自噬相关信号分子在非酒精性脂肪性肝病中的作用
DOI: 10.3969/j.issn.1001-5256.2021.09.044
利益冲突声明: 所有作者均声明不存在利益冲突。
作者贡献声明: 贺晶霞负责收集文献, 撰写论文;安秀琴负责修改论文;刘近春负责拟定写作思路、指导撰写文章、最后定稿及经费支持。
Research advances in autophagy-related signal molecules in nonalcoholic fatty liver disease
-
摘要: 非酒精性脂肪性肝病已成为世界范围内慢性肝病的主要原因之一, 与代谢综合征关系密切。近年来, 非酒精性脂肪性肝病的发病机制研究的越来越深入, 其中, 自噬是真核生物体内一个高度保守的过程, 在非酒精性脂肪性肝病的疾病进展中起着至关重要的作用, 有望成为治疗非酒精性脂肪性肝病的新靶标。就自噬相关信号分子在非酒精性脂肪性肝病中的研究进展进行综述, 以期为治疗非酒精性脂肪性肝病提供新思路。Abstract: Nonalcoholic fatty liver disease (NAFLD) has become one of the main causes of chronic liver diseases worldwide and is closely associated with metabolic syndrome. In-depth studies on the pathogenesis of NAFLD in recent years have shown that autophagy is a highly conservative process in eukaryotes and plays an important role in the progression of NAFLD, and therefore, it is expected to become a new target for the treatment of NAFLD. This article reviews the research advances in autophagy-related signal molecules in NAFLD, in order to provide new ideas for the treatment of NAFLD.
-
Key words:
- Non-alcoholic Fatty Liver Disease /
- Autophagy /
- Signal Transduction
-
[1] YOUNOSSI ZM, NOUREDDIN M, BERNSTEIN D, et al. Role of noninvasive tests in clinical gastroenterology practices to identify patients with nonalcoholic steatohepatitis at high risk of adverse outcomes: Expert panel recommendations[J]. Am J Gastroenterol, 2021, 116(2): 254-262. DOI: 10.14309/ajg.0000000000001054. [2] GE X, ZHENG L, WANG M, et al. Prevalence trends in non-alcoholic fatty liver disease at the global, regional and national levels, 1990-2017: A population-based observational study[J]. BMJ Open, 2020, 10(8): e036663. DOI: 10.1136/bmjopen-2019-036663. [3] YOUNOSSI ZM. Non-alcoholic fatty liver disease - A global public health perspective[J]. J Hepatol, 2019, 70(3): 531-544. DOI: 10.1016/j.jhep.2018.10.033. [4] DAY CP, JAMES OF. Steatohepatitis: A tale of two "hits"?[J]. Gastroenterology, 1998, 114(4): 842-845. DOI: 10.1016/s0016-5085(98)70599-2. [5] LIU Q, NIU CY. From "two hit theory" to "multiple hit theory": Implications of evolution of pathogenesis concepts for treatment of non-alcoholic fatty liver disease[J]. World Chin J Dig, 2019, 27 (19): 1171-1178. DOI: 10.11569/wcjd.v27.i19.1171.刘勤, 牛春燕. 由"二次打击"到"多重打击": 发病机制的演变带给非酒精性脂肪性肝病的治疗启示[J]. 世界华人消化杂志, 2019, 27(19): 1171-1178. DOI: 10.11569/wcjd.v27.i19.1171. [6] UDRISTIOIU A, NICA-BADEA D. Autophagy dysfunctions associated with cancer cells and their therapeutic implications[J]. Biomed Pharmacother, 2019, 115: 108892. DOI: 10.1016/j.biopha.2019.108892. [7] WESSELBORG S, STORK B. Autophagy signal transduction by ATG proteins: From hierarchies to networks[J]. Cell Mol Life Sci, 2015, 72(24): 4721-4757. DOI: 10.1007/s00018-015-2034-8. [8] CASARES-CRESPO L, CALATAYUD-BASELGA I, GARCÍA-CORZO L, et al. On the role of basal autophagy in adult neural stem cells and neurogenesis[J]. Front Cell Neurosci, 2018, 12: 339. DOI: 10.3389/fncel.2018.00339. [9] SAITO T, KUMA A, SUGIURA Y, et al. Autophagy regulates lipid metabolism through selective turnover of NCoR1[J]. Nat Commun, 2019, 10(1): 1567. DOI: 10.1038/s41467-019-08829-3. [10] DUAN NN, LIU XJ, WU J. Palmitic acid elicits hepatic stellate cell activation through inflammasomes and hedgehog signaling[J]. Life Sci, 2017, 176: 42-53. DOI: 10.1016/j.lfs.2017.03.012. [11] LI XQ, WANG W, JIA YH, et al. Autophagy and nonalcoholic fatty liver disease[J]. Chin J Hepatol, 2016, 24(8): 632-635. DOI: 10.3760/cma.j.issn.1007-3418.2016.08.016.李相迁, 王玮, 贾艳红, 等. 细胞自噬与非酒精性脂肪性肝病[J]. 中华肝脏病杂志, 2016, 24(8): 632-635. DOI: 10.3760/cma.j.issn.1007-3418.2016.08.016. [12] YAN H, GAO Y, ZHANG Y. Inhibition of JNK suppresses autophagy and attenuates insulin resistance in a rat model of nonalcoholic fatty liver disease[J]. Mol Med Rep, 2017, 15(1): 180-186. DOI: 10.3892/mmr.2016.5966. [13] KE PY. Diverse functions of autophagy in liver physiology and liver diseases[J]. Int J Mol Sci, 2019, 20(2). DOI: 10.3390/ijms20020300. [14] QIAN Y, LI M, WANG W, et al. Effects of lactobacillus casei YBJ02 on lipid metabolism in hyperlipidemic mice[J]. J Food Sci, 2019, 84(12): 3793-3803. DOI: 10.1111/1750-3841.14787. [15] CHEN M, LIU J, YANG L, et al. AMP-activated protein kinase regulates lipid metabolism and the fibrotic phenotype of hepatic stellate cells through inhibition of autophagy[J]. FEBS Open Bio, 2017, 7(6): 811-820. DOI: 10.1002/2211-5463.12221. [16] ZHAO Z, WANG C, ZHANG L, et al. Lactobacillus plantarum NA136 improves the non-alcoholic fatty liver disease by modulating the AMPK/Nrf2 pathway[J]. Appl Microbiol Biotechnol, 2019, 103(14): 5843-5850. DOI: 10.1007/s00253-019-09703-4. [17] XIAO WS, LE YY, ZENG SL, et al. Research advances in the pathogenesis of nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2020, 36(8): 1874-1879. DOI: 10.3969/j.issn.1001-5256.2020.08.043.肖伟松, 乐滢玉, 曾胜澜, 等. 非酒精性脂肪性肝病的发病机制研究进展[J]. 临床肝胆病杂志, 2020, 36(8): 1874-1879. DOI: 10.3969/j.issn.1001-5256.2020.08.043. [18] DEBOSCH BJ, HEITMEIER MR, MAYER AL, et al. Trehalose inhibits solute carrier 2A (SLC2A) proteins to induce autophagy and prevent hepatic steatosis[J]. Sci Signal, 2016, 9(416): ra21. DOI: 10.1126/scisignal.aac5472. [19] ALLAIRE M, RAUTOU PE, CODOGNO P, et al. Autophagy in liver diseases: Time for translation?[J]. J Hepatol, 2019, 70(5): 985-998. DOI: 10.1016/j.jhep.2019.01.026. [20] HE Q, SHA S, SUN L, et al. GLP-1 analogue improves hepatic lipid accumulation by inducing autophagy via AMPK/mTOR pathway[J]. Biochem Biophys Res Commun, 2016, 476(4): 196-203. DOI: 10.1016/j.bbrc.2016.05.086. [21] JUNG CH, JUN CB, RO SH, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery[J]. Mol Biol Cell, 2009, 20(7): 1992-2003. DOI: 10.1091/mbc.e08-12-1249. [22] WANG H, LIU Y, WANG D, et al. The upstream pathway of mTOR-mediated autophagy in liver diseases[J]. Cells, 2019, 8(12): 1597. DOI: 10.3390/cells8121597. [23] THELEN AM, ZONCU R. Emerging roles for the lysosome in lipid metabolism[J]. Trends Cell Biol, 2017, 27(11): 833-850. DOI: 10.1016/j.tcb.2017.07.006. [24] WANG Y, DING WX, LI T. Cholesterol and bile acid-mediated regulation of autophagy in fatty liver diseases and atherosclerosis[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2018, 1863(7): 726-733. DOI: 10.1016/j.bbalip.2018.04.005. [25] PREIDIS GA, KIM KH, MOORE DD. Nutrient-sensing nuclear receptors PPARα and FXR control liver energy balance[J]. J Clin Invest, 2017, 127(4): 1193-1201. DOI: 10.1172/JCI88893. [26] LIN P, LU JM, WANG YF, et al. Prevention mechanism of 2, 3, 5, 4'-Tetrahydroxy-stilbene-2-O-β-D-glucoside on lipid accumulation in steatosis hepatic L-02 cell[J]. Pharmacogn Mag, 2017, 13(50): 245-253. DOI: 10.4103/0973-1296.204563. [27] LI D, LI YL. Pathogenesis and treatment progress of NAFLD[J]. Pract Pharm Clin Remedies, 2017, 20 (11): 1340-1343. DOI: 10.14053/j.cnki.ppcr.201711029.李丹, 李异玲. 非酒精性脂肪性肝病发病机制及治疗进展[J]. 实用药物与临床, 2017, 20(11): 1340-1343. DOI: 10.14053/j.cnki.ppcr.201711029. [28] YU LN, LIU WY, MA LQ. Research progress on the relationship between TFEB and non-alcoholic fatty liver[J]. Shandong Med J, 2016, 56(42): 106-109. DOI: 10.3969/j.issn.1002-266X.2016.42.038.余琳娜, 柳唯意, 马岚青. TFEB与非酒精性脂肪肝关系的研究进展[J]. 山东医药, 2016, 56(42): 106-109. DOI: 10.3969/j.issn.1002-266X.2016.42.038. [29] KIM SH, KIM G, HAN DH, et al. Ezetimibe ameliorates steatohepatitis via AMP activated protein kinase-TFEB-mediated activation of autophagy and NLRP3 inflammasome inhibition[J]. Autophagy, 2017, 13(10): 1767-1781. DOI: 10.1080/15548627.2017.1356977. [30] WANG Y, DING WX, LI T. Cholesterol and bile acid-mediated regulation of autophagy in fatty liver diseases and atherosclerosis[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2018, 1863(7): 726-733. DOI: 10.1016/j.bbalip.2018.04.005. [31] ENGIN A. Non-alcoholic fatty liver disease[J]. Adv Exp Med Biol, 2017, 960: 443-467. DOI: 10.1007/978-3-319-48382-5_19. [32] SHIH CC, SHLAU MT, LIN CH, et al. Momordica charantia ameliorates insulin resistance and dyslipidemia with altered hepatic glucose production and fatty acid synthesis and AMPK phosphorylation in high-fat-fed mice[J]. Phytother Res, 2014, 28(3): 363-371. DOI: 10.1002/ptr.5003. [33] CUI J, SHEN HM, LIM L. The role of autophagy in liver cancer: Crosstalk in signaling pathways and potential therapeutic targets[J]. Pharmaceuticals (Basel), 2020, 13(12). DOI: 10.3390/ph13120432. [34] XIAO Y, LIU H, YU J, et al. MAPK1/3 regulate hepatic lipid metabolism via ATG7-dependent autophagy[J]. Autophagy, 2016, 12(3): 592-593. DOI: 10.1080/15548627.2015.1135282. [35] SOLINAS G, BECATTINI B. JNK at the crossroad of obesity, insulin resistance, and cell stress response[J]. Mol Metab, 2017, 6(2): 174-184. DOI: 10.1016/j.molmet.2016.12.001. [36] YAN H, GAO YQ, ZHANG Y, et al. Chlorogenic acid alleviates autophagy and insulin resistance by suppressing JNK pathway in a rat model of nonalcoholic fatty liver disease[J]. J Biosci, 2018, 43(2): 287-294. DOI: 10.1007/s12038-018-9746-5. [37] LIU XH, LI L, QI ZH, et al. Farnesoid X receptor is an important target in lipid metabolism[J]. Chin J Clin Pharmacol Ther, 2018, 23(8): 955-960. DOI: 10.12092/j.issn.1009-2501.2018.08.020.刘晓红, 李玲, 齐振华, 等. 脂质代谢中的重要靶点: 法尼酯X受体(FXR)[J]. 中国临床药理学与治疗学, 2018, 23(8): 955-960. DOI: 10.12092/j.issn.1009-2501.2018.08.020. [38] SHEN C, DOU X, MA Y, et al. Nicotinamide protects hepatocytes against palmitate-induced lipotoxicity via SIRT1-dependent autophagy induction[J]. Nutr Res, 2017, 40: 40-47. DOI: 10.1016/j.nutres.2017.03.005. [39] DITTENHAFER-REED KE, RICHARDS AL, FAN J, et al. SIRT3 mediates multi-tissue coupling for metabolic fuel switching[J]. Cell Metab, 2015, 21(4): 637-646. DOI: 10.1016/j.cmet.2015.03.007. [40] LI XY, ZHAO ZX, HUANG M, et al. Effect of berberine on promoting the excretion of cholesterol in high-fat diet-induced hyperlipidemic hamsters[J]. J Transl Med, 2015, 13: 278. DOI: 10.1186/s12967-015-0629-3. [41] BYUN S, SEOK S, KIM YC, et al. Fasting-induced FGF21 signaling activates hepatic autophagy and lipid degradation via JMJD3 histone demethylase[J]. Nat Commun, 2020, 11(1): 807. DOI: 10.1038/s41467-020-14384-z. [42] SHI Q, PEI F, SILVERMAN GA, et al. Mechanisms of action of autophagy modulators dissected by quantitative systems pharmacology analysis[J]. Int J Mol Sci, 2020, 21(8): 2855. DOI: 10.3390/ijms21082855. [43] LI T, WEN L, CHENG B. Cordycepin alleviates hepatic lipid accumulation by inducing protective autophagy via PKA/mTOR pathway[J]. Biochem Biophys Res Commun, 2019, 516(3): 632-638. DOI: 10.1016/j.bbrc.2019.06.108. [44] KIM B, LEE Y, CHOI H, et al. The trehalose-6-phosphate phosphatase Tps2 regulates ATG8 transcription and autophagy in Saccharomyces cerevisiae[J]. Autophagy, 2021, 17(4): 1013-1027. DOI: 10.1080/15548627.2020.1746592. [45] WU D, ZHONG P, WANG Y, et al. Hydrogen sulfide attenuates high-fat diet-induced non-alcoholic fatty liver disease by inhibiting apoptosis and promoting autophagy via reactive oxygen species/phosphatidylinositol 3-Kinase/AKT/Mammalian target of rapamycin signaling pathway[J]. Front Pharmacol, 2020, 11: 585860. DOI: 10.3389/fphar.2020.585860. [46] SPORMANN L, RENNERT C, KOLBE E, et al. Cyclopamine and rapamycin synergistically inhibit mTOR signalling in mouse hepatocytes, revealing an interaction of Hedgehog and mTOR signalling in the liver[J]. Cells, 2020, 9(8): 1817. DOI: 10.3390/cells9081817. [47] COCHRANE CR, VAGHJIANI V, SZCZEPNY A, et al. Trp53 and Rb1 regulate autophagy and ligand-dependent Hedgehog signaling[J]. J Clin Invest, 2020, 130(8): 4006-4018. DOI: 10.1172/JCI132513. [48] National Workshop on Fatty Liver and Alcoholic Liver Disease, Chinese Society of Hepatology, Chinese Medical Association; Fatty Liver Expert Committee, Chinese Medical Doctor Association. Guidelines of prevention and treatment for nonalcoholic fatty liver disease: A 2018 update[J]. J Clin Hepatol, 2018, 34(5): 947-957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.中华医学会肝病学分会脂肪肝和酒精性肝病学组, 中国医师协会脂肪性肝病专家委员会. 非酒精性脂肪性肝病防治指南(2018年更新版)[J]. 临床肝胆病杂志, 2018, 34(5): 947-957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.
本文二维码
计量
- 文章访问数: 709
- HTML全文浏览量: 87
- PDF下载量: 32
- 被引次数: 0