瞬时感受器电位离子通道蛋白V4在肝脏疾病中的作用机制
DOI: 10.3969/j.issn.1001-5256.2022.01.040
Research advances in the mechanism of action of TRPV4 ion channel protein in liver diseases
-
摘要: 瞬时感受器电位离子通道蛋白V4 (TRPV4)属于瞬时感受器电位离子通道家族中的一员,是一种非选择性阳离子通道,其广泛分布在多种组织及器官中。近年来越来越多的研究介绍了TRPV4通道蛋白与肝纤维化、肝癌、多囊性肝病等肝脏疾病的密切关系。本文主要对TRPV4与肝脏疾病的有关文献进行分析,归纳总结TRPV4与肝脏疾病之间确切的信号通路及可能的潜在机制,以期临床应用及进一步研究。
-
关键词:
- 肝疾病 /
- 瞬变感受器电位离子通道蛋白V4 /
- 瞬时受体电位通道
Abstract: As a member of the transient receptor potential ion channel family, transient receptor potential vanilloid 4 (TRPV4) is a non-selective cation channel and is widely distributed in a variety of tissues and organs. In recent years, more and more studies have shown that TRPV4 channel proteins are closely associated with liver diseases such as liver fibrosis, liver cancer, and polycystic liver disease. This article analyzes the articles on TRPV4 and liver disease and summarizes the exact signaling pathways and possible potential mechanism between TRPV4 and liver disease, so as to provide new ideas for clinical application and further studies. -
瞬时感受器电位(transient receptor potentia,TRP)超家族最早发现于果蝇的视觉系统中[1],可被细胞内外环境的各种刺激因素激活。目前发现了30多种TRP通道, 依其核苷酸结构的同源性可分为:TRPC、TRPV、TRPM、TRPA、TPML、TRPP、TRPN[2]。其中TRPV有6个亚家族TRPV1~6,TRPV4是其中最大和最多样化的亚家族之一。近年来随着对TRPV4通道蛋白与肝脏疾病关系的深入研究,现已证实TRPV4通道蛋白在肝纤维化、肝癌、多囊性肝病等肝脏疾病中发挥重要的调控作用[3-5]。本文旨在介绍TRPV4通道蛋白在肝脏疾病中的研究进展,为肝脏疾病的药物靶向治疗提供新证据。
1. TRPV4的结构与功能
TRPV4是一种机械敏感性非选择性阳离子通道,相比对Mg2+和Na+,其对Ca2+具有较高的渗透性[6-7](PCa/PNa为6~10,PMg/PNa为2~3)[8-9];事实上,该通道已被证明以Ca2+浓度依赖的方式被抑制或增强[10],该过程依赖于残基F707的存在[9]。TRPV4又称VR-OAC、OTR PC4、TRP12或VRL-2[11], 其首次克隆和异源系统中的表达是建立在与线虫OSM-9同源性的基础上。TRPV4通道蛋白的染色体定位于12q23-24.1[12],外向整流。
结构上,TRPV4通道蛋白是一个对称的四聚体结构,由871个氨基酸组成,氨基端和羧基端都位于胞质侧,此外还具有6个跨膜结构域(TM1~TM6),并在TM5和TM6之间形成了一个允许Ca2+等阳离子通过的襻环结构[13-14]。TRPV4还具有多个影响通道功能的蛋白激酶A、蛋白激酶C[15]和钙调素结合位点[16]。锚蛋白重复结构域对激活TRPV4的部分生理功能起重要调节作用[17]。
功能上,TRPV4是一种多峰蛋白,可被热、低渗或花生四烯酸等激活[18],参与温度觉、触觉、渗透压等生理功能的调控,对维持内环境的稳定具有重要意义。最近的研究[19-21]表明TRPV4在细胞增殖、迁移、黏附、凋亡和自噬等病理生理状态下起调节作用。
2. TRPV4与肝脏疾病的关系
2.1 TRPV4与肝纤维化
肝纤维化是各种病因所致慢性肝损伤后,引起细胞外基质(ECM)等的异常沉积[22],尤其是Ⅰ型胶原、纤连蛋白过度沉积[23]。在长期的损伤下,细胞外基质蛋白(Ⅰ、Ⅱ、Ⅲ胶原纤维、波蛋白、纤连蛋白、层粘连蛋白、弹性蛋白、蛋白多糖和透明质酸)的过度积累会取代实质区域,导致纤维化发展为肝硬化。生理状态下肝星状细胞(HSC)处于静止状态,占肝脏细胞总数的5%~ 8%,参与肝内维生素A的储存,当肝脏受到刺激时HSC被激活,其表型由静止型转变为激活型,激活型HSC即肌成纤维细胞(myofibroblasts,MFB),能够产生大量的ECM在肝内沉积。HSC的活化是肝纤维化发生的中心环节[24],又因肝纤维化是可逆转的[25],如何抑制HSC的活化增殖,诱导其自噬凋亡以及阻断ECM的沉积成为抗肝纤维化研究的重点,亦是逆转肝纤维化的潜在策略[19-20]。
Song等[20]首次观察到肝纤维化患者及四氯化碳诱导的肝纤维化大鼠模型的肝组织中TRPV4的表达均上调;经TGFβ1刺激培养HSC-T6后,纤维化标志物α平滑肌肌动蛋白和1型胶原α1的表达亦显著增加,同时伴有HSC数量的增加,TRPV4的转录和翻译水平均显著提高,而这些改变均可被钌红(TRPV4选择性阻断剂)和TRPV4 siRNA阻断。后其又利用生物信息等技术得出TGFβ1通过下调miR-203的表达进而减少其对TRPV4翻译水平的负向调控,从而上调TRPV4的表达。随后,Zhan等[19]观察到类似的现象,同时表明TRPV4通过诱导自噬依赖的AKT信号通路在抑制HSC-T6凋亡中起关键作用。目前尚未明确自噬抑制HSC-T6凋亡的具体机制,探索HSC-T6自噬与凋亡之间的关系可为肝纤维化治疗药物提供新思路。
TRPV4通过整合ECM和TGFβ1产生的机械信号与可溶性信号,调节成纤维细胞增殖和分化为MFB,TRPV4对肥胖的调节是其导致纤维化的一种新的潜在机制[3]。有研究[26]表明经TRPV4拮抗剂HC-067047(HC) 腹腔注射治疗四氯化碳诱导的肝纤维化小鼠,会减轻其肝纤维化程度,这与之前的体外实验结果一致。目前各项研究均表明TRPV4抑制剂可能成为肝纤维化药物治疗的潜在靶点。然而因钌红可阻断线粒体Ca2+单转运体[27]和兰尼碱受体[28],所以还需进一步探讨其机制。肝纤维化中TRPV4的研究仅限于体外研究,体内研究和基因敲除技术极为罕见,随着进一步研究,最终将明确调节TRPV4通道蛋白的表达能否成为肝纤维化药物治疗的靶点。
2.2 TRPV4与肝癌
肝细胞癌(HCC)是最常见的原发性肝癌类型,也是全球与癌症死亡相关的第二大主要原因[29],与预后差及靶向药物抵抗等有关。吕小斌等[30]曾系统的综述了TRP离子通道家族在消化系统肿瘤中的研究进展,但是较少文献报道TRPV4与肝癌的相关性研究。离子通道的异常表达与肿瘤的形成和转移密切相关,与正常细胞相比,TRPV4在肝细胞癌组织和细胞系中的表达升高[4]。Vriens等[31]研究发现表达于人肝母细胞(human hepatoblastoma,HepG2)表面的功能性TRPV4通道蛋白可调控Ca2+的内流及细胞内钙库的释放。长期的肝纤维化最终会导致肝硬化甚至肝癌[32],Song等[20]发现表达上调的TRPV4可通过刺激HSC增殖的方式间接诱发肝癌。有研究[33]表明TRPV4离子通道的机械转导可诱导TAZ的蛋白表达和核积聚,随后激活Smad2/3以促进上皮-间充质转化,可能有助于纤维化或肿瘤的进展。
随后,有研究[34-35]发现TRPV4通道蛋白在HCC组织和癌旁组织均表达,这提示明确TRPV4的表达可能有利于原发性肝癌的预后及治疗。现通过体内体外实验证实了TRPV4通道蛋白在HCC发展中的重要作用[4]。TRPV4激动剂GSK101无论在体内还是体外都不会改变肝癌细胞的活力,在其作用下肝癌细胞的迁移能力略有增强;然而在TRPV4拮抗剂HC067047作用下可诱导肝癌细胞凋亡,减弱肝癌细胞的迁移能力[4],从而抑制上皮-间充质转化过程,这部分归因于ERK途径的失活。据此Fang等[4]推测正常激活TRPV4通道可能是维持肝癌细胞生理功能所必需的。该研究为肝癌的药物靶向治疗提供了新思路,提示TRPV4抑制剂可能是肝癌药物治疗的一种潜在策略,但是需要更多的样本量和更长的随访时间证实其结果的真实性。
此外HCC属于血供丰富的肿瘤,肿瘤血管的生成与其发生发展密切相关。大量的新生血管不仅为肿瘤组织提供充足的营养,还能促进肿瘤的扩散和转移。传统的抗血管治疗策略如抑制血管内皮生长因子(vascular enothelial growth factor, VEGF)或者血管内皮生长因子受体(vascular endothelial growth factor receptor, VEGFR)激酶活性,其疗效会随着肿瘤内皮细胞对抗VEGF治疗时间的延长而产生耐药性。在此基础上,Adapala等[36]发现肿瘤内皮细胞的TRPV4表达量和功能均下调,联合TRPV4激活剂GSK1016790A与顺铂会通过诱导血管成熟抑制野生型小鼠的肿瘤生长。TRPV4可通过调节Rho/Rho激酶信号通路抑制肿瘤血管生成[37]。这些研究结果表明TRPV4通道蛋白是影响肿瘤血管生成的调节因子,恢复或激活TRPV4的表达可诱导血管正常化并有利于癌症的治疗。
离子通道被认为是最有可能取代抗VEGF的治疗方案而成为癌症治疗的靶点。在这些通道中,TRPV4在调节肿瘤内皮功能和血管生成方面引起了越来越多的关注[36, 38-39]。Guarino等[40]发现肿瘤微环境经下调TRPV4,通过细胞外囊泡将正常的内皮细胞转变为肿瘤内皮样细胞。Yu等[41]认为TRPV4通道蛋白通过调节Ca2+和异构体的产生参与肿瘤细胞的增殖、分化、凋亡和迁移,最终导致肿瘤发生;此外还提出TRPV4通道蛋白与肿瘤微环境相互作用从而促进肿瘤转移的观点。最近Kanugula等[42]通过基因敲除等技术发现内皮细TRPV4是血管完整性和肿瘤血管生成的关键调节剂,提示靶向内皮细TRPV4也可能为血管正常化和癌症治疗提供一个潜在的新策略。
2.3 TRPV4与其他肝脏疾病
多囊性肝病是一种遗传性疾病,其可以进行性发展成多个充满液体的胆囊囊肿[43]。TRPV4通道蛋白的过度表达会导致胆管细胞纤毛功能异常,促进增殖和液体分泌,进而促进囊肿的生长[5, 44]。大量证据表明下调囊肿发育的信号通路如抑制TRPV4通道蛋白的表达可负向调控囊肿的生长[45]。Gradilone等[5]研究发现TRPV4通过激活AKT,抑制B-RAF-ERK信号通路,恢复细胞内Ca2+水平,进而抑制细胞增殖和囊泡生长,该研究结果已在体外及体内实验确定减少囊性细胞生长的一个新靶点,并认为恢复细胞内Ca2+是减少囊性病变的潜在靶点,这也为多囊性肝病的药物治疗提供了新思路。
非酒精性脂肪性肝病是一种临床进展性疾病,目前缺乏有效的早期治疗药物。Seth等[46]研究发现TRPV4可负向调控细胞色素P450酶CYP2E1,亦可在病理性脂肪肝中作为细胞应激的感受器,并构成内源性防御分子;TRPV4介导的Kupffer细胞产生肝保护性一氧化氮从而影响CYP2E1活性。这一发现为非酒精性脂肪性肝病的治疗提供了理论依据。
Echtermeyer等[47]证明,TRPV4的药理抑制和基因缺失均可在体外改善对乙酰氨基酚(APAP)诱导的小鼠及人肝细胞坏死的程度;尽管TRPV4不调节肝内谷胱甘肽水平,但TRPV4的药理性抑制和基因缺失均可减弱APAP诱导的氧化和亚硝基应激以及线粒体膜去极化,这表明TRPV4通道蛋白可能是治疗APAP引起肝损伤这一副反应的潜在靶点。
3. 总结与展望
到目前为止,在Clinical Trials网站上已注册6项有关GSK2798745(TRPV4特异性抑制剂)的临床试验,其中5项已顺利完成,表明TRPV4抑制剂在临床是可利用的药物,此外COVID-19流行期间其重要性再次得到关注[48]。TRPV4通道蛋白与肝脏疾病的关系尚未完全明确,其可通过机械刺激、调控Ca2+内流等方式调节细胞的增殖、分化、迁移和凋亡,最终导致肝脏疾病的发生。其与肝纤维化、肝癌、多囊性肝病等肝脏疾病的关系密切,虽然具体机制尚未完全阐明,相信随着进一步的研究,会明确TRPV4通道蛋白在不同肝脏疾病中的具体致病机制,这可为肝病患者提供更加精准的药物治疗策略。总而言之,TRPV4通道蛋白有望成为肝脏疾病药物治疗的新靶点。
-
[1] COSENS D J, MANNING A. Abnormal electroretinogram from a Drosophila mutant[J]. Nature, 1969, 224(5216): 285-287. DOI: 10.1038/224285a0. [2] TOFT-BERTELSEN TL, MACAULAY N. TRPing to the point of clarity: Understanding the function of the complex TRPV4 ion channel[J]. Cells, 2021, 10(1): 165. DOI: 10.3390/cells10010165. [3] ZHAN L, LI J. The role of TRPV4 in fibrosis[J]. Gene, 2018, 642: 1-8. DOI: 10.1016/j.gene.2017.10.067. [4] FANG Y, LIU G, XIE C, et al. Pharmacological inhibition of TRPV4 channel suppresses malignant biological behavior of hepatocellular carcinoma via modulation of ERK signaling pathway[J]. Biomed Pharmacother, 2018, 101: 910-919. DOI: 10.1016/j.biopha.2018.03.014. [5] GRADILONE SA, MASYUK TV, HUANG BQ, et al. Activation of Trpv4 reduces the hyperproliferative phenotype of cystic cholangiocytes from an animal model of ARPKD[J]. Gastroenterology, 2010, 139(1): 304-314. e2. DOI: 10.1053/j.gastro.2010.04.010. [6] WATANABE H, DAVIS JB, SMART D, et al. Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives[J]. J Biol Chem, 2002, 277(16): 13569-13577. DOI: 10.1074/jbc.M200062200. [7] VENKATACHALAM K, MONTELL C. TRP channels[J]. Annu Rev Biochem, 2007, 76: 387-417. DOI: 10.1146/annurev.physiol.68.040204.100431. [8] VOETS T, PRENEN J, VRIENS J, et al. Molecular determinants of permeation through the cation channel TRPV4[J]. J Biol Chem, 2002, 277(37): 33704-33710. DOI: 10.1074/jbc.M204828200. [9] WATANABE H, VRIENS J, JANSSENS A, et al. Modulation of TRPV4 gating by intra- and extracellular Ca2+[J]. Cell Calcium, 2003, 33(5-6): 489-495. DOI: 10.1016/s0143-4160(03)00064-2. [10] STROTMANN R, HARTENECK C, NUNNENMACHER K, et al. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity[J]. Nat Cell Biol, 2000, 2(10): 695-702. DOI: 10.1038/35036318. [11] MONTELL C, BIRNBAUMER L, FLOCKERZI V, et al. A unified nomenclature for the superfamily of TRP cation channels[J]. Mol Cell, 2002, 9(2): 229-231. DOI: 10.1016/s1097-2765(02)00448-3. [12] DELANY NS, HURLE M, FACER P, et al. Identification and characterization of a novel human vanilloid receptor-like protein, VRL-2[J]. Physiol Genomics, 2001, 4(3): 165-174. DOI: 10.1152/physiolgenomics.2001.4.3.165. [13] EVERAERTS W, NILIUS B, OWSIANIK G. The vanilloid transient receptor potential channel TRPV4: From structure to disease[J]. Prog Biophys Mol Biol, 2010, 103(1): 2-17. DOI: 10.1016/j.pbiomolbio.2009.10.002. [14] SURESH K, SERVINSKY L, REYES J, et al. Hydrogen peroxide-induced calcium influx in lung microvascular endothelial cells involves TRPV4[J]. Am J Physiol Lung Cell Mol Physiol, 2015, 309(12): L1467-L1477. DOI: 10.1152/ajplung.00275.2015. [15] NILIUS B, VRIENS J, PRENEN J, et al. TRPV4 calcium entry channel: A paradigm for gating diversity[J]. Am J Physiol Cell Physiol, 2004, 286(2): C195-C205. DOI: 10.1152/ajpcell.00365.2003. [16] HOPE JM, GREENLEE JD, KING MR. Mechanosensitive ion channels: TRPV4 and P2X7 in disseminating cancer cells[J]. Cancer J, 2018, 24(2): 84-92. DOI: 10.1097/PPO.0000000000000312. [17] ROSENBAUM T, BENÍTEZ-ANGELES M, SÁNCHEZ-HERNÁNDEZ R, et al. TRPV4: A physio and pathophysiologically significant ion channel[J]. Int J Mol Sci, 2020, 21(11): 3837. DOI: 10.3390/ijms21113837. [18] VRIENS J, OWSIANIK G, FISSLTHALER B, et al. Modulation of the Ca2 permeable cation channel TRPV4 by cytochrome P450 epoxygenases in vascular endothelium[J]. Circ Res, 2005, 97(9): 908-915. DOI: 10.1161/01.RES.0000187474.47805.30. [19] ZHAN L, YANG Y, MA TT, et al. Transient receptor potential vanilloid 4 inhibits rat HSC-T6 apoptosis through induction of autophagy[J]. Mol Cell Biochem, 2015, 402(1-2): 9-22. DOI: 10.1007/s11010-014-2298-6. [20] SONG Y, ZHAN L, YU M, et al. TRPV4 channel inhibits TGF-β1-induced proliferation of hepatic stellate cells[J]. PLoS One, 2014, 9(7): e101179. DOI: 10.1371/journal.pone.0101179. [21] SHI M, DU F, LIU Y, et al. Glial cell-expressed mechanosensitive channel TRPV4 mediates infrasound-induced neuronal impairment[J]. Acta Neuropathol, 2013, 126(5): 725-739. DOI: 10.1007/s00401-013-1166-x. [22] JI C, MCCULLOCH CA. TRPV4 integrates matrix mechanosensing with Ca(2+) signaling to regulate extracellular matrix remodeling[J]. FEBS J, 2021, 288(20): 5867-5887. DOI: 10.1111/febs.15665. [23] MAIERS JL, KOSTALLARI E, MUSHREF M, et al. The unfolded protein response mediates fibrogenesis and collagen I secretion through regulating TANGO1 in mice[J]. Hepatology, 2017, 65(3): 983-998. DOI: 10.1002/hep.28921. [24] HIGASHI T, FRIEDMAN SL, HOSHIDA Y. Hepatic stellate cells as key target in liver fibrosis[J]. Adv Drug Deliv Rev, 2017, 121: 27-42. DOI: 10.1016/j.addr.2017.05.007. [25] ROCKEY DC, FRIEDMAN SL. Fibrosis regression after eradication of hepatitis C virus: From bench to bedside[J]. Gastroenterology, 2021, 160(5): 1502-1520. e1. DOI: 10.1053/j.gastro.2020.09.065. [26] FU J, DU H, ZHANG X, et al. Pharmacological inhibition of transient receptor potential vanilloid 4 (TRPV4) channel alleviates carbon tetrachloride-induced liver fibrosis in mice[J]. J Nippon Med Sch, 2019, 86(5): 258-262. DOI: 10.1272/jnms.JNMS.2019_86-407. [27] YAN H, HAO S, SUN X, et al. Blockage of mitochondrial calcium uniporter prevents iron accumulation in a model of experimental subarachnoid hemorrhage[J]. Biochem Biophys Res Commun, 2015, 456(4): 835-840. DOI: 10.1016/j.bbrc.2014.12.073. [28] PREMKUMAR KV, CHAUBE SK. RyR channel-mediated increase of cytosolic free calcium level signals cyclin B1 degradation during abortive spontaneous egg activation in rat[J]. In Vitro Cell Dev Biol Anim, 2014, 50(7): 640-647. DOI: 10.1007/s11626-014-9749-y. [29] PETRICK JL, FLORIO AA, ZNAOR A, et al. International trends in hepatocellular carcinoma incidence, 1978-2012[J]. Int J Cancer, 2020, 147(2): 317-330. DOI: 10.1002/ijc.32723. [30] LYU XB, LUO HS. Relationship between TRP ion channel family and digestive system neoplasms[J]. Chin J Gastroenterol Hepatol, 2021, 30(2): 194-198. DOI: 10.3969/j.issn.1006-5709.2021.02.016.吕小斌, 罗和生. TRP离子通道家族和消化系统肿瘤相关性研究[J]. 胃肠病学和肝病学杂志, 2021, 30(2): 194-198. DOI: 10.3969/j.issn.1006-5709.2021.02.016. [31] VRIENS J, JANSSENS A, PRENEN J, et al. TRPV channels and modulation by hepatocyte growth factor/scatter factor in human hepatoblastoma (HepG2) cells[J]. Cell Calcium, 2004, 36(1): 19-28. DOI: 10.1016/j.ceca.2003.11.006. [32] BUKONG TN, MAURICE SB, CHAHAL B, et al. Versican: A novel modulator of hepatic fibrosis[J]. Lab Invest, 2016, 96(3): 361-374. DOI: 10.1038/labinvest.2015.152. [33] SHARMA S, GOSWAMI R, RAHAMAN SO. The TRPV4-TAZ mechanotransduction signaling axis in matrix stiffness- and TGFβ1-induced epithelial-mesenchymal transition[J]. Cell Mol Bioeng, 2019, 12(2): 139-152. DOI: 10.1007/s12195-018-00565-w. [34] HUO TY. Research on TRPV4 expression in the liver tumors and its relationship with the developmeat of liver cancer[D]. Taiyuan: Shanxi Medical University, 2019.霍天宇. TRPV4在肝脏肿瘤中的表达及其与肝癌发展关系的研究[D]. 太原: 山西医科大学, 2019. [35] ZHANG T. Expression of TRPV4 in primary hepatocellular carcinoma and its clinical sigaificance[D]. Changsha: Central South University, 2011.张涛. TRPV4在原发性肝细胞癌组织中的表达及临床意义[D]. 长沙: 中南大学, 2011. [36] ADAPALA RK, THOPPIL RJ, GHOSH K, et al. Activation of mechanosensitive ion channel TRPV4 normalizes tumor vasculature and improves cancer therapy[J]. Oncogene, 2016, 35(3): 314-322. DOI: 10.1038/onc.2015.83. [37] THOPPIL RJ, ADAPALA RK, CAPPELLI HC, et al. TRPV4 channel activation selectively inhibits tumor endothelial cell proliferation[J]. Sci Rep, 2015, 5: 14257. DOI: 10.1038/srep14257. [38] CAPPELLI HC, KANUGULA AK, ADAPALA RK, et al. Mechanosensitive TRPV4 channels stabilize VE-cadherin junctions to regulate tumor vascular integrity and metastasis[J]. Cancer Lett, 2019, 442: 15-20. DOI: 10.1016/j.canlet.2018.07.042. [39] KANUGULA AK, ADAPALA RK, MIDHA P, et al. Novel noncanonical regulation of soluble VEGF/VEGFR2 signaling by mechanosensitive ion channel TRPV4[J]. FASEB J, 2019, 33(1): 195-203. DOI: 10.1096/fj.201800509R. [40] GUARINO BD, ADAPALA RK, KANUGULA AK, et al. Extracellular vesicles from pathological microenvironment induce endothelial cell transformation and abnormal angiogenesis via modulation of TRPV4 channels[J]. Front Cell Dev Biol, 2019, 7: 344. DOI: 10.3389/fcell.2019.00344. [41] YU S, HUANG S, DING Y, et al. Transient receptor potential ion-channel subfamily V member 4: A potential target for cancer treatment[J]. Cell Death Dis, 2019, 10(7): 497. DOI: 10.1038/s41419-019-1708-9. [42] KANUGULA AK, ADAPALA RK, JAMAIYAR A, et al. Endothelial TRPV4 channels prevent tumor growth and metastasis via modulation of tumor angiogenesis and vascular integrity[J]. Angiogenesis, 2021, 24(3): 647-656. DOI: 10.1007/s10456-021-09775-9. [43] LEE-LAW PY, OLAIZOLA P, CABALLERO-CAMINO FJ, et al. Targeting UBC9-mediated protein hyper-SUMOylation in cystic cholangiocytes halts polycystic liver disease in experimental models[J]. J Hepatol, 2021, 74(2): 394-406. DOI: 10.1016/j.jhep.2020.09.010. [44] GRADILONE SA, MASYUK AI, SPLINTER PL, et al. Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion[J]. Proc Natl Acad Sci U S A, 2007, 104(48): 19138-19143. DOI: 10.1073/pnas.0705964104. [45] MASYUK TV, MASYUK AI, LARUSSO NF. Therapeutic targets in polycystic liver disease[J]. Curr Drug Targets, 2017, 18(8): 950-957. DOI: 10.2174/1389450116666150427161743. [46] SETH RK, DAS S, DATTAROY D, et al. TRPV4 activation of endothelial nitric oxide synthase resists nonalcoholic fatty liver disease by blocking CYP2E1-mediated redox toxicity[J]. Free Radic Biol Med, 2017, 102: 260-273. DOI: 10.1016/j.freeradbiomed.2016.11.047. [47] ECHTERMEYER F, EBERHARDT M, RISSER L, et al. Acetaminophen-induced liver injury is mediated by the ion channel TRPV4[J]. FASEB J, 2019, 33(9): 10257-10268. DOI: 10.1096/fj.201802233R. [48] JAFFAL SM, ABBAS MA. TRP channels in COVID-19 disease: Potential targets for prevention and treatment[J]. Chem Biol Interact, 2021, 345: 109567. DOI: 10.1016/j.cbi.2021.109567. 期刊类型引用(0)
其他类型引用(1)
-

计量
- 文章访问数: 813
- HTML全文浏览量: 278
- PDF下载量: 37
- 被引次数: 1