转录激活因子3与慢性肝脏疾病相关性的研究进展
DOI: 10.3969/j.issn.1001-5256.2021.09.047
利益冲突声明: 所有作者均声明不存在利益冲突。
作者贡献声明: 辜群利负责课题设计, 资料分析, 撰写论文;李晖负责拟定写作思路, 指导撰写文章并最后定稿参;邓秀秀、曾子健、董海舰负责收集数据, 修改论文。
Research advances in the association between activating transcription factor 3 and chronic liver diseases
-
摘要: 转录激活因子3(ATF3)属于转录因子ATF/ CREB家族的成员, 是一种适应反应基因, 参与多种细胞活动的调控以适应细胞内外环境的变化。近年来研究发现, ATF3可通过调节糖异生、脂肪代谢、免疫功能等在非酒精性脂肪性肝病、肝纤维化、肝癌等多种肝脏疾病进展中发挥关键作用。就ATF3在肝脏疾病中的作用机制研究进展进行了概述。Abstract: Activating transcription factor 3 (ATF3) belongs to the transcription factor ATF/CREB family and is a stress-induced adaptive response gene. ATF3 is involved in the regulation of various cell activities to adapt to the changes in intracellular and extracellular environments. Recent studies have shown that ATF3 plays an important role in the development and progression of various chronic liver diseases, including nonalcoholic fatty liver disease, liver fibrosis, and liver cancer, by regulating gluconeogenesis, lipid metabolism, and immune function. This article reviews the mechanism of action of ATF3 in chronic liver diseases.
-
[1] HAI T, WOLFORD CC, CHANG YS. ATF3, a hub of the cellular adaptive-response network, in the pathogenesis of diseases: Is modulation of inflammation a unifying component?[J]. Gene Expr, 2010, 15(1): 1-11. DOI: 10.3727/105221610x12819686555015. [2] ROHINI M, HARITHA MENON A, et al. Role of activating transcription factor 3 and its interacting proteins under physiological and pathological conditions[J]. Int J Biol Macromol, 2018, 120(Pt A): 310-317. DOI: 10.1016/j.ijbiomac.2018.08.107. [3] UDAYAKUMAR TS, STOYANOVA R, SHAREEF MM, et al. Edelfosine promotes apoptosis in androgen-deprived prostate tumors by increasing ATF3 and inhibiting androgen receptor activity[J]. Mol Cancer Ther, 2016, 15(6): 1353-1363. DOI: 10.1158/1535-7163.MCT-15-0332. [4] JOO JH, UEDA E, BORTNER CD, et al. Farnesol activates the intrinsic pathway of apoptosis and the ATF4-ATF3-CHOP cascade of ER stress in human T lymphoblastic leukemia Molt4 cells[J]. Biochem Pharmacol, 2015, 97(3): 256-268. DOI: 10.1016/j.bcp.2015.08.086. [5] CHUEH AC, TSE J, IOANNIDIS P, et al. Abstract 4728: Histone deacetylase inhibitors induce apoptosis in multiple tumor types through induction of ATF3[J]. Cancer Res, 2016, 76(14): 4728-4728. DOI: 10.1158/1538-7445. [6] ZHAO J, LI X, GUO M, et al. The common stress responsive transcription factor ATF3 binds genomic sites enriched with p300 and H3K27ac for transcriptional regulation[J]. BMC Genomics, 2016, 17: 335. DOI: 10.1186/s12864-016-2664-8. [7] FUKASAWA K, PARK G, IEZAKI T, et al. ATF3 controls proliferation of osteoclast precursor and bone remodeling[J]. Sci Rep, 2016, 6: 30918. DOI: 10.1038/srep30918. [8] JEONG BC, KIM JH, KIM K, et al. ATF3 modulates calcium signaling in osteoclast differentiation and activity by associating with c-Fos and NFATc1 proteins[J]. Bone, 2017, 95: 33-40. DOI: 10.1016/j.bone.2016.11.005. [9] WANG Z, YAN C. Emerging roles of ATF3 in the suppression of prostate cancer[J]. Mol Cell Oncol, 2016, 3(1): e1010948. DOI: 10.1080/23723556.2015.1010948. [10] GUO N, MENG C, BAI W, et al. Prostaglandin F2α induces expression of activating transcription factor 3 (ATF3) and activates MAPK signaling in the rat corpus luteum[J]. Acta Histochem, 2015, 117(2): 211-218. DOI: 10.1016/j.acthis.2014.12.008. [11] JE YJ, CHOI DK, SOHN KC, et al. Inhibitory role of Id1 on TGF-β-induced collagen expression in human dermal fibroblasts[J]. Biochem Biophys Res Commun, 2014, 444(1): 81-85. DOI: 10.1016/j.bbrc.2014.01.010. [12] GOKULNATH M, PARTRIDGE NC, SELVAMURUGAN N. Runx2, a target gene for activating transcription factor-3 in human breast cancer cells[J]. Tumour Biol, 2015, 36(3): 1923-1931. DOI: 10.1007/s13277-014-2796-x. [13] KU HC, CHENG CF. Master regulator activating transcription factor 3 (ATF3) in metabolic homeostasis and cancer[J]. Front Endocrinol (Lausanne), 2020, 11: 556. DOI: 10.3389/fendo.2020.00556. [14] ALLEN-JENNINGS AE, HARTMAN MG, KOCIBA GJ, et al. The roles of ATF3 in glucose homeostasis. A transgenic mouse model with liver dysfunction and defects in endocrine pancreas[J]. J Biol Chem, 2001, 276(31): 29507-29514. DOI: 10.1074/jbc.M100986200. [15] ALLEN-JENNINGS AE, HARTMAN MG, KOCIBA GJ, et al. The roles of ATF3 in liver dysfunction and the regulation of phosphoenolpyruvate carboxykinase gene expression[J]. J Biol Chem, 2002, 277(22): 20020-20025. DOI: 10.1074/jbc.M200727200. [16] KIM JY, SONG EH, LEE HJ, et al. Chronic ethanol consumption-induced pancreatic {beta}-cell dysfunction and apoptosis through glucokinase nitration and its down-regulation[J]. J Biol Chem, 2010, 285(48): 37251-37262. DOI: 10.1074/jbc.M110.142315. [17] JANG MK, PARK HJ, JUNG MH. ATF3 represses PDX-1 expression in pancreatic β-cells[J]. Biochem Biophys Res Commun, 2011, 412(2): 385-390. DOI: 10.1016/j.bbrc.2011.07.108. [18] TSAI WW, MATSUMURA S, LIU W, et al. ATF3 mediates inhibitory effects of ethanol on hepatic gluconeogenesis[J]. Proc Natl Acad Sci U S A, 2015, 112(9): 2699-2704. DOI: 10.1073/pnas.1424641112. [19] KIM JY, LEE SH, SONG EH, et al. A critical role of STAT1 in streptozotocin-induced diabetic liver injury in mice: Controlled by ATF3[J]. Cell Signal, 2009, 21(12): 1758-1767. DOI: 10.1016/j.cellsig.2009.07.011. [20] JANG MK, SON Y, JUNG MH. ATF3 plays a role in adipocyte hypoxia-mediated mitochondria dysfunction in obesity[J]. Biochem Biophys Res Commun, 2013, 431(3): 421-427. DOI: 10.1016/j.bbrc.2012.12.154. [21] JANG MK, KIM CH, SEONG JK, et al. ATF3 inhibits adipocyte differentiation of 3T3-L1 cells[J]. Biochem Biophys Res Commun, 2012, 421(1): 38-43. DOI: 10.1016/j.bbrc.2012.03.104. [22] JANG MK, JUNG MH. ATF3 represses PPARγ expression and inhibits adipocyte differentiation[J]. Biochem Biophys Res Commun, 2014, 454(1): 58-64. DOI: 10.1016/j.bbrc.2014.10.028. [23] CHENG CF, KU HC, CHENG JJ, et al. Adipocyte browning and resistance to obesity in mice is induced by expression of ATF3[J]. Commun Biol, 2019, 2: 389. DOI: 10.1038/s42003-019-0624-y. [24] KIM S, SONG NJ, BAHN G, et al. ATF3 induction is a therapeutic target for obesity and metabolic diseases[J]. Biochem Biophys Res Commun, 2018, 504(4): 903-908. DOI: 10.1016/j.bbrc.2018.09.048. [25] LIU YF, WEI JY, SHI MH, et al. Glucocorticoid induces hepatic steatosis by inhibiting activating transcription factor 3 (ATF3)/S100A9 protein signaling in granulocytic myeloid-derived suppressor cells[J]. J Biol Chem, 2016, 291(41): 21771-21785. DOI: 10.1074/jbc.M116.726364. [26] de NARDO D, LABZIN LI, KONO H, et al. High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3[J]. Nat Immunol, 2014, 15(2): 152-160. DOI: 10.1038/ni.2784. [27] ROSENBERGER CM, CLARK AE, TREUTING PM, et al. ATF3 regulates MCMV infection in mice by modulating IFN-gamma expression in natural killer cells[J]. Proc Natl Acad Sci U S A, 2008, 105(7): 2544-2549. DOI: 10.1073/pnas.0712182105. [28] HOETZENECKER W, ECHTENACHER B, GUENOVA E, et al. ROS-induced ATF3 causes susceptibility to secondary infections during sepsis-associated immunosuppression[J]. Nat Med, 2011, 18(1): 128-134. DOI: 10.1038/nm.2557. [29] ZHU Q, WANG H, JIANG B, et al. Loss of ATF3 exacerbates liver damage through the activation of mTOR/p70S6K/ HIF-1α signaling pathway in liver inflammatory injury[J]. Cell Death Dis, 2018, 9(9): 910. DOI: 10.1038/s41419-018-0894-1. [30] KIM JY, PARK KJ, HWANG JY, et al. Activating transcription factor 3 is a target molecule linking hepatic steatosis to impaired glucose homeostasis[J]. J Hepatol, 2017, 67(2): 349-359. DOI: 10.1016/j.jhep.2017.03.023. [31] FANG J, JI YX, ZHANG P, et al. Hepatic IRF2BP2 mitigates nonalcoholic fatty liver disease by directly repressing the transcription of ATF3[J]. Hepatology, 2020, 71(5): 1592-1608. DOI: 10.1002/hep.30950. [32] TU C, XIONG H, HU Y, et al. Cardiolipin synthase 1 ameliorates NASH through activating transcription factor 3 transcriptional inactivation[J]. Hepatology, 2020, 72(6): 1949-1967. DOI: 10.1002/hep.31202. [33] SHI Z, ZHANG K, CHEN T, et al. Transcriptional factor ATF3 promotes liver fibrosis via activating hepatic stellate cells[J]. Cell Death Dis, 2020, 11(12): 1066. DOI: 10.1038/s41419-020-03271-6. [34] LI XY, ZANG SB, ZHANG Y, et al. Low expression of activating transcription factor 3 in human hepatocellular carcinoma and its clinicopathological significance[J]. Pathol Res Pract, 2014, 210(8): 477-481. DOI: 10.1016/j.prp.2014.03.013. [35] WANG ZX, YIN SN, TIAN G, et al. Activating transcription factor 3 is downregulated in hepatocellular carcinoma and functions as a tumor suppressor by regulating cyclin D1[J]. Open Life Sci, 2016, 11(1): 367-371. DOI: 10.1515/biol-2016-0048. [36] LI X, ZANG S, CHENG H, et al. Over expression of activating transcription factor 3 exerts suppressive effects in HepG2 cells[J]. Mol Med Rep, 2019, 19(2): 869-876. DOI: 10.3892/mmr.2018.9707. [37] CHEN C, GE C, LIU Z, et al. ATF3 inhibits the tumorigenesis and progression of hepatocellular carcinoma cells via upregulation of CYR61 expression[J]. J Exp Clin Cancer Res, 2018, 37(1): 263. DOI: 10.1186/s13046-018-0919-8. [38] SHEN J, LIN H, LI G, et al. TR4 nuclear receptor enhances the cisplatin chemo-sensitivity via altering the ATF3 expression to better suppress HCC cell growth[J]. Oncotarget, 2016, 7(22): 32088-32099. DOI: 10.18632/oncotarget.8525. [39] WENG S, ZHOU L, DENG Q, et al. Niclosamide induced cell apoptosis via upregulation of ATF3 and activation of PERK in hepatocellular carcinoma cells[J]. BMC Gastroenterol, 2016, 16: 25. DOI: 10.1186/s12876-016-0442-3. [40] LIN L, YAO Z, BHUVANESHWAR K, et al. Transcriptional regulation of STAT3 by SPTBN1 and SMAD3 in HCC through cAMP-response element-binding proteins ATF3 and CREB2[J]. Carcinogenesis, 2014, 35(11): 2393-2403. DOI: 10.1093/carcin/bgu163.
本文二维码
计量
- 文章访问数: 766
- HTML全文浏览量: 216
- PDF下载量: 61
- 被引次数: 0