山东沿海地区非酒精性脂肪性肝病患者血清ALT、AST、GGT和ALP与血压的相关性分析
DOI: 10.3969/j.issn.1001-5256.2021.09.027
Correlation of serum alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transpeptidase, and alkaline phosphatase with blood pressure in patients with nonalcoholic fatty liver disease in coastal regions of Shandong Province in China
-
摘要:
目的 探讨山东沿海地区非酒精性脂肪性肝病(NAFLD)患者血清肝酶水平与血压水平是否存在相关性。 方法 随机选取2019年12月—2020年6月在青岛市市立医院就诊或接受体格检查,长期居住于山东沿海地区的269例NAFLD患者,其中105例患有高血压(高血压组),164例未患高血压(非高血压组)。测量受试者的晨起血压值,计算平均动脉压(MAP);实验室检测受试者血清肝酶(ALT、AST、GGT和ALP)水平及空腹血糖(FBG)。符合正态分布的计量资料2组间比较采用独立样本t检验,不符合正态分布的计量资料2组间比较采用Mann-Whitney U检验。计数资料2组间比较采用χ2检验。应用Pearson相关分析4种肝酶与MAP等指标之间的相关性,应用二元logistic回归模型分析血清肝酶对高血压的影响程度。 结果 高血压组的BMI、MAP和GGT均明显高于非高血压组(P值均 < 0.05)。在总NAFLD患者和非高血压NAFLD患者中,男性的BMI、MAP、ALT、AST、GGT均显著高于女性(P值均 < 0.05),在NAFLD伴高血压组中,男性的GGT水平显著高于女性(P < 0.05)。NAFLD伴高血压组超出正常范围的GGT人数比例高于非高血压组(χ2=4.781, P=0.029)。血清GGT水平与正常范围内的MAP(70~105 mm Hg)有相关性(r=0.178, P=0.011),MAP超出正常范围时,相关性无统计学意义(P=0.415)。应用二元logistic回归模型校正年龄和性别后,NAFLD人群中AST水平与高血压存在正关联(OR=1.011, 95%CI: 1.000~1.022, P=0.040);在此基础上进一步校正BMI和FBG,结果显示NAFLD人群中AST水平仍与高血压存在正关联(OR=1.011, 95%CI: 1.000~1.022, P=0.044)。 结论 在山东沿海地区NAFLD人群中,AST水平增高可能预示着高血压患病风险增加。 -
关键词:
- 非酒精性脂肪性肝病 /
- 高血压 /
- 天冬氨酸氨基转移酶类 /
- γ-谷氨酰转移酶 /
- 山东
Abstract:Objective To investigate whether there was a correlation between serum liver enzyme levels and blood pressure in the Chinese Han population with nonalcoholic fatty liver disease (NAFLD) in Shandong coastal regions in China. Methods A total of 269 NAFLD patients who lived in Shandong coastal regions and attended or underwent physical examination in Qingdao Municipal Hospital from December 2019 to June 2020 were enrolled, among whom 105 had hypertension and 164 did not have hypertension. Morning blood pressure was measured to calculate mean arterial pressure (MAP), and laboratory tests were performed to measure the serum levels of liver enzymes [alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transpeptidase (GGT), and alkaline phosphatase (ALP)] and fasting blood glucose (FBG). The independent samples t-test was used for comparison of normally distributed continuous data between two groups, and the Mann-Whitney U test was used for comparison of non-normally distributed continuous data between two groups; the chi-square test was used for comparison of categorical data between two groups. A Pearson correlation analysis was used to investigate the correlation of four liver enzymes with the indices including MAP, and a binary logistic regression model was used to analyze the impact of serum liver enzymes on hypertension. Results Compared with the non-hypertension group, the hypertension group had significantly higher body mass index (BMI), MAP, and GGT (all P < 0.05). For all NAFLD patients and the NAFLD patients without hypertension, male patients had significantly higher BMI, MAP, ALT, AST, and GGT than female patients (all P < 0.05), and for the NAFLD patients with hypertension, male patients had a significantly higher level of GGT than female patients (P < 0.05). There was a significant difference in the distribution of GGT between the hypertension group and the non-hypertension group, and compared with the non-hypertension group, the hypertension group had a significantly higher proportion of patients with GGT exceeding the normal range (χ2=4.781, P=0.029). Serum GGT level was correlated with MAP within the normal range (70-105 mm Hg) (r=0.178, P=0.011), while there was no significant correlation when MAP exceeded the normal range (P=0.415). After adjustment for age and sex, the binary logistic regression model showed that AST level was positively associated with hypertension in the population with NAFLD (odds ratio [OR]=1.011, 95% confidence interval [CI]: 1.000-1.022, P=0.040), and after further adjustment for BMI and FBG, the results showed that AST level was still positively associated with hypertension (OR=1.011, 95% CI: 1.000-1.022, P=0.044). Conclusion In Chinese Han population with NAFLD in Shandong coastal regions, higher levels of AST may predict an increased risk of hypertension. -
表 1 不同性别NAFLD患者的临床特征
指标 总受试者(n=269) 高血压组(n=105) 非高血压组(n=164) 男(n=187) 女(n=82) 男(n=78) 女(n=27) 男(n=109) 女(n=55) 年龄(岁) 46.0(42.0~61.0) 47.5(39.0~63.0) 46.0(42.0~62.0) 59.0(46.0~64.0) 47.0(41.5~60.5) 44.0(36.0~61.0) BMI(kg/m2) 26.03(24.51~27.68) 25.36(23.41~27.46) 1) 26.37(24.79~28.47) 27.18(24.01~29.13) 25.95(24.20~27.46) 25.15(23.23~26.35)1) FBG(mmol/L) 4.98(4.58~5.60) 5.09(4.57~5.82) 5.01(4.51~5.57) 5.42(4.74~6.49) 4.98(4.60~ 5.76) 4.99(4.44~5.54) MAP(mm Hg) 100.00(93.33~105.67) 96.67(86.67~103.33)1) 106.67(103.33~110.75) 107.33(103.33~113.33) 93.33(88.34~97.33) 90.00(83.33~97.00)1) ALT(U/L) 27.27(19.54~45.63) 18.84(15.38~27.86)1) 26.61(18.08~46.19) 21.67(16.63~32.52) 27.60(20.11~41.55) 17.83(14.93~23.62)1) AST(U/L) 23.25(18.38~33.36) 20.01(16.25~24.88)1) 22.11(18.44~33.45) 23.54(19.91~27.04) 23.43(18.26~31.20) 18.89(15.93~23.76)1) GGT(U/L) 33.65(22.76~48.42) 21.81(16.16~30.59)1) 37.14(26.67~53.84) 28.30(20.15~43.68)1) 30.81(22.19~45.42) 19.87(15.73~26.62)1) ALP(U/L) 76.10(62.57~88.48) 77.95(64.06~96.19) 76.83(62.15~87.69) 78.70(68.67~91.52) 75.61(62.98~90.33) 75.68(61.41~98.01) 注:与同组男性比较,1)P < 0.05。 表 2 伴高血压NAFLD与非高血压NAFLD患者血清肝酶情况比较
指标 高血压组(n=105) 非高血压组(n=164) χ2值 P值 ALT[例(%)] 2.634 0.268 低于正常 0 2(1.2) 正常 82(78.1) 133(81.1) 高于正常 23(21.9) 29(17.7) AST[例(%)] 1.193 0.551 低于正常 4(3.8) 8(4.9) 正常 91(86.7) 134(81.7) 高于正常 10(9.5) 22(13.4) GGT[例(%)] 4.781 0.029 低于正常 0 0 正常 73(69.5) 133(81.1) 高于正常 32(30.5) 31(18.9) ALP[例(%)] 0.644 0.725 低于正常 5(4.8) 5(3.0) 正常 96(91.4) 154(93.9) 高于正常 4(3.8) 5(3.0) 表 3 血清肝酶与MAP及部分高血压危险因素的相关性分析
指标 ALT AST GGT ALP r值 P值 r值 P值 r值 P值 r值 P值 MAP -0.003 0.958 0.029 0.633 0.146 0.016 0.045 0.459 70 mm Hg≤MAP≤105 mm Hg -0.037 0.603 0.025 0.721 0.178 0.011 0.078 0.271 MAP>105 mm Hg 0.065 0.603 0.049 0.696 0.102 0.415 0.193 0.121 年龄 -0.231 <0.001 -0.057 0.349 -0.080 0.189 0.308 <0.001 BMI 0.264 <0.001 0.147 0.016 0.276 <0.001 -0.102 0.096 FBG 0.025 0.690 -0.007 0.912 0.069 0.261 0.181 0.003 -
[1] ESTES C, RAZAVI H, LOOMBA R, et al. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease[J]. Hepatology, 2018, 67(1): 123-133. DOI: 10.1002/hep.29466. [2] COTTER TG, RINELLA M. NAFLD 2020: The state of the disease[J]. Gastroenterology, 2020, 158(7): 1851-1864. DOI: 10.1053/j.gastro.2020.01.052. [3] BYRNE CD, TARGHER G. NAFLD: A multisystem disease[J]. J Hepatol, 2015, 62(1 Suppl): s47-s64. DOI: 10.1016/j.jhep.2014.12.012. [4] LIU P, TANG Y, GUO X, et al. Bidirectional association between nonalcoholic fatty liver disease and hypertension from the Dongfeng-Tongji cohort study[J]. J Am Soc Hypertens, 2018, 12(9): 660-670. DOI: 10.1016/j.jash.2018.06.013. [5] ANENI EC, ONI ET, MARTIN SS, et al. Blood pressure is associated with the presence and severity of nonalcoholic fatty liver disease across the spectrum of cardiometabolic risk[J]. J Hypertens, 2015, 33(6): 1207-1214. DOI: 10.1097/HJH.0000000000000532. [6] WANG Z, CHEN Z, ZHANG L, et al. Status of hypertension in China: Results from the China hypertension survey, 2012-2015[J]. Circulation, 2018, 137(22): 2344-2356. DOI: 10.1161/CIRCULATIONAHA.117.032380. [7] LEWINGTON S, LACEY B, CLARKE R, et al. The burden of hypertension and associated risk for cardiovascular mortality in China[J]. JAMA Intern Med, 2016, 176(4): 524-532. DOI: 10.1001/jamainternmed.2016.0190. [8] KOKUBO Y, MATSUMOTO C. Hypertension is a risk factor for several types of heart disease: Review of prospective studies[J]. Adv Exp Med Biol, 2017, 956: 419-426. DOI: 10.1007/5584_2016_99. [9] LI Z, LIU X, ZHANG Z, et al. Epidemiology of hypertension in a typical state-level poverty-stricken county in China and evaluation of a whole population health prevention project intervention[J]. Int J Hypertens, 2019, 2019: 4634823. DOI: 10.1155/2019/4634823. [10] CLARK JM, BRANCATI FL, DIEHL AM. The prevalence and etiology of elevated aminotransferase levels in the United States[J]. Am J Gastroenterol, 2003, 98(5): 960-967. DOI: 10.1111/j.1572-0241.2003.07486.x. [11] HANLEY AJ, WILLIAMS K, FESTA A, et al. Elevations in markers of liver injury and risk of type 2 diabetes: The insulin resistance atherosclerosis study[J]. Diabetes, 2004, 53(10): 2623-2632. DOI: 10.2337/diabetes.53.10.2623. [12] CLARK JM, DIEHL AM. Nonalcoholic fatty liver disease: An underrecognized cause of cryptogenic cirrhosis[J]. JAMA, 2003, 289(22): 3000-3004. DOI: 10.1001/jama.289.22.3000. [13] KUNUTSOR SK, APEKEY TA, KHAN H. Liver enzymes and risk of cardiovascular disease in the general population: A meta-analysis of prospective cohort studies[J]. Atherosclerosis, 2014, 236(1): 7-17. DOI: 10.1016/j.atherosclerosis.2014.06.006. [14] LEE DH, JACOBS DR Jr, GROSS M, et al. Gamma-glutamyltransferase is a predictor of incident diabetes and hypertension: The coronary artery risk development in young Adults (CARDIA) study[J]. Clin Chem, 2003, 49(8): 1358-1366. DOI: 10.1373/49.8.1358. [15] ONAT A, CAN G, ÖRNEK E, et al. Serum γ-glutamyltransferase: Independent predictor of risk of diabetes, hypertension, metabolic syndrome, and coronary disease[J]. Obesity (Silver Spring), 2012, 20(4): 842-848. DOI: 10.1038/oby.2011.136. [16] Chinese Medical Association, Chinese Medical Journals Publishing House, Chinese Society of General Practice, et al. Guideline for primary care of hypertension(2019)[J]. Chin J Gen Pract, 2019, 18(4): 301-313. DOI: 10.3760/cma.j.issn.1671-7368.2019.04.002.中华医学会, 中华医学杂志社, 中华医学会全科医学分会, 等. 高血压基层诊疗指南(2019年)[J]. 中华全科医师杂志, 2019, 18(4): 301-313. DOI: 10.3760/cma.j.issn.1671-7368.2019.04.002. [17] Group of Fatty Liver and Alcoholic Liver Diseases, Society of Hepatology, Chinese Medical Association. Guidelines for Management of non-alcoholic fatty liver disease[J]. J Clin Hepatol, 2010, 26(2): 120-124. https://www.cnki.com.cn/Article/CJFDTOTAL-SYNK201903008.htm中华医学会肝脏病学分会脂肪肝和酒精性肝病学组. 非酒精性脂肪性肝病诊疗指南[J]. 临床肝胆病杂志, 2010, 26(2): 120-124. https://www.cnki.com.cn/Article/CJFDTOTAL-SYNK201903008.htm [18] STRANGES S, TREVISAN M, DORN JM, et al. Body fat distribution, liver enzymes, and risk of hypertension: Evidence from the Western New York Study[J]. Hypertension, 2005, 46(5): 1186-1193. DOI: 10.1161/01.HYP.0000185688.81320.4d. [19] ZHU Y, GONG Y, ZHU R, et al. Relationship between serum gamma-glutamyltransferase levels and prehypertension in Chinese adults: The cardiometabolic risk in Chinese study[J]. J Clin Hypertens (Greenwich), 2014, 16(10): 760-765. DOI: 10.1111/jch.12381. [20] HONG X, WONGTONGKAM N, WARD PR, et al. An association of serum ALT with elevated blood pressure in senior adults: A case-control study[J]. Clin Exp Hypertens, 2016, 38(8): 691-695. DOI: 10.1080/10641963.2016.1200608. [21] RAHMAN S, ISLAM S, HAQUE T, et al. Association between serum liver enzymes and hypertension: A cross-sectional study in Bangladeshi adults[J]. BMC Cardiovasc Disord, 2020, 20(1): 128. DOI: 10.1186/s12872-020-01411-6. [22] GUO T, HU B, YI WM, et al. Research advances in the serological diagnosis of nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2020, 36(11): 2579-2583. DOI: 10.3969/j.issn.1001-5256.2020.11.041.郭滔, 胡波, 易为民, 等. 血清学诊断非酒精性脂肪性肝病的研究进展[J]. 临床肝胆病杂志, 2020, 36(11): 2579-2583. DOI: 10.3969/j.issn.1001-5256.2020.11.041. [23] ORE A, AKINLOYE OA. Oxidative stress and antioxidant biomarkers in clinical and experimental models of non-alcoholic fatty liver disease[J]. Medicina (Kaunas), 2019, 55(2): 10.3390/medicina55020026. http://www.preprints.org/manuscript/201809.0268/v1/download [24] JIANG YZ, NIE HM, WANG R. Research advances in the pathogenesis of nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2019, 35(11): 2588-2591. DOI: 10.3969/j.issn.1001-5256.2019.11.044.姜煜资, 聂红明, 汪蓉. 非酒精性脂肪性肝病的发病机制[J]. 临床肝胆病杂志, 2019, 35(11): 2588-2591. DOI: 10.3969/j.issn.1001-5256.2019.11.044. [25] TOUYZ RM. Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: What is the clinical significance?[J]. Hypertension, 2004, 44(3): 248-252. DOI: 10.1161/01.HYP.0000138070.47616.9d.
计量
- 文章访问数: 546
- HTML全文浏览量: 96
- PDF下载量: 42
- 被引次数: 0