中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微小RNA在胆管癌发生发展中的作用

陈圣 陈国想 何中明 程树杰 赵继森

引用本文:
Citation:

微小RNA在胆管癌发生发展中的作用

DOI: 10.3969/j.issn.1001-5256.2021.09.048
基金项目: 

保定市科技计划项目 (2041ZF319)

利益冲突声明: 所有作者均声明不存在利益冲突。
作者贡献声明: 陈圣负责课题设计, 资料分析, 撰写论文;陈国想、何中明参与收集数据, 修改论文;程树杰、赵继森负责拟定写作思路, 指导撰写文章并最后定稿。
详细信息
    通信作者:

    赵继森, cheng66142@163.com

  • 中图分类号: R735.8

Role of miRNA in the development and progression of cholangiocarcinoma

Research funding: 

Baoding Science and Technology Program (2041ZF319)

  • 摘要: 胆管癌是最为常见的胆道恶性肿瘤, 具有较高的死亡率, 且其发病率逐年上升。早期症状不典型和复杂的解剖位置, 常常导致胆管癌患者难以早期得到确诊, 错过最佳治疗时期, 预后不良。近年来, miRNA被证明在胆管癌发生发展的病理生理过程中起着关键作用。简述了miRNA在胆管癌的发生、侵袭和转移、耐药、肿瘤微环境中的调节作用, 并介绍了外泌体miRNA与胆管癌相关的新进展, 以期为胆管癌提供潜在的治疗策略。

     

  • [1] WANG M, CHEN Z, GUO P, et al. Therapy for advanced cholangiocarcinoma: Current knowledge and future potential[J]. J Cell Mol Med, 2021, 25(2): 618-628. DOI: 10.1111/jcmm.16151.
    [2] FLORIO AA, FERLAY J, ZNAOR A, et al. Global trends in intrahepatic and extrahepatic cholangiocarcinoma incidence from 1993 to 2012[J]. Cancer, 2020, 126(11): 2666-2678. DOI: 10.1002/cncr.32803.
    [3] RIZVI S, KHAN SA, HALLEMEIER CL, et al. Cholangiocarcinoma - evolving concepts and therapeutic strategies[J]. Nat Rev Clin Oncol, 2018, 15(2): 95-111. DOI: 10.1038/nrclinonc.2017.157.
    [4] BANALES JM, CARDINALE V, CARPINO G, et al. Expert consensus document: Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA)[J]. Nat Rev Gastroenterol Hepatol, 2016, 13(5): 261-280. DOI: 10.1038/nrgastro.2016.51.
    [5] XIE HJ, RASHED N, NING Y, et al. Current status of research on circulating microRNAs as diagnostic markers for hepatocellular carcinoma[J]. J Clin Hepatol, 2021, 37(2): 448-451. DOI: 10.3969/j.issn.1001-5256.2021.02.042.

    谢惠君, Rashed Nasot, 宁勇, 等. 循环miRNA作为肝细胞癌标志物的研究现状[J]. 临床肝胆病杂志, 2021, 37(2): 448 -451. DOI: 10.3969/j.issn.1001-5256.2021.02.042.
    [6] MORISHITA A, OURA K, TADOKORO T, et al. MicroRNAs in the pathogenesis of hepatocellular carcinoma: A review[J]. Cancers (Basel), 2021, 13(3): 514. DOI: 10.3390/cancers13030514.
    [7] LEE RC, FEINBAUM RL, AMBROS V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5): 843-854. DOI: 10.1016/0092-8674(93)90529-y.
    [8] MENG F, HENSON R, LANG M, et al. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines[J]. Gastroenterology, 2006, 130(7): 2113-2129. DOI: 10.1053/j.gastro.2006.02.057.
    [9] ZHANG JW, WANG X, LI GC, et al. MiR-30a-5p promotes cholangiocarcinoma cell proliferation through targeting SOCS3[J]. J Cancer, 2020, 11(12): 3604-3614. DOI: 10.7150/jca.41437.
    [10] LIXIN S, WEI S, HAIBIN S, et al. miR-885-5p inhibits proliferation and metastasis by targeting IGF2BP1 and GALNT3 in human intrahepatic cholangiocarcinoma[J]. Mol Carcinog, 2020, 59(12): 1371-1381. DOI: 10.1002/mc.23262.
    [11] SYDOR S, JAFOUI S, WINGERTER L, et al. Bcl-2 degradation is an additional pro-apoptotic effect of polo-like kinase inhibition in cholangiocarcinoma cells[J]. World J Gastroenterol, 2017, 23(22): 4007-4015. DOI: 10.3748/wjg.v23.i22.4007.
    [12] YU A, ZHAO L, KANG Q, et al. Transcription factor HIF1α promotes proliferation, migration, and invasion of cholangiocarcinoma via long noncoding RNA H19/microRNA-612/Bcl-2 axis[J]. Transl Res, 2020, 224: 26-39. DOI: 10.1016/j.trsl.2020.05.010.
    [13] CHANG W, WANG Y, LI W, et al. MicroRNA-551b-3p inhibits tumour growth of human cholangiocarcinoma by targeting Cyclin D1[J]. J Cell Mol Med, 2019, 23(8): 4945-4954. DOI: 10.1111/jcmm.14312.
    [14] LIU B, HU Y, QIN L, et al. MicroRNA-494-dependent WDHDI inhibition suppresses epithelial-mesenchymal transition, tumor growth and metastasis in cholangiocarcinoma[J]. Dig Liver Dis, 2019, 51(3): 397-411. DOI: 10.1016/j.dld.2018.08.021.
    [15] OLARU AV, GHIAUR G, YAMANAKA S, et al. MicroRNA down-regulated in human cholangiocarcinoma control cell cycle through multiple targets involved in the G1/S checkpoint[J]. Hepatology, 2011, 54(6): 2089-2098. DOI: 10.1002/hep.24591.
    [16] YAMANAKA S, CAMPBELL NR, AN F, et al. Coordinated effects of microRNA-494 induce G2/M arrest in human cholangiocarcinoma[J]. Cell Cycle, 2012, 11(14): 2729-2738. DOI: 10.4161/cc.21105.
    [17] CHEN T, LEI S, ZENG Z, et al. MicroRNA-137 suppresses the proliferation, migration and invasion of cholangiocarcinoma cells by targeting WNT2B[J]. Int J Mol Med, 2020, 45(3): 886-896. DOI: 10.3892/ijmm.2020.4474.
    [18] LIU CH, HUANG Q, JIN ZY, et al. miR-21 and KLF4 jointly augment epithelial-mesenchymal transition via the Akt/ERK1/2 pathway[J]. Int J Oncol, 2017, 50(4): 1109-1115. DOI: 10.3892/ijo.2017.3876.
    [19] EHRLICH L, HALL C, VENTER J, et al. miR-24 inhibition increases menin expression and decreases cholangiocarcinoma proliferation[J]. Am J Pathol, 2017, 187(3): 570-580. DOI: 10.1016/j.ajpath.2016.10.021.
    [20] QIAO P, LI G, BI W, et al. microRNA-34a inhibits epithelial mesenchymal transition in human cholangiocarcinoma by targeting Smad4 through transforming growth factor-beta/Smad pathway[J]. BMC Cancer, 2015, 15: 469. DOI: 10.1186/s12885-015-1359-x.
    [21] CHEN C, JIANG J, FANG M, et al. MicroRNA-129-2-3p directly targets Wip1 to suppress the proliferation and invasion of intrahepatic cholangiocarcinoma[J]. J Cancer, 2020, 11(11): 3216-3224. DOI: 10.7150/jca.41492.
    [22] LOEFFLER MA, HU J, KIRCHNER M, et al. miRNA profiling of biliary intraepithelial neoplasia reveals stepwise tumorigenesis in distal cholangiocarcinoma via the miR-451a/ATF2 axis[J]. J Pathol, 2020, 252(3): 239-251. DOI: 10.1002/path.5514.
    [23] LI J, YAO L, LI G, et al. miR-221 Promotes epithelial-mesenchymal transition through targeting PTEN and forms a positive feedback loop with β-catenin/c-jun signaling pathway in extra-hepatic cholangiocarcinoma[J]. PLoS One, 2015, 10(10): e0141168. DOI: 10.1371/journal.pone.0141168.
    [24] PENG F, JIANG J, YU Y, et al. Direct targeting of SUZ12/ROCK2 by miR-200b/c inhibits cholangiocarcinoma tumourigenesis and metastasis[J]. Br J Cancer, 2013, 109(12): 3092-3104. DOI: 10.1038/bjc.2013.655.
    [25] ZHANG M, SHI B, ZHANG K. miR-186 Suppresses the progression of cholangiocarcinoma cells through inhibition of twist1[J]. Oncol Res, 2019, 27(9): 1061-1068. DOI: 10.3727/096504019X15565325878380.
    [26] HU ZG, ZHENG CW, SU HZ, et al. MicroRNA-329-mediated PTTG1 downregulation inactivates the MAPK signaling pathway to suppress cell proliferation and tumor growth in cholangiocarcinoma[J]. J Cell Biochem, 2019, 120(6): 9964-9978. DOI: 10.1002/jcb.28279.
    [27] WU J, YANG B, ZHANG Y, et al. miR-424-5p represses the metastasis and invasion of intrahepatic cholangiocarcinoma by targeting ARK5[J]. Int J Biol Sci, 2019, 15(8): 1591-1599. DOI: 10.7150/ijbs.34113.
    [28] CHEN D, LIU G, XU N, et al. Knockdown of ARK5 expression suppresses invasion and metastasis of gastric cancer[J]. Cell Physiol Biochem, 2017, 42(3): 1025-1036. DOI: 10.1159/000478685.
    [29] YE Z, CHEN X, CHEN X. ARK5 promotes invasion and migration in hepatocellular carcinoma cells by regulating epithelial-mesenchymal transition[J]. Oncol Lett, 2018, 15(2): 1511-1516. DOI: 10.3892/ol.2017.7453.
    [30] LIU B, HU Y, QIN L, et al. MicroRNA-494-dependent WDHDI inhibition suppresses epithelial-mesenchymal transition, tumor growth and metastasis in cholangiocarcinoma[J]. Dig Liver Dis, 2019, 51(3): 397-411. DOI: 10.1016/j.dld.2018.08.021.
    [31] ZHANG D, LI H, JIANG X, et al. Role of AP-2α and MAPK7 in the regulation of autocrine TGF-β/miR-200b signals to maintain epithelial-mesenchymal transition in cholangiocarcinoma[J]. J Hematol Oncol, 2017, 10(1): 170. DOI: 10.1186/s13045-017-0528-6.
    [32] MEDZHITOV R. Origin and physiological roles of inflammation[J]. Nature, 2008, 454(7203): 428-435. DOI: 10.1038/nature07201.
    [33] LANDSKRON G, de la FUENTE M, THUWAJIT P, et al. Chronic inflammation and cytokines in the tumor microenvironment[J]. J Immunol Res, 2014, 2014: 149185. DOI: 10.1155/2014/149185.
    [34] PAPOUTSOGLOU P, LOUIS C, COULOUARN C. Transforming growth factor-Beta (TGFβ) signaling pathway in cholangiocarcinoma[J]. Cells, 2019, 8(9): 960. DOI: 10.3390/cells8090960.
    [35] JOHNSON C, HAN Y, HUGHART N, et al. Interleukin-6 and its receptor, key players in hepatobiliary inflammation and cancer[J]. Transl Gastrointest Cancer, 2012, 1(1): 58-70. DOI: 10.3978/j.issn.2224-4778.2011.11.02.
    [36] ZHOU QX, JIANG XM, WANG ZD, et al. Enhanced expression of suppresser of cytokine signaling 3 inhibits the IL-6-induced epithelial-to-mesenchymal transition and cholangiocarcinoma cell metastasis[J]. Med Oncol, 2015, 32(4): 105. DOI: 10.1007/s12032-015-0553-7.
    [37] MENG F, HENSON R, WEHBE-JANEK H, et al. The MicroRNA let-7a modulates interleukin-6-dependent STAT-3 survival signaling in malignant human cholangiocytes[J]. J Biol Chem, 2007, 282(11): 8256-8264. DOI: 10.1074/jbc.M607712200.
    [38] LIN KY, YE H, HAN BW, et al. Genome-wide screen identified let-7c/miR-99a/miR-125b regulating tumor progression and stem-like properties in cholangiocarcinoma[J]. Oncogene, 2016, 35(26): 3376-3386. DOI: 10.1038/onc.2015.396.
    [39] MENG F, WEHBE-JANEK H, HENSON R, et al. Epigenetic regulation of microRNA-370 by interleukin-6 in malignant human cholangiocytes[J]. Oncogene, 2008, 27(3): 378-386. DOI: 10.1038/sj.onc.1210648.
    [40] AN F, YAMANAKA S, ALLEN S, et al. Silencing of miR-370 in human cholangiocarcinoma by allelic loss and interleukin-6 induced maternal to paternal epigenotype switch[J]. PLoS One, 2012, 7(10): e45606. DOI: 10.1371/journal.pone.0045606.
    [41] ISHIGAMI K, NOSHO K, KOIDE H, et al. MicroRNA-31 reflects IL-6 expression in cancer tissue and is related with poor prognosis in bile duct cancer[J]. Carcinogenesis, 2018, 39(9): 1127-1134. DOI: 10.1093/carcin/bgy075.
    [42] FABRIS L, PERUGORRIA MJ, MERTENS J, et al. The tumour microenvironment and immune milieu of cholangiocarcinoma[J]. Liver Int, 2019, 39(Suppl 1): 63-78. DOI: 10.1111/liv.14098.
    [43] YAMANAKA T, HARIMOTO N, YOKOBORI T, et al. Nintedanib inhibits intrahepatic cholangiocarcinoma aggressiveness via suppression of cytokines extracted from activated cancer-associated fibroblasts[J]. Br J Cancer, 2020, 122(7): 986-994. DOI: 10.1038/s41416-020-0744-7.
    [44] FABRIS L, SATO K, ALPINI G, et al. The tumor microenvironment in cholangiocarcinoma progression[J]. Hepatology, 2021, 73 (Suppl 1): 75-85. DOI: 10.1002/hep.31410.
    [45] UTAIJARATRASMI P, VAETEEWOOTTACHARN K, TSUNEMATSU T, et al. The microRNA-15a-PAI-2 axis in cholangiocarcinoma- associated fibroblasts promotes migration of cancer cells[J]. Mol Cancer, 2018, 17(1): 10. DOI: 10.1186/s12943-018-0760-x.
    [46] APRELIKOVA O, PALLA J, HIBLER B, et al. Silencing of miR-148a in cancer-associated fibroblasts results in WNT10B-mediated stimulation of tumor cell motility[J]. Oncogene, 2013, 32(27): 3246-3253. DOI: 10.1038/onc.2012.351.
    [47] MIN A, ZHU C, PENG S, et al. Downregulation of microrna-148a in cancer-associated fibroblasts from oral cancer promotes cancer cell migration and invasion by targeting Wnt10b[J]. J Biochem Mol Toxicol, 2016, 30(4): 186-191. DOI: 10.1002/jbt.21777.
    [48] LU M, QIN X, ZHOU Y, et al. Long non-coding RNA LINC00665 promotes gemcitabine resistance of cholangiocarcinoma cells via regulating EMT and stemness properties through miR-424-5p/BCL9L axis[J]. Cell Death Dis, 2021, 12(1): 72. DOI: 10.1038/s41419-020-03346-4.
    [49] JIA Y, XIE J. Promising molecular mechanisms responsible for gemcitabine resistance in cancer[J]. Genes Dis, 2015, 2(4): 299-306. DOI: 10.1016/j.gendis.2015.07.003.
    [50] MENG F, HENSON R, LANG M, et al. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines[J]. Gastroenterology, 2006, 130(7): 2113-2129. DOI: 10.1053/j.gastro.2006.02.057.
    [51] CAROTENUTO P, HEDAYAT S, FASSAN M, et al. Modulation of biliary cancer chemo-resistance through microrna-mediated rewiring of the expansion of CD133+ cells[J]. Hepatology, 2020, 72(3): 982-996. DOI: 10.1002/hep.31094.
    [52] SILAKIT R, KITIRAT Y, THONGCHOT S, et al. Potential role of HIF-1-responsive microRNA210/HIF3 axis on gemcitabine resistance in cholangiocarcinoma cells[J]. PLoS One, 2018, 13(6): e0199827. DOI: 10.1371/journal.pone.0199827.
    [53] ASUKAI K, KAWAMOTO K, EGUCHI H, et al. Micro-RNA-130a-3p regulates gemcitabine resistance via PPARG in cholangiocarcinoma[J]. Ann Surg Oncol, 2017, 24(8): 2344-2352. DOI: 10.1245/s10434-017-5871-x.
    [54] WANG Z, CHEN JQ, LIU JL, et al. Exosomes in tumor microenvironment: Novel transporters and biomarkers[J]. J Transl Med, 2016, 14(1): 297. DOI: 10.1186/s12967-016-1056-9.
    [55] THIND A, WILSON C. Exosomal miRNAs as cancer biomarkers and therapeutic targets[J]. J Extracell Vesicles, 2016, 5: 31292. DOI: 10.3402/jev.v5.31292.
    [56] KITDUMRONGTHUM S, METHEETRAIRUT C, CHAROENSAWAN V, et al. Dysregulated microRNA expression profiles in cholangiocarcinoma cell-derived exosomes[J]. Life Sci, 2018, 210: 65-75. DOI: 10.1016/j.lfs.2018.08.058.
    [57] XUE XY, LIU YX, WANG C, et al. Identification of exosomal miRNAs as diagnostic biomarkers for cholangiocarcinoma and gallbladder carcinoma[J]. Signal Transduct Target Ther, 2020, 5(1): 77. DOI: 10.1038/s41392-020-0162-6.
    [58] SHEN L, CHEN G, XIA Q, et al. Exosomal miR-200 family as serum biomarkers for early detection and prognostic prediction of cholangiocarcinoma[J]. Int J Clin Exp Pathol, 2019, 12(10): 3870-3876.
  • 加载中
计量
  • 文章访问数:  589
  • HTML全文浏览量:  166
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-20
  • 录用日期:  2021-03-01
  • 出版日期:  2021-09-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回