus on diagnosis and therapeutics[J]. Clin Med Insights Oncol, 2014, 8: 71-76. DOI: 10.4137/CMO.S9926. [3] SONG HX, QIAO F, SHAO M. Research advances in traditional Chinese medicine treatment for primary liver cancer[J]. J Clin Hepatol, 2016, 32(1): 174-177. DOI: 10.3969/j.issn.1001-5256.2016.01.038.宋慧娴, 乔飞, 邵铭. 中医药治疗原发性肝癌的研究进展[J]. 临床肝胆病杂志, 2016, 32(1): 174-177. DOI: 10.3969/j.issn.1001-5256.2016.01.038. [4] FU YZ, XU L. Advances in multimodality therapy for hepatocellular carcinoma[J]. J Clin Hepatol, 2020, 36(10): 2179-2183. DOI: 10.3969/j.issn.1001-5256.2020.10.004.傅毅振, 徐立. 肝细胞癌综合治疗进展[J]. 临床肝胆病杂志, 2020, 36(10): 2179-2183. DOI: 10.3969/j.issn.1001-5256.2020.10.004. [5] GAO YR, CHEN SJ, HOU YW, et al. Clinical effect of Huaier Granule sequential with radiofrequency ablation and TACE in treating primary hepatic carcinoma[J]. J Changchun Univ Chin Med, 2020, 36(4): 684-687. DOI: 10.13463/j.cnki.cczyy.2020.04.021.高远韧, 陈思佳, 侯英文, 等. TACE联合射频消融术序贯槐耳颗粒治疗原发性肝癌[J]. 长春中医药大学学报, 2020, 36(4): 684-687. DOI: 10.13463/j.cnki.cczyy.2020.04.021. [6] SIEGEL R, DESANTIS C, JEMAL A. Colorectal cancer statistics, 2014[J]. CA Cancer J Clin, 2014, 64(2): 104-117. DOI: 10.3322/caac.21220. [7] TANG H, HE S, ZHANG X, et al. A network pharmacology approach to uncover the pharmacological mechanism of xuanhusuo powder on osteoarthritis[J]. Evid Based Complement Alternat Med, 2016, 2016: 3246946. DOI: 10.1155/2016/3246946. [8] HOPKINS AL. Network pharmacology[J]. Nat Biotechnol, 2007, 25(10): 1110-1111. DOI: 10.1038/nbt1007-1110. [9] FANG J, LIU C, WANG Q, et al. In silico polypharmacology of natural products[J]. Brief Bioinform, 2018, 19(6): 1153-1171. DOI: 10.1093/bib/bbx045. [10] Bureau of Medical AdministrationNational Health Commission of the People's Republic of China. Guidelines for diagnosis and treatment of primary liver cancer in China (2019 edition)[J]. J Clin Hepatol, 2020, 36(2): 277-292. DOI: 10.3969/j.issn.1001-5256.2020.02.007.中华人民共和国国家卫生健康委员会医政医管局. 原发性肝癌诊疗规范(2019年版)[J]. 临床肝胆病杂志, 2020, 36(2): 277-292. DOI: 10.3969/j.issn.1001-5256.2020.02.007. [11] WU L, ZHANG Y, ZHU Y, et al. The effect of LOXL2 in hepatocellular carcinoma[J]. Mol Med Rep, 2016, 14(3): 1923-1932. DOI: 10.3892/mmr.2016.5474. [12] FANG ZQ, LI YJ, TANG CL, et al. Analysis on characteristics of syndrome in 2060 cases of primary hepatic cancer[J]. J Tradit Chin Med, 2004, 45(1): 53-54. DOI: 10.3321/j.issn:1001-1668.2004.01.031.方肇勤, 李永健, 唐辰龙, 等. 2060例原发性肝癌患者证候特点分析[J]. 中医杂志, 2004, 45(1): 53-54. DOI: 10.3321/j.issn:1001-1668.2004.01.031. [13] SONG YY, JIANG J, LI AQ, et al. Literature analysis on TCM syndrome differentiation of advanced primary liver cancer[J]. Heilongjiang Tradit Chin Med, 2013, 42(6): 2-3. DOI: CNKI: SUN: HLZY.0.2013-06-001.宋央央, 姜冀, 郦安琪, 等. 中晚期原发性肝癌中医辨证分型的文献分析[J]. 黑龙江中医药, 2013, 42(6): 2-3. DOI: CNKI: SUN: HLZY.0.2013-06-001. [14] CHENG YP, ZHANG MX. Research progress of traditional chinese medicine in treating primary liver cancer[J]. J Liaoning Univ Tradit Chin Med, 2018, 20(1): 167-169. DOI: 10.13194/j.issn.1673-842x.2018.01.047.程玉佩, 张明香. 中医药治疗原发性肝癌研究进展[J]. 辽宁中医药大学学报, 2018, 20(1): 167-169. DOI: 10.13194/j.issn.1673-842x.2018.01.047. [15] WU S, CHEN TS, WU XX. Clinical thought on standardization of TCM syndrome types of primary liver cancer[J]. Clin research Tradit Chin Med, 2016, 8(27): 134-135. DOI: 10.3969/j.issn.1674-7860.2016.27.065.吴申, 陈挺松, 吴孝雄. 原发性肝癌中医证型规范化临床思路[J]. 中医临床研究, 2016, 8(27): 134-135. DOI: 10.3969/j.issn.1674-7860.2016.27.065. [16] CARRASCO-POZO C, TAN KN, REYES-FARIAS M, et al. The deleterious effect of cholesterol and protection by quercetin on mitochondrial bioenergetics of pancreatic β-cells, glycemic control and inflammation: In vitro and in vivo studies[J]. Redox Biol, 2016, 9: 229-243. DOI: 10.1016/j.redox.2016.08.007. [17] YARAHMADI A, KHADEMI F, MOSTAFAVI-POUR Z, et al. In-vitro analysis of glucose and quercetin effects on m-TOR and Nrf-2 expression in HepG2 cell line (diabetes and cancer connection)[J]. Nutr Cancer, 2018, 70(5): 770-775. DOI: 10.1080/01635581.2018.1470654. [18] CHEN S, JIANG H, WU X, et al. Therapeutic effects of quercetin on inflammation, obesity, and type 2 diabetes[J]. Mediators Inflamm, 2016, 2016: 9340637. DOI: 10.1155/2016/9340637. [19] JIANG X, YU J, WANG X, et al. Quercetin improves lipid metabolism via SCAP-SREBP2-LDLr signaling pathway in early stage diabetic nephropathy[J]. Diabetes Metab Syndr Obes, 2019, 12: 827-839. DOI: 10.2147/DMSO.S195456. [20] ZHOU M, LIAO XM, WANG S, et al. In vivo and in vitro anticancer activity of quercetin against human liver cancer HepG2 Cells[J]. Anhui Med J, 2019, 23 (11): 2136-2141. DOI: 10.3969/j.issn.1009-6469.2019.11.005.周孟, 廖祥明, 王珊, 等. 槲皮素抑制人肝癌细胞HepG2的体内外活性研究[J]. 安徽医药, 2019, 23(11): 2136-2141. DOI: 10.3969/j.issn.1009-6469.2019.11.005. [21] ZHANG Y, LYU HZ. Research progress on chemical constituents and pharmacological effects of Psoralea corylifolia[J/CD]. Elec J Clin Med LIT, 2020, 7(30): 195. DOI: 10.16281/j.cnki.jocml.2020.30.181.张莹, 吕惠子. 补骨脂的化学成分和药理作用研究进展[J]. 临床医药文献电子杂志, 2020, 7(30): 195. DOI: 10.16281/j.cnki.jocml.2020.30.181. [22] NIE LJ, LI HM, GUO X, et sl. Study on antioxidant and antitumor active ingredient from Psoralea corylifolia[J]. J Bengbu Med Coll, 2015, 40(11): 1461-1464. DOI: 10.13898/j.cnki.issn.1000-2200.2015.11.001.聂丽娟, 李红梅, 郭星, 等. 补骨脂抗氧化及抗肿瘤活性成分的研究[J]. 蚌埠医学院学报, 2015, 40(11): 1461-1464. DOI: 10.13898/j.cnki.issn.1000-2200.2015.11.001. [23] LI K, JI S, SONG W, et al. Glycybridins A-K, bioactive phenolic compounds from glycyrrhiza glabra[J]. J Nat Prod, 2017, 80(2): 334-346. DOI: 10.1021/acs.jnatprod.6b00783. [24] YANG J, ZHANG X, LIU L, et al. c-Src promotes the growth and tumorigenesis of hepatocellular carcinoma via the Hippo signaling pathway[J]. Life Sci, 2021, 264: 118711. DOI: 10.1016/j.lfs.2020.118711. [25] SHAO B, ZHAO X, LIU T, et al. LOXL2 promotes vasculogenic mimicry and tumour aggressiveness in hepatocellular carcinoma[J]. J Cell Mol Med, 2019, 23(2): 1363-1374. DOI: 10.1111/jcmm.14039. [26] SUN B, ZHANG D, ZHAO N, et al. Epithelial-to-endothelial transition and cancer stem cells: Two cornerstones of vasculogenic mimicry in malignant tumors[J]. Oncotarget, 2017, 8(18): 30502-30510. DOI: 10.18632/oncotarget.8461. [27] LANG Q, LING C. MiR-124 suppresses cell proliferation in hepatocellular carcinoma by targeting PIK3CA[J]. Biochem Biophys Res Commun, 2012, 426(2): 247-252. DOI: 10.1016/j.bbrc.2012.08.075.