Research advances in the association between nonalcoholic fatty liver disease and colorectal adenomatous polyps
-
摘要: 非酒精性脂肪性肝病(NAFLD)及结直肠腺瘤性息肉与代谢综合征(MS)的各个组分密切相关。归纳了近年来NAFLD与结直肠腺瘤性息肉相关性的研究,结果显示NAFLD与结肠直肠腺瘤性息肉风险增加有关。其中机制尚未完全明确,可能与胰岛素抵抗、慢性炎症反应、脂肪细胞因子、肠道菌群紊乱等因素有关。Abstract: Nonalcoholic fatty liver disease (NAFLD) and colorectal adenomatous polyps are closely associated with the various components of metabolic syndrome. This article summarizes the recent studies on the association between NAFLD and colorectal adenomatous polyps, and the results show that NAFLD is associated with an increased risk of colorectal adenomatous polyps, while related mechanism remains unclear, which may be associated with insulin resistance, chronic inflammatory response, adipokines, and intestinal flora disturbance.
-
[1] National Health Commission of the People's Republic of China. Chinese protocol of diagnosis and treatment of colorectal cancer (2020 edition)[J]. Chin J Surg, 2020, 58(8): 561-585. DOI: 10.3760/cma.j.cn112139-20200518-00390.中华人民共和国国家卫生健康委员会. 中国结直肠癌诊疗规范(2020年版)[J]. 中华外科杂志, 2020, 58(8): 561-585. DOI: 10.3760/cma.j.cn112139-20200518-00390. [2] AHMED RL, SCHMITZ KH, ANDERSON KE, et al. The metabolic syndrome and risk of incident colorectal cancer[J]. Cancer, 2006, 107(1): 28-36. DOI: 10.1002/cncr.21950. [3] PAPATHEODORIDI M, CHOLONGITAS E. Diagnosis of non-alcoholic fatty liver disease (NAFLD): Current concepts[J]. Curr Pharm Des, 2018, 24(38): 4574-4586. DOI: 10.2174/1381612825666190117102111. [4] ZHOU F, ZHOU J, WANG W, et al. Unexpected rapid increase in the burden of NAFLD in China from 2008 to 2018: A systematic review and meta-analysis[J]. Hepatology, 2019, 70(4): 1119-1133. DOI: 10.1002/hep.30702. [5] ESLAM M, NEWSOME PN, SARIN SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement[J]. J Hepatol, 2020, 73(1): 202-209. DOI: 10.1016/j.jhep.2020.03.039. [6] HWANG ST, CHO YK, PARK JH, et al. Relationship of non-alcoholic fatty liver disease to colorectal adenomatous polyps[J]. J Gastroenterol Hepatol, 2010, 25(3): 562-567. DOI: 10.1111/j.1440-1746.2009.06117.x. [7] HUANG KW, LEU HB, WANG YJ, et al. Patients with nonalcoholic fatty liver disease have higher risk of colorectal adenoma after negative baseline colonoscopy[J]. Colorectal Dis, 2013, 15(7): 830-835. DOI: 10.1111/codi.12172. [8] CHO Y, LIM SK, JOO SK, et al. Nonalcoholic steatohepatitis is associated with a higher risk of advanced colorectal neoplasm[J]. Liver Int, 2019, 39(9): 1722-1731. DOI: 10.1111/liv.14163. [9] ZE EY, KIM BJ, JUN DH, et al. The fatty liver index: A simple and accurate predictor of colorectal adenoma in an average-risk population[J]. Dis Colon Rectum, 2018, 61(1): 36-42. DOI: 10.1097/DCR.0000000000000973. [10] KIM MC, PARK JG, JANG BI, et al. Liver fibrosis is associated with risk for colorectal adenoma in patients with nonalcoholic fatty liver disease[J]. Medicine (Baltimore), 2019, 98(6): e14139. DOI: 10.1097/MD.0000000000014139. [11] MAHAMID M, YASSIN T, ABU ELHEJA O, et al. Association between fatty liver disease and hyperplastic colonic polyp[J]. Isr Med Assoc J, 2017, 19(2): 105-108. [12] AHN JS, SINN DH, MIN YW, et al. Non-alcoholic fatty liver diseases and risk of colorectal neoplasia[J]. Aliment Pharmacol Ther, 2017, 45(2): 345-353. DOI: 10.1111/apt.13866. [13] STADLMAYR A, AIGNER E, STEGER B, et al. Nonalcoholic fatty liver disease: An independent risk factor for colorectal neoplasia[J]. J Intern Med, 2011, 270(1): 41-49. DOI: 10.1111/j.1365-2796.2011.02377.x. [14] CHEN QF, ZHOU XD, SUN YJ, et al. Sex-influenced association of non-alcoholic fatty liver disease with colorectal adenomatous and hyperplastic polyps[J]. World J Gastroenterol, 2017, 23(28): 5206-5215. DOI: 10.3748/wjg.v23.i28.5206. [15] LI Y, LIU S, GAO Y, et al. Association between NAFLD and risk of colorectal adenoma in Chinese Han population[J]. J Clin Transl Hepatol, 2019, 7(2): 99-105. DOI: 10.14218/JCTH.2019.00010. [16] KHAN RS, BRIL F, CUSI K, et al. Modulation of insulin resistance in nonalcoholic fatty liver disease[J]. Hepatology, 2019, 70(2): 711-724. DOI: 10.1002/hep.30429. [17] CLEMMONS DR. Role of IGF-binding proteins in regulating IGF responses to changes in metabolism[J]. J Mol Endocrinol, 2018, 61(1): T139-T169. DOI: 10.1530/JME-18-0016. [18] WARD CW, LAWRENCE MC. Ligand-induced activation of the insulin receptor: A multi-step process involving structural changes in both the ligand and the receptor[J]. Bioessays, 2009, 31(4): 422-434. DOI: 10.1002/bies.200800210. [19] ZHONG H, FAZENBAKER C, CHEN C, et al. Overproduction of IGF-2 drives a subset of colorectal cancer cells, which specifically respond to an anti-IGF therapeutic antibody and combination therapies[J]. Oncogene, 2017, 36(6): 797-806. DOI: 10.1038/onc.2016.248. [20] UNGER C, KRAMER N, UNTERLEUTHNER D, et al. Stromal-derived IGF2 promotes colon cancer progression via paracrine and autocrine mechanisms[J]. Oncogene, 2017, 36(38): 5341-5355. DOI: 10.1038/onc.2017.116. [21] COBBINA E, AKHLAGHI F. Non-alcoholic fatty liver disease (NAFLD) - pathogenesis, classification, and effect on drug metabolizing enzymes and transporters[J]. Drug Metab Rev, 2017, 49(2): 197-211. DOI: 10.1080/03602532.2017.1293683. [22] AGVERA-GONZÁLEZ S, BURTON OT, VÁZQUEZ-CHÁVEZ E, et al. Adenomatous polyposis coli defines treg differentiation and anti-inflammatory function through microtubule-mediated NFAT localization[J]. Cell Rep, 2017, 21(1): 181-194. DOI: 10.1016/j.celrep.2017.09.020. [23] GERMAN P, SZANISZLO P, HAJAS G, et al. Activation of cellular signaling by 8-oxoguanine DNA glycosylase-1-initiated DNA base excision repair[J]. DNA Repair (Amst), 2013, 12(10): 856-863. DOI: 10.1016/j.dnarep.2013.06.006. [24] SASAKI Y, TAKEDA H, SATO T, et al. Serum Interleukin-6, insulin, and HOMA-IR in male individuals with colorectal adenoma[J]. Clin Cancer Res, 2012, 18(2): 392-399. DOI: 10.1158/1078-0432.CCR-11-0896. [25] YAOITA T, SASAKI Y, YOKOZAWA J, et al. Treatment with anti-interleukin-6 receptor antibody ameliorates intestinal polyposis in Apc(Min/+) mice under high-fat diet conditions[J]. Tohoku J Exp Med, 2015, 235(2): 127-134. DOI: 10.1620/tjem.235.127. [26] WALDNER MJ, WIRTZ S, JEFREMOW A, et al. VEGF receptor signaling links inflammation and tumorigenesis in colitis-associated cancer[J]. J Exp Med, 2010, 207(13): 2855-2868. DOI: 10.1084/jem.20100438. [27] PAN S, HONG W, WU W, et al. The relationship of nonalcoholic fatty liver disease and metabolic syndrome for colonoscopy colorectal neoplasm[J]. Medicine (Baltimore), 2017, 96(2): e5809. DOI: 10.1097/MD.0000000000005809. [28] POLYZOS SA, KOUNTOURAS J, MANTZOROS CS. Adipokines in nonalcoholic fatty liver disease[J]. Metabolism, 2016, 65(8): 1062-1079. DOI: 10.1016/j.metabol.2015.11.006. [29] NAKAI K, WATARI J, TOZAWA K, et al. Sex differences in associations among metabolic syndrome, obesity, related biomarkers, and colorectal adenomatous polyp risk in a Japanese population[J]. J Clin Biochem Nutr, 2018, 63(2): 154-163. DOI: 10.3164/jcbn.18-11. [30] OTANI K, ISHIHARA S, YAMAGUCHI H, et al. Adiponectin and colorectal cancer[J]. Surg Today, 2017, 47(2): 151-158. DOI: 10.1007/s00595-016-1334-4. [31] UYAR GO, SANLIER N. Association of adipokines and insulin, which have a role in obesity, with colorectal cancer[J]. Eurasian J Med, 2019, 51(2): 191-195. DOI: 10.5152/eurasianjmed.2018.18089. [32] GHASEMI A, SAEIDI J, AZIMI-NEJAD M, et al. Leptin-induced signaling pathways in cancer cell migration and invasion[J]. Cell Oncol (Dordr), 2019, 42(3): 243-260. DOI: 10.1007/s13402-019-00428-0. [33] COMSTOCK SS, HORTOS K, KOVAN B, et al. Adipokines and obesity are associated with colorectal polyps in adult males: A cross-sectional study[J]. PLoS One, 2014, 9(1): e85939. DOI: 10.1371/journal.pone.0085939. [34] SAFARI Z, GÉRARD P. The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD)[J]. Cell Mol Life Sci, 2019, 76(8): 1541-1558. DOI: 10.1007/s00018-019-03011-w. [35] RYU JK, KIM SJ, RAH SH, et al. Reconstruction of LPS transfer cascade reveals structural determinants within LBP, CD14, and TLR4-MD2 for efficient LPS recognition and transfer[J]. Immunity, 2017, 46(1): 38-50. DOI: 10.1016/j.immuni.2016.11.007. [36] LIU T, SONG X, KHAN S, et al. The gut microbiota at the intersection of bile acids and intestinal carcinogenesis: An old story, yet mesmerizing[J]. Int J Cancer, 2020, 146(7): 1780-1790. DOI: 10.1002/ijc.32563. [37] WANG S, DONG W, LIU L, et al. Interplay between bile acids and the gut microbiota promotes intestinal carcinogenesis[J]. Mol Carcinog, 2019, 58(7): 1155-1167. DOI: 10.1002/mc.22999. [38] NAGATHIHALLI NS, BEESETTY Y, LEE W, et al. Novel mechanistic insights into ectodomain shedding of EGFR Ligands Amphiregulin and TGF-α: Impact on gastrointestinal cancers driven by secondary bile acids[J]. Cancer Res, 2014, 74(7): 2062-2072. DOI: 10.1158/0008-5472.CAN-13-2329. [39] SELMIN OI, FANG C, LYON AM, et al. Inactivation of adenomatous polyposis coli reduces bile acid/farnesoid X receptor expression through Fxr gene CpG methylation in mouse colon tumors and human colon cancer cells[J]. J Nutr, 2016, 146(2): 236-242. DOI: 10.3945/jn.115.216580. [40] WAJCHENBERG BL. Subcutaneous and visceral adipose tissue: Their relation to the metabolic syndrome[J]. Endocr Rev, 2000, 21(6): 697-738. DOI: 10.1210/edrv.21.6.0415. [41] NAM SY, KIM BC, HAN KS, et al. Abdominal visceral adipose tissue predicts risk of colorectal adenoma in both sexes[J]. Clin Gastroenterol Hepatol, 2010, 8(5): 443-450. e1-2. DOI: 10.1016/j.cgh.2010.02.001. [42] DONOHOE CL, DOYLE SL, REYNOLDS JV. Visceral adiposity, insulin resistance and cancer risk[J]. Diabetol Metab Syndr, 2011, 3: 12. DOI: 10.1186/1758-5996-3-12.
本文二维码
计量
- 文章访问数: 448
- HTML全文浏览量: 160
- PDF下载量: 44
- 被引次数: 0