微小RNA在胆管癌发生发展中的作用
DOI: 10.3969/j.issn.1001-5256.2021.09.048
利益冲突声明: 所有作者均声明不存在利益冲突。
作者贡献声明: 陈圣负责课题设计, 资料分析, 撰写论文;陈国想、何中明参与收集数据, 修改论文;程树杰、赵继森负责拟定写作思路, 指导撰写文章并最后定稿。
Role of miRNA in the development and progression of cholangiocarcinoma
-
摘要: 胆管癌是最为常见的胆道恶性肿瘤, 具有较高的死亡率, 且其发病率逐年上升。早期症状不典型和复杂的解剖位置, 常常导致胆管癌患者难以早期得到确诊, 错过最佳治疗时期, 预后不良。近年来, miRNA被证明在胆管癌发生发展的病理生理过程中起着关键作用。简述了miRNA在胆管癌的发生、侵袭和转移、耐药、肿瘤微环境中的调节作用, 并介绍了外泌体miRNA与胆管癌相关的新进展, 以期为胆管癌提供潜在的治疗策略。Abstract: Cholangiocarcinoma is the most common malignant tumor of the biliary tract, with a relatively high mortality rate and an incidence rate increasing year by year. Due to atypical symptoms in the early stage and complex anatomical location, it is often difficult for patients with cholangiocarcinoma to be diagnosed in the early stage, and therefore, they often miss the optimal treatment period and tend to have poor prognosis. In recent years, studies have shown that miRNAs play a key role in the pathophysiological process of the development and progression of cholangiocarcinoma. This article reviews the regulatory role of miRNAs in the development, invasion, metastasis, drug resistance, and tumor microenvironment of cholangiocarcinoma and introduces the latest advances in exosome miRNA and cholangiocarcinoma, so as to provide potential treatment strategies for cholangiocarcinoma.
-
Key words:
- Bile Duct Neoplasms /
- MicroRNAs /
- Exosomes /
- Therapeutics
-
[1] WANG M, CHEN Z, GUO P, et al. Therapy for advanced cholangiocarcinoma: Current knowledge and future potential[J]. J Cell Mol Med, 2021, 25(2): 618-628. DOI: 10.1111/jcmm.16151. [2] FLORIO AA, FERLAY J, ZNAOR A, et al. Global trends in intrahepatic and extrahepatic cholangiocarcinoma incidence from 1993 to 2012[J]. Cancer, 2020, 126(11): 2666-2678. DOI: 10.1002/cncr.32803. [3] RIZVI S, KHAN SA, HALLEMEIER CL, et al. Cholangiocarcinoma - evolving concepts and therapeutic strategies[J]. Nat Rev Clin Oncol, 2018, 15(2): 95-111. DOI: 10.1038/nrclinonc.2017.157. [4] BANALES JM, CARDINALE V, CARPINO G, et al. Expert consensus document: Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA)[J]. Nat Rev Gastroenterol Hepatol, 2016, 13(5): 261-280. DOI: 10.1038/nrgastro.2016.51. [5] XIE HJ, RASHED N, NING Y, et al. Current status of research on circulating microRNAs as diagnostic markers for hepatocellular carcinoma[J]. J Clin Hepatol, 2021, 37(2): 448-451. DOI: 10.3969/j.issn.1001-5256.2021.02.042.谢惠君, Rashed Nasot, 宁勇, 等. 循环miRNA作为肝细胞癌标志物的研究现状[J]. 临床肝胆病杂志, 2021, 37(2): 448 -451. DOI: 10.3969/j.issn.1001-5256.2021.02.042. [6] MORISHITA A, OURA K, TADOKORO T, et al. MicroRNAs in the pathogenesis of hepatocellular carcinoma: A review[J]. Cancers (Basel), 2021, 13(3): 514. DOI: 10.3390/cancers13030514. [7] LEE RC, FEINBAUM RL, AMBROS V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5): 843-854. DOI: 10.1016/0092-8674(93)90529-y. [8] MENG F, HENSON R, LANG M, et al. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines[J]. Gastroenterology, 2006, 130(7): 2113-2129. DOI: 10.1053/j.gastro.2006.02.057. [9] ZHANG JW, WANG X, LI GC, et al. MiR-30a-5p promotes cholangiocarcinoma cell proliferation through targeting SOCS3[J]. J Cancer, 2020, 11(12): 3604-3614. DOI: 10.7150/jca.41437. [10] LIXIN S, WEI S, HAIBIN S, et al. miR-885-5p inhibits proliferation and metastasis by targeting IGF2BP1 and GALNT3 in human intrahepatic cholangiocarcinoma[J]. Mol Carcinog, 2020, 59(12): 1371-1381. DOI: 10.1002/mc.23262. [11] SYDOR S, JAFOUI S, WINGERTER L, et al. Bcl-2 degradation is an additional pro-apoptotic effect of polo-like kinase inhibition in cholangiocarcinoma cells[J]. World J Gastroenterol, 2017, 23(22): 4007-4015. DOI: 10.3748/wjg.v23.i22.4007. [12] YU A, ZHAO L, KANG Q, et al. Transcription factor HIF1α promotes proliferation, migration, and invasion of cholangiocarcinoma via long noncoding RNA H19/microRNA-612/Bcl-2 axis[J]. Transl Res, 2020, 224: 26-39. DOI: 10.1016/j.trsl.2020.05.010. [13] CHANG W, WANG Y, LI W, et al. MicroRNA-551b-3p inhibits tumour growth of human cholangiocarcinoma by targeting Cyclin D1[J]. J Cell Mol Med, 2019, 23(8): 4945-4954. DOI: 10.1111/jcmm.14312. [14] LIU B, HU Y, QIN L, et al. MicroRNA-494-dependent WDHDI inhibition suppresses epithelial-mesenchymal transition, tumor growth and metastasis in cholangiocarcinoma[J]. Dig Liver Dis, 2019, 51(3): 397-411. DOI: 10.1016/j.dld.2018.08.021. [15] OLARU AV, GHIAUR G, YAMANAKA S, et al. MicroRNA down-regulated in human cholangiocarcinoma control cell cycle through multiple targets involved in the G1/S checkpoint[J]. Hepatology, 2011, 54(6): 2089-2098. DOI: 10.1002/hep.24591. [16] YAMANAKA S, CAMPBELL NR, AN F, et al. Coordinated effects of microRNA-494 induce G2/M arrest in human cholangiocarcinoma[J]. Cell Cycle, 2012, 11(14): 2729-2738. DOI: 10.4161/cc.21105. [17] CHEN T, LEI S, ZENG Z, et al. MicroRNA-137 suppresses the proliferation, migration and invasion of cholangiocarcinoma cells by targeting WNT2B[J]. Int J Mol Med, 2020, 45(3): 886-896. DOI: 10.3892/ijmm.2020.4474. [18] LIU CH, HUANG Q, JIN ZY, et al. miR-21 and KLF4 jointly augment epithelial-mesenchymal transition via the Akt/ERK1/2 pathway[J]. Int J Oncol, 2017, 50(4): 1109-1115. DOI: 10.3892/ijo.2017.3876. [19] EHRLICH L, HALL C, VENTER J, et al. miR-24 inhibition increases menin expression and decreases cholangiocarcinoma proliferation[J]. Am J Pathol, 2017, 187(3): 570-580. DOI: 10.1016/j.ajpath.2016.10.021. [20] QIAO P, LI G, BI W, et al. microRNA-34a inhibits epithelial mesenchymal transition in human cholangiocarcinoma by targeting Smad4 through transforming growth factor-beta/Smad pathway[J]. BMC Cancer, 2015, 15: 469. DOI: 10.1186/s12885-015-1359-x. [21] CHEN C, JIANG J, FANG M, et al. MicroRNA-129-2-3p directly targets Wip1 to suppress the proliferation and invasion of intrahepatic cholangiocarcinoma[J]. J Cancer, 2020, 11(11): 3216-3224. DOI: 10.7150/jca.41492. [22] LOEFFLER MA, HU J, KIRCHNER M, et al. miRNA profiling of biliary intraepithelial neoplasia reveals stepwise tumorigenesis in distal cholangiocarcinoma via the miR-451a/ATF2 axis[J]. J Pathol, 2020, 252(3): 239-251. DOI: 10.1002/path.5514. [23] LI J, YAO L, LI G, et al. miR-221 Promotes epithelial-mesenchymal transition through targeting PTEN and forms a positive feedback loop with β-catenin/c-jun signaling pathway in extra-hepatic cholangiocarcinoma[J]. PLoS One, 2015, 10(10): e0141168. DOI: 10.1371/journal.pone.0141168. [24] PENG F, JIANG J, YU Y, et al. Direct targeting of SUZ12/ROCK2 by miR-200b/c inhibits cholangiocarcinoma tumourigenesis and metastasis[J]. Br J Cancer, 2013, 109(12): 3092-3104. DOI: 10.1038/bjc.2013.655. [25] ZHANG M, SHI B, ZHANG K. miR-186 Suppresses the progression of cholangiocarcinoma cells through inhibition of twist1[J]. Oncol Res, 2019, 27(9): 1061-1068. DOI: 10.3727/096504019X15565325878380. [26] HU ZG, ZHENG CW, SU HZ, et al. MicroRNA-329-mediated PTTG1 downregulation inactivates the MAPK signaling pathway to suppress cell proliferation and tumor growth in cholangiocarcinoma[J]. J Cell Biochem, 2019, 120(6): 9964-9978. DOI: 10.1002/jcb.28279. [27] WU J, YANG B, ZHANG Y, et al. miR-424-5p represses the metastasis and invasion of intrahepatic cholangiocarcinoma by targeting ARK5[J]. Int J Biol Sci, 2019, 15(8): 1591-1599. DOI: 10.7150/ijbs.34113. [28] CHEN D, LIU G, XU N, et al. Knockdown of ARK5 expression suppresses invasion and metastasis of gastric cancer[J]. Cell Physiol Biochem, 2017, 42(3): 1025-1036. DOI: 10.1159/000478685. [29] YE Z, CHEN X, CHEN X. ARK5 promotes invasion and migration in hepatocellular carcinoma cells by regulating epithelial-mesenchymal transition[J]. Oncol Lett, 2018, 15(2): 1511-1516. DOI: 10.3892/ol.2017.7453. [30] LIU B, HU Y, QIN L, et al. MicroRNA-494-dependent WDHDI inhibition suppresses epithelial-mesenchymal transition, tumor growth and metastasis in cholangiocarcinoma[J]. Dig Liver Dis, 2019, 51(3): 397-411. DOI: 10.1016/j.dld.2018.08.021. [31] ZHANG D, LI H, JIANG X, et al. Role of AP-2α and MAPK7 in the regulation of autocrine TGF-β/miR-200b signals to maintain epithelial-mesenchymal transition in cholangiocarcinoma[J]. J Hematol Oncol, 2017, 10(1): 170. DOI: 10.1186/s13045-017-0528-6. [32] MEDZHITOV R. Origin and physiological roles of inflammation[J]. Nature, 2008, 454(7203): 428-435. DOI: 10.1038/nature07201. [33] LANDSKRON G, de la FUENTE M, THUWAJIT P, et al. Chronic inflammation and cytokines in the tumor microenvironment[J]. J Immunol Res, 2014, 2014: 149185. DOI: 10.1155/2014/149185. [34] PAPOUTSOGLOU P, LOUIS C, COULOUARN C. Transforming growth factor-Beta (TGFβ) signaling pathway in cholangiocarcinoma[J]. Cells, 2019, 8(9): 960. DOI: 10.3390/cells8090960. [35] JOHNSON C, HAN Y, HUGHART N, et al. Interleukin-6 and its receptor, key players in hepatobiliary inflammation and cancer[J]. Transl Gastrointest Cancer, 2012, 1(1): 58-70. DOI: 10.3978/j.issn.2224-4778.2011.11.02. [36] ZHOU QX, JIANG XM, WANG ZD, et al. Enhanced expression of suppresser of cytokine signaling 3 inhibits the IL-6-induced epithelial-to-mesenchymal transition and cholangiocarcinoma cell metastasis[J]. Med Oncol, 2015, 32(4): 105. DOI: 10.1007/s12032-015-0553-7. [37] MENG F, HENSON R, WEHBE-JANEK H, et al. The MicroRNA let-7a modulates interleukin-6-dependent STAT-3 survival signaling in malignant human cholangiocytes[J]. J Biol Chem, 2007, 282(11): 8256-8264. DOI: 10.1074/jbc.M607712200. [38] LIN KY, YE H, HAN BW, et al. Genome-wide screen identified let-7c/miR-99a/miR-125b regulating tumor progression and stem-like properties in cholangiocarcinoma[J]. Oncogene, 2016, 35(26): 3376-3386. DOI: 10.1038/onc.2015.396. [39] MENG F, WEHBE-JANEK H, HENSON R, et al. Epigenetic regulation of microRNA-370 by interleukin-6 in malignant human cholangiocytes[J]. Oncogene, 2008, 27(3): 378-386. DOI: 10.1038/sj.onc.1210648. [40] AN F, YAMANAKA S, ALLEN S, et al. Silencing of miR-370 in human cholangiocarcinoma by allelic loss and interleukin-6 induced maternal to paternal epigenotype switch[J]. PLoS One, 2012, 7(10): e45606. DOI: 10.1371/journal.pone.0045606. [41] ISHIGAMI K, NOSHO K, KOIDE H, et al. MicroRNA-31 reflects IL-6 expression in cancer tissue and is related with poor prognosis in bile duct cancer[J]. Carcinogenesis, 2018, 39(9): 1127-1134. DOI: 10.1093/carcin/bgy075. [42] FABRIS L, PERUGORRIA MJ, MERTENS J, et al. The tumour microenvironment and immune milieu of cholangiocarcinoma[J]. Liver Int, 2019, 39(Suppl 1): 63-78. DOI: 10.1111/liv.14098. [43] YAMANAKA T, HARIMOTO N, YOKOBORI T, et al. Nintedanib inhibits intrahepatic cholangiocarcinoma aggressiveness via suppression of cytokines extracted from activated cancer-associated fibroblasts[J]. Br J Cancer, 2020, 122(7): 986-994. DOI: 10.1038/s41416-020-0744-7. [44] FABRIS L, SATO K, ALPINI G, et al. The tumor microenvironment in cholangiocarcinoma progression[J]. Hepatology, 2021, 73 (Suppl 1): 75-85. DOI: 10.1002/hep.31410. [45] UTAIJARATRASMI P, VAETEEWOOTTACHARN K, TSUNEMATSU T, et al. The microRNA-15a-PAI-2 axis in cholangiocarcinoma- associated fibroblasts promotes migration of cancer cells[J]. Mol Cancer, 2018, 17(1): 10. DOI: 10.1186/s12943-018-0760-x. [46] APRELIKOVA O, PALLA J, HIBLER B, et al. Silencing of miR-148a in cancer-associated fibroblasts results in WNT10B-mediated stimulation of tumor cell motility[J]. Oncogene, 2013, 32(27): 3246-3253. DOI: 10.1038/onc.2012.351. [47] MIN A, ZHU C, PENG S, et al. Downregulation of microrna-148a in cancer-associated fibroblasts from oral cancer promotes cancer cell migration and invasion by targeting Wnt10b[J]. J Biochem Mol Toxicol, 2016, 30(4): 186-191. DOI: 10.1002/jbt.21777. [48] LU M, QIN X, ZHOU Y, et al. Long non-coding RNA LINC00665 promotes gemcitabine resistance of cholangiocarcinoma cells via regulating EMT and stemness properties through miR-424-5p/BCL9L axis[J]. Cell Death Dis, 2021, 12(1): 72. DOI: 10.1038/s41419-020-03346-4. [49] JIA Y, XIE J. Promising molecular mechanisms responsible for gemcitabine resistance in cancer[J]. Genes Dis, 2015, 2(4): 299-306. DOI: 10.1016/j.gendis.2015.07.003. [50] MENG F, HENSON R, LANG M, et al. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines[J]. Gastroenterology, 2006, 130(7): 2113-2129. DOI: 10.1053/j.gastro.2006.02.057. [51] CAROTENUTO P, HEDAYAT S, FASSAN M, et al. Modulation of biliary cancer chemo-resistance through microrna-mediated rewiring of the expansion of CD133+ cells[J]. Hepatology, 2020, 72(3): 982-996. DOI: 10.1002/hep.31094. [52] SILAKIT R, KITIRAT Y, THONGCHOT S, et al. Potential role of HIF-1-responsive microRNA210/HIF3 axis on gemcitabine resistance in cholangiocarcinoma cells[J]. PLoS One, 2018, 13(6): e0199827. DOI: 10.1371/journal.pone.0199827. [53] ASUKAI K, KAWAMOTO K, EGUCHI H, et al. Micro-RNA-130a-3p regulates gemcitabine resistance via PPARG in cholangiocarcinoma[J]. Ann Surg Oncol, 2017, 24(8): 2344-2352. DOI: 10.1245/s10434-017-5871-x. [54] WANG Z, CHEN JQ, LIU JL, et al. Exosomes in tumor microenvironment: Novel transporters and biomarkers[J]. J Transl Med, 2016, 14(1): 297. DOI: 10.1186/s12967-016-1056-9. [55] THIND A, WILSON C. Exosomal miRNAs as cancer biomarkers and therapeutic targets[J]. J Extracell Vesicles, 2016, 5: 31292. DOI: 10.3402/jev.v5.31292. [56] KITDUMRONGTHUM S, METHEETRAIRUT C, CHAROENSAWAN V, et al. Dysregulated microRNA expression profiles in cholangiocarcinoma cell-derived exosomes[J]. Life Sci, 2018, 210: 65-75. DOI: 10.1016/j.lfs.2018.08.058. [57] XUE XY, LIU YX, WANG C, et al. Identification of exosomal miRNAs as diagnostic biomarkers for cholangiocarcinoma and gallbladder carcinoma[J]. Signal Transduct Target Ther, 2020, 5(1): 77. DOI: 10.1038/s41392-020-0162-6. [58] SHEN L, CHEN G, XIA Q, et al. Exosomal miR-200 family as serum biomarkers for early detection and prognostic prediction of cholangiocarcinoma[J]. Int J Clin Exp Pathol, 2019, 12(10): 3870-3876.
本文二维码
计量
- 文章访问数: 589
- HTML全文浏览量: 166
- PDF下载量: 42
- 被引次数: 0