肠道菌群在代谢相关脂肪性肝病中的作用
DOI: 10.3969/j.issn.1001-5256.2021.09.046
利益冲突声明: 所有作者均声明不存在利益冲突。
作者贡献声明: 杨礼丹负责课题设计, 资料分析, 撰写论文;何訸参与修改论文;安振梅负责拟定写作思路, 指导撰写文章并最后定稿。
Role of intestinal flora in metabolic-associated fatty liver disease
-
摘要: 近年来, 越来越多的研究表明, 肠道菌群对代谢相关脂肪性肝病(MAFLD)的发生发展至关重要。总结了目前研究较多的MAFLD相关肠道菌群和代谢产物, 及其在疾病过程中可能的作用机制。相关肠道菌群和代谢产物虽然有望成为MAFLD新的非侵入性诊断标志物和治疗靶点, 但应用于临床仍需要更深入的研究。现代高通量测序技术的发展为研究提供了新的思路。整合基因、蛋白质、转录、代谢等多组学的联合分析, 可以在精准医疗体制下建立对影响MAFLD的微生物因素的全面了解, 从而为肠道菌群靶向移植治疗和肝脏代谢稳态药物研发奠定基础。Abstract: In recent years, more and more studies have shown that intestinal flora is critical to the development and progression of metabolic-related fatty liver disease (MAFLD). This article summarizes MAFLD-related intestinal flora and metabolites and their possible mechanisms of action in disease process. Although related intestinal flora and metabolites are expected to become new noninvasive diagnostic markers and therapeutic targets for MAFLD, their clinical application still requires more in-depth research. The development of modern high-throughput sequencing technology provides new ideas for research. The integrated analysis of multi-omics, such as genes, proteins, transcription, and metabolism, allows us to establish a comprehensive understanding of the microbial factors affecting MAFLD under the precision medicine system, so as to lay a foundation for targeted transplantation of intestinal flora and drug development for liver metabolic homeostasis.
-
[1] FAZEL Y, KOENIG AB, SAYINER M, et al. Epidemiology and natural history of non-alcoholic fatty liver disease[J]. Metabolism, 2016, 65(8): 1017-1025. DOI: 10.1016/j.metabol.2016.01.012. [2] ZOLLER H, TILG H. Nonalcoholic fatty liver disease and hepatocellular carcinoma[J]. Metabolism, 2016, 65(8): 1151-1160. DOI: 10.1016/j.metabol.2016.01.010. [3] ESLAM M, NEWSOME PN, SARIN SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement[J]. J Hepatol, 2020, 73(1): 202-209. DOI: 10.1016/j.jhep.2020.03.039. [4] POLYZOS SA, KOUNTOURAS J, ZAVOS C, et al. Nonalcoholic fatty liver disease: Multimodal treatment options for a pathogenetically multiple-hit disease[J]. J Clin Gastroenterol, 2012, 46(4): 272-284. DOI: 10.1097/MCG.0b013e31824587e0. [5] POLYZOS SA, KOUNTOURAS J, MANTZOROS CS. Adipokines in nonalcoholic fatty liver disease[J]. Metabolism, 2016, 65(8): 1062-1079. DOI: 10.1016/j.metabol.2015.11.006. [6] MACHADO MV, CORTEZ-PINTO H. Diet, microbiota, obesity, and NAFLD: A dangerous quartet[J]. Int J Mol Sci, 2016, 17(4): 481. DOI: 10.3390/ijms17040481. [7] MEHAL WZ. The gut-liver axis: A busy two-way street[J]. Hepatology, 2012, 55(6): 1647-1649. DOI: 10.1002/hep.25704. [8] KALSER MH, COHEN R, ARTEAGA I, et al. Normal viral and bacterial flora of the human small and large intestine[J]. N Engl J Med, 1966, 274(10): 558-563 contd. DOI: 10.1056/NEJM196603102741006. [9] ECKBURG PB, BIK EM, BERNSTEIN CN, et al. Diversity of the human intestinal microbial flora[J]. Science, 2005, 308(5728): 1635-1638. DOI: 10.1126/science.1110591. [10] MU Q, KIRBY J, REILLY CM, et al. Leaky gut as a danger signal for autoimmune diseases[J]. Front Immunol, 2017, 8: 598. DOI: 10.3389/fimmu.2017.00598. [11] MARCHIANDO AM, GRAHAM WV, TURNER JR. Epithelial barriers in homeostasis and disease[J]. Annu Rev Pathol, 2010, 5: 119-144. DOI: 10.1146/annurev.pathol.4.110807.092135. [12] RAINER F, HORVATH A, SANDAHL TD, et al. Soluble CD163 and soluble mannose receptor predict survival and decompensation in patients with liver cirrhosis, and correlate with gut permeability and bacterial translocation[J]. Aliment Pharmacol Ther, 2018, 47(5): 657-664. DOI: 10.1111/apt.14474. [13] CHEN YM, LIU Y, ZHOU RF, et al. Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults[J]. Sci Rep, 2016, 6: 19076. DOI: 10.1038/srep19076. [14] SOFTIC S, COHEN DE, KAHN CR. Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease[J]. Dig Dis Sci, 2016, 61(5): 1282-1293. DOI: 10.1007/s10620-016-4054-0. [15] LE ROY T, LLOPIS M, LEPAGE P, et al. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice[J]. Gut, 2013, 62(12): 1787-1794. DOI: 10.1136/gutjnl-2012-303816. [16] ZHU L, BAKER SS, GILL C, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: A connection between endogenous alcohol and NASH[J]. Hepatology, 2013, 57(2): 601-609. DOI: 10.1002/hep.26093. [17] BOURSIER J, MUELLER O, BARRET M, et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota[J]. Hepatology, 2016, 63(3): 764-775. DOI: 10.1002/hep.28356. [18] TOMAS J, MULET C, SAFFARIAN A, et al. High-fat diet modifies the PPAR-γ pathway leading to disruption of microbial and physiological ecosystem in murine small intestine[J]. Proc Natl Acad Sci U S A, 2016, 113(40): e5934-e5943. DOI: 10.1073/pnas.1612559113. [19] TURNBAUGH PJ, RIDAURA VK, FAITH JJ, et al. The effect of diet on the human gut microbiome: A metagenomic analysis in humanized gnotobiotic mice[J]. Sci Transl Med, 2009, 1(6): 6ra14. DOI: 10.1126/scitranslmed.3000322. [20] CHAMBERS ES, VIARDOT A, PSICHAS A, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults[J]. Gut, 2015, 64(11): 1744-1754. DOI: 10.1136/gutjnl-2014-307913. [21] LIANG Y, LIN C, ZHANG Y, et al. Probiotic mixture of Lactobacillus and Bifidobacterium alleviates systemic adiposity and inflammation in non-alcoholic fatty liver disease rats through Gpr109a and the commensal metabolite butyrate[J]. Inflammopharmacology, 2018, 26(4): 1051-1055. DOI: 10.1007/s10787-018-0479-8. [22] KAJI I, KARAKI S, KUWAHARA A. Short-chain fatty acid receptor and its contribution to glucagon-like peptide-1 release[J]. Digestion, 2014, 89(1): 31-36. DOI: 10.1159/000356211. [23] ZHOU D, PAN Q, XIN FZ, et al. Sodium butyrate attenuates high- fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier[J]. World J Gastroenterol, 2017, 23(1): 60-75. DOI: 10.3748/wjg.v23.i1.60. [24] DIETHER NE, WILLING BP. Microbial fermentation of dietary protein: An important factor in diet-microbe-host interaction[J]. Microorganisms, 2019, 7(1): 19. DOI: 10.3390/microorganisms7010019. [25] HOYLES L, FERNÁNDEZ-REAL JM, FEDERICI M, et al. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women[J]. Nat Med, 2018, 24(7): 1070-1080. DOI: 10.1038/s41591-018-0061-3. [26] OTTOSSON F, BRUNKWALL L, ERICSON U, et al. Connection between BMI-related plasma metabolite profile and gut microbiota[J]. J Clin Endocrinol Metab, 2018, 103(4): 1491-1501. DOI: 10.1210/jc.2017-02114. [27] PIROLA CJ, SOOKOIAN S. Multiomics biomarkers for the prediction of nonalcoholic fatty liver disease severity[J]. World J Gastroenterol, 2018, 24(15): 1601-1615. DOI: 10.3748/wjg.v24.i15.1601. [28] GOFFREDO M, SANTORO N, TRICÒ D, et al. A branched-chain amino acid-related metabolic signature characterizes obese adolescents with non-alcoholic fatty liver disease[J]. Nutrients, 2017, 9(7): 642. DOI: 10.3390/nu9070642. [29] ZHANG F, ZHAO S, YAN W, et al. Branched chain amino acids cause liver injury in obese/diabetic mice by promoting adipocyte lipolysis and inhibiting hepatic autophagy[J]. EBioMedicine, 2016, 13: 157-167. DOI: 10.1016/j.ebiom.2016.10.013. [30] TANAKA H, FUKAHORI S, BABA S, et al. Branched-chain amino acid-rich supplements containing microelements have antioxidant effects on nonalcoholic steatohepatitis in mice[J]. JPEN J Parenter Enteral Nutr, 2016, 40(4): 519-528. DOI: 10.1177/0148607114555160. [31] HONDA T, ISHIGAMI M, LUO F, et al. Branched-chain amino acids alleviate hepatic steatosis and liver injury in choline-deficient high-fat diet induced NASH mice[J]. Metabolism, 2017, 69: 177-187. DOI: 10.1016/j.metabol.2016.12.013. [32] PURI P, DAITA K, JOYCE A, et al. The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids[J]. Hepatology, 2018, 67(2): 534-548. DOI: 10.1002/hep.29359. [33] FAN JG, Shanghai Multicenter Clinical Cooperative Group of Danning Pian Trial. Evaluating the efficacy and safety of Danning Pian in the short-term treatment of patients with non-alcoholic fatty liver disease: A multicenter clinical trial[J]. Hepatobiliary Pancreat Dis Int, 2004, 3(3): 375-380. http://europepmc.org/abstract/MED/15313672 [34] SVEGLIATI-BARONI G, RIDOLFI F, HANNIVOORT R, et al. Bile acids induce hepatic stellate cell proliferation via activation of the epidermal growth factor receptor[J]. Gastroenterology, 2005, 128(4): 1042-1055. DOI: 10.1053/j.gastro.2005.01.007. [35] RAIMONDI F, SANTORO P, BARONE MV, et al. Bile acids modulate tight junction structure and barrier function of Caco-2 monolayers via EGFR activation[J]. Am J Physiol Gastrointest Liver Physiol, 2008, 294(4): g906-g913. DOI: 10.1152/ajpgi.00043.2007. [36] NEUSCHWANDER-TETRI BA, LOOMBA R, SANYAL AJ, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): A multicentre, randomised, placebo-controlled trial[J]. Lancet, 2015, 385(9972): 956-965. DOI: 10.1016/S0140-6736(14)61933-4. [37] JIANG C, XIE C, LI F, et al. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease[J]. J Clin Invest, 2015, 125(1): 386-402. DOI: 10.1172/JCI76738. [38] HENAO-MEJIA J, ELINAV E, THAISS CA, et al. Role of the intestinal microbiome in liver disease[J]. J Autoimmun, 2013, 46: 66-73. DOI: 10.1016/j.jaut.2013.07.001. [39] FUSTER D, SAMET JH. Alcohol use in patients with chronic liver disease[J]. N Engl J Med, 2018, 379(13): 1251-1261. DOI: 10.1056/NEJMra1715733. [40] FRIEDMAN SL, NEUSCHWANDER-TETRI BA, RINELLA M, et al. Mechanisms of NAFLD development and therapeutic strategies[J]. Nat Med, 2018, 24(7): 908-922. DOI: 10.1038/s41591-018-0104-9. [41] WANG Z, KLIPFELL E, BENNETT BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease[J]. Nature, 2011, 472(7341): 57-63. DOI: 10.1038/nature09922. [42] BARREA L, ANNUNZIATA G, MUSCOGIURI G, et al. Trimethylamine-N-oxide (TMAO) as novel potential biomarker of early predictors of metabolic syndrome[J]. Nutrients, 2018, 10(12): 1971. DOI: 10.3390/nu10121971. [43] TANG WH, HAZEN SL. Microbiome, trimethylamine N-oxide, and cardiometabolic disease[J]. Transl Res, 2017, 179: 108-115. DOI: 10.1016/j.trsl.2016.07.007. [44] COLE BK, FEAVER RE, WAMHOFF BR, et al. Non-alcoholic fatty liver disease (NAFLD) models in drug discovery[J]. Expert Opin Drug Discov, 2018, 13(2): 193-205. DOI: 10.1080/17460441.2018.1410135. [45] SOOKOIAN S, PIROLA CJ. Systems biology elucidates common pathogenic mechanisms between nonalcoholic and alcoholic-fatty liver disease[J]. PLoS One, 2013, 8(3): e58895. DOI: 10.1371/journal.pone.0058895. [46] SOOKOIAN S, PIROLA CJ. Nonalcoholic fatty liver disease and metabolic syndrome: Shared genetic basis of pathogenesis[J]. Hepatology, 2016, 64(5): 1417-1420. DOI: 10.1002/hep.28746. [47] CAMBIAGHI A, FERRARIO M, MASSEROLI M. Analysis of metabolomic data: Tools, current strategies and future challenges for omics data integration[J]. Brief Bioinform, 2017, 18(3): 498-510. DOI: 10.1093/bib/bbw031. [48] DEL CHIERICO F, NOBILI V, VERNOCCHI P, et al. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach[J]. Hepatology, 2017, 65(2): 451-464. DOI: 10.1002/hep.28572. [49] LOVRIC A, GRANÉR M, BJORNSON E, et al. Characterization of different fat depots in NAFLD using inflammation-associated proteome, lipidome and metabolome[J]. Sci Rep, 2018, 8(1): 14200. DOI: 10.1038/s41598-018-31865-w.
本文二维码
计量
- 文章访问数: 650
- HTML全文浏览量: 101
- PDF下载量: 68
- 被引次数: 0