肝祖细胞与肝再生的关系
DOI: 10.3969/j.issn.1001-5256.2021.08.048
利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:王俊俊负责文章结构设计,撰写文章;陆伦根负责收集、筛选文献,修改文章;蔡晓波负责拟定写作思路,指导撰写文章并最后定稿。
Association between liver progenitor cells and liver regeneration
-
摘要: 肝脏具有极强的再生能力,在急性肝损伤或肝大部分切除后残存的肝细胞迅速进入复制状态。而在慢性肝损伤或重症肝病时,肝祖细胞(LPC)介导的再生在肝再生中可能起到主要作用。目前已经通过谱系追踪和单细胞测序方法在动物和人方面均证实了双能LPC的存在。且多项研究显示LPC增殖程度与肝损伤严重程度有关。简述了LPC的起源与激活,以及LPC在不同类型肝损伤中介导肝再生的作用和调节机制。指出未来需要对LPC进行深入研究,以期为LPC移植重建肝实质和晚期肝病治疗提供依据。Abstract: The liver has a strong ability of regeneration and the remaining liver cells can quickly enter the replication state after acute liver injury or partial hepatectomy. In case of chronic liver injury or severe liver disease, liver progenitor cell (LPC)-mediated regeneration may play a major role in liver regeneration. At present, the presence of dual-energy LPCs in animals and humans has been confirmed by lineage tracing and single-cell sequencing, and many studies have shown that the degree of LPC proliferation is associated with the severity of liver injury. This article briefly describes the origin and activation of LPCs and the role and regulatory mechanism of LPCs in mediating liver regeneration in different types of liver injury, and it is pointed out that in-depth research is needed for LPCs in the future to provide a basis for the reconstruction of liver parenchyma and the treatment of advanced liver disease by LPC transplantation.
-
Key words:
- Stem Cells /
- Liver Regeneration /
- Ductular Reaction
-
[1] MICHALOPOULOS GK, DEFRANCES MC. Liver regeneration[J]. Science (New York, NY), 1997, 276(5309): 60-66. DOI: 10.1126/science.276.5309.60. [2] RAVEN A, LU WY, MAN TY, et al. Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration[J]. Nature, 2017, 547(7663): 350-354. DOI: 10.1038/nature23015. [3] SEGAL JM, KENT D, WESCHE DJ, et al. Single cell analysis of human foetal liver captures the transcriptional profile of hepatobiliary hybrid progenitors[J]. Nat Commun, 2019, 10(1): 3350. DOI: 10.1038/s41467-019-11266-x. [4] STUECK AE, WANLESS IR. Hepatocyte buds derived from progenitor cells repopulate regions of parenchymal extinction in human cirrhosis[J]. Hepatology, 2015, 61(5): 1696-1707. DOI: 10.1002/hep.27706. [5] MIYAJIMA A, TANAKA M, ITOH T. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming[J]. Cell Stem Cell, 2014, 14(5): 561-574. DOI: 10.1016/j.stem.2014.04.010. [6] FARBER E. Similarities in the sequence of early histological changes induced in the liver of the rat by ethionine, 2-acetylamino-fluorene, and 3'-methyl-4-dimethylaminoazobenzene[J]. Cancer Res, 1956, 16(2): 142-148. [7] GOLDING M, SARRAF CE, LALANI EN, et al. Oval cell differentiation into hepatocytes in the acetylaminofluorene-treated regenerating rat liver[J]. Hepatology, 1995, 22(4 Pt 1): 1243-1253. DOI: 10.1016/0270-9139(95)90635-5. [8] LUKACS-KORNEK V, LAMMERT F. The progenitor cell dilemma: Cellular and functional heterogeneity in assistance or escalation of liver injury[J]. J Hepatol, 2017, 66(3): 619-630. DOI: 10.1016/j.jhep.2016.10.033. [9] YIMLAMAI D, CHRISTODOULOU C, GALLI GG, et al. Hippo pathway activity influences liver cell fate[J]. Cell, 2014, 157(6): 1324-1338. DOI: 10.1016/j.cell.2014.03.060. [10] WANG B, ZHAO L, FISH M, et al. Self-renewing diploid Axin2(+) cells fuel homeostatic renewal of the liver[J]. Nature, 2015, 524(7564): 180-185. DOI: 10.1038/nature14863. [11] SUN T, PIKIOLEK M, ORSINI V, et al. AXIN2+ pericentral hepatocytes have limited contributions to liver homeostasis and regeneration[J]. Cell Stem Cell, 2020, 26(1): 97-107. e6. DOI: 10.1016/j.stem.2019.10.011. [12] LIN S, NASCIMENTO EM, GAJERA CR, et al. Distributed hepatocytes expressing telomerase repopulate the liver in homeostasis and injury[J]. Nature, 2018, 556(7700): 244-248. DOI: 10.1038/s41586-018-0004-7. [13] SWIDERSKA-SYN M, SYN WK, XIE G, et al. Myofibroblastic cells function as progenitors to regenerate murine livers after partial hepatectomy[J]. Gut, 2014, 63(8): 1333-1344. DOI: 10.1136/gutjnl-2013-305962. [14] WILLIAMS MJ, CLOUSTON AD, FORBES SJ. Links between hepatic fibrosis, ductular reaction, and progenitor cell expansion[J]. Gastroenterology, 2014, 146(2): 349-356. DOI: 10.1053/j.gastro.2013.11.034. [15] DESMET VJ. Ductal plates in hepatic ductular reactions. Hypothesis and implications. I. Types of ductular reaction reconsidered[J]. Virchows Arch, 2011, 458(3): 251-259. DOI: 10.1007/s00428-011-1048-3. [16] GOUW AS, CLOUSTON AD, THEISE ND. Ductular reactions in human liver: Diversity at the interface[J]. Hepatology, 2011, 54(5): 1853-1863. DOI: 10.1002/hep.24613. [17] ZHOU H, ROGLER LE, TEPERMAN L, et al. Identification of hepatocytic and bile ductular cell lineages and candidate stem cells in bipolar ductular reactions in cirrhotic human liver[J]. Hepatology, 2007, 45(3): 716-724. DOI: 10.1002/hep.21557. [18] KATOONIZADEH A, NEVENS F, VERSLYPE C, et al. Liver regeneration in acute severe liver impairment: A clinicopathological correlation study[J]. Liver Int, 2006, 26(10): 1225-1233. DOI: 10.1111/j.1478-3231.2006.01377.x. [19] WENG HL, CAI X, YUAN X, et al. Two sides of one coin: Massive hepatic necrosis and progenitor cell-mediated regeneration in acute liver failure[J]. Front Physiol, 2015, 6: 178. DOI: 10.3389/fphys.2015.00178. [20] CLOUSTON AD, POWELL EE, WALSH MJ, et al. Fibrosis correlates with a ductular reaction in hepatitis C: Roles of impaired replication, progenitor cells and steatosis[J]. Hepatology, 2005, 41(4): 809-818. DOI: 10.1002/hep.20650. [21] SHIN S, UPADHYAY N, GREENBAUM LE, et al. Ablation of Foxl1-Cre-labeled hepatic progenitor cells and their descendants impairs recovery of mice from liver injury[J]. Gastroenterology, 2015, 148(1): 192-202. e3. DOI: 10.1053/j.gastro.2014.09.039. [22] GADD VL, SKOIEN R, POWELL EE, et al. The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease[J]. Hepatology, 2014, 59(4): 1393-1405. DOI: 10.1002/hep.26937. [23] AGUILAR-BRAVO B, RODRIGO-TORRES D, ARIÑO S, et al. Ductular reaction cells display an inflammatory profile and recruit neutrophils in alcoholic hepatitis[J]. Hepatology, 2019, 69(5): 2180-2195. DOI: 10.1002/hep.30472. [24] PRAKOSO E, TIRNITZ-PARKER JE, CLOUSTON AD, et al. Analysis of the intrahepatic ductular reaction and progenitor cell responses in hepatitis C virus recurrence after liver transplantation[J]. Liver Transpl, 2014, 20(12): 1508-1519. DOI: 10.1002/lt.24007. [25] LIN WR, LIM SN, MCDONALD SA, et al. The histogenesis of regenerative nodules in human liver cirrhosis[J]. Hepatology, 2010, 51(3): 1017-1026. DOI: 10.1002/hep.23483. [26] YOON SM, GERASIMIDOU D, KUWAHARA R, et al. Epithelial cell adhesion molecule (EpCAM) marks hepatocytes newly derived from stem/progenitor cells in humans[J]. Hepatology, 2011, 53(3): 964-973. DOI: 10.1002/hep.24122. [27] LEE JS, HEO J, LIBBRECHT L, et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells[J]. Nat Med, 2006, 12(4): 410-416. DOI: 10.1038/nm1377. [28] CAI X, LI F, ZHANG Q, et al. Peritumoral ductular reaction is related to nuclear translocation of β-catenin in hepatocellular carcinoma[J]. Biomed Pharmacother, 2015, 76: 11-16. DOI: 10.1016/j.biopha.2015.10.017. [29] LEE KP, LEE JH, KIM TS, et al. The Hippo-Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis[J]. Proc Natl Acad Sci U S A, 2010, 107(18): 8248-8253. DOI: 10.1073/pnas.0912203107. [30] APTE U, THOMPSON MD, CUI S, et al. Wnt/beta-catenin signaling mediates oval cell response in rodents[J]. Hepatology, 2008, 47(1): 288-295. DOI: 10.1002/hep.21973. [31] BOULTER L, GOVAERE O, BIRD TG, et al. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease[J]. Nat Med, 2012, 18(4): 572-579. DOI: 10.1038/nm.2667. [32] LU J, ZHOU Y, HU T, et al. Notch signaling coordinates progenitor cell-mediated biliary regeneration following partial hepatectomy[J]. Sci Rep, 2016, 6: 22754. DOI: 10.1038/srep22754. [33] PEPE-MOONEY BJ, DILL MT, ALEMANY A, et al. Single-cell analysis of the liver epithelium reveals dynamic heterogeneity and an essential role for YAP in homeostasis and regeneration[J]. Cell Stem Cell, 2019, 25(1): 23-38. e8. DOI: 10.1016/j.stem.2019.04.004. [34] OCHOA B, SYN WK, DELGADO I, et al. Hedgehog signaling is critical for normal liver regeneration after partial hepatectomy in mice[J]. Hepatology, 2010, 51(5): 1712-1723. DOI: 10.1002/hep.23525. [35] KWON H, SONG K, HAN C, et al. Inhibition of hedgehog signaling ameliorates hepatic inflammation in mice with nonalcoholic fatty liver disease[J]. Hepatology, 2016, 63(4): 1155-1169. DOI: 10.1002/hep.28289. [36] ISHIKAWA T, FACTOR VM, MARQUARDT JU, et al. Hepatocyte growth factor/c-met signaling is required for stem-cell-mediated liver regeneration in mice[J]. Hepatology, 2012, 55(4): 1215-1226. DOI: 10.1002/hep.24796. [37] KITADE M, FACTOR VM, ANDERSEN JB, et al. Specific fate decisions in adult hepatic progenitor cells driven by MET and EGFR signaling[J]. Genes Dev, 2013, 27(15): 1706-1717. DOI: 10.1101/gad.214601.113. [38] JAKUBOWSKI A, AMBROSE C, PARR M, et al. TWEAK induces liver progenitor cell proliferation[J]. J Clin Invest, 2005, 115(9): 2330-2340. DOI: 10.1172/JCI23486. [39] LU WY, BIRD TG, BOULTER L, et al. Hepatic progenitor cells of biliary origin with liver repopulation capacity[J]. Nat Cell Biol, 2015, 17(8): 971-983. DOI: 10.1038/ncb3203. [40] LANZONI G, OIKAWA T, WANG Y, et al. Concise review: Clinical programs of stem cell therapies for liver and pancreas[J]. Stem Cells, 2013, 31(10): 2047-2060. DOI: 10.1002/stem.1457.
本文二维码
计量
- 文章访问数: 908
- HTML全文浏览量: 566
- PDF下载量: 141
- 被引次数: 0