中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鞘磷脂酶在肝细胞癌中的作用

姚春 张广发 乐滢玉 毛德文 张荣臻 刘茵

引用本文:
Citation:

鞘磷脂酶在肝细胞癌中的作用

DOI: 10.3969/j.issn.1001-5256.2022.02.042
基金项目: 

国家自然科学基金面上项目 (81774236);

国家自然科学基金项目 (81960841)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:姚春、张广发负责拟定写作思路,撰写文章;毛德文负责研究选题,指导文章撰写和修改;张荣臻、刘茵负责设计论文框架;乐滢玉负责起草论文。
详细信息
    通信作者:

    毛德文, mdwboshi2005@163.com

Role of sphingomyelinases in hepatocellular carcinoma

Research funding: 

General Project of National Natural Science Foundation of China (81774236);

National Natural Science Foundation of China (81960841)

More Information
  • 摘要: 鞘磷脂酶(SMase)是调节鞘磷脂类信号通路及其相关产物代谢的主要酶类,参与了鞘磷脂复杂代谢过程中的关键步骤。近年来,许多研究表明SMase参与了细胞周期停滞、细胞迁移和炎症等生物学过程,并通过调节肿瘤干细胞的凋亡和增殖来促进肝细胞癌的发生发展。SMase在肝细胞癌的发生发展及诊疗中具有重要潜在生物学价值。就SMase在肝细胞癌发生发展中的作用进行归纳和探讨,以期为其临床治疗和新型药物的开发提供新的思路和策略。

     

  • [1] LE YY, ZHANG RZ, WANG TS, et al. Expression mechanism and clinical significance of absent in melanoma 2 in liver diseases[J]. J Clin Hepatol, 2021, 37(10): 2488-2492. DOI: 10.3969/j.issn.1001-5256.2021.10.049.

    乐滢玉, 张荣臻, 王挺帅, 等. 黑色素瘤缺乏因子2在肝脏疾病中的作用机制及临床意义[J]. 临床肝胆病杂志, 2021, 37(10): 2488-2492. DOI: 10.3969/j.issn.1001-5256.2021.10.049.
    [2] Professional Committee for Prevention and Control of Hepatobiliary and Pancreatic Diseases of Chinese Preventive Medicine Association; Professional Committee for Hepatology, Chinese Research Hospital Association; Chinese Society of Hepatology, Chinese Medical Association, et al. Guideline for stratified screening and surveillance of primary liver cancer (2020 edition)[J]. J Clin Hepatol, 2021, 37(2): 286-295. DOI: 10.3969/j.issn.1001-5256.2021.02.009.

    中华预防医学会肝胆胰疾病预防与控制专业委员会, 中国研究型医院学会肝病专业委员会, 中华医学会肝病学分会, 等. 原发性肝癌的分层筛查与监测指南(2020版)[J]. 临床肝胆病杂志, 2021, 37(2): 286-295. DOI: 10.3969/j.issn.1001-5256.2021.02.009.
    [3] HANNUN YA, OBEID LM. Sphingolipids and their metabolism in physiology and disease[J]. Nat Rev Mol Cell Biol, 2018, 19(3): 175-191. DOI: 10.1038/nrm.2017.107.
    [4] PONNUSAMY S, MEYERS-NEEDHAM M, SENKAL CE, et al. Sphingolipids and cancer: Ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance[J]. Future Oncol, 2010, 6(10): 1603-1624. DOI: 10.2217/fon.10.116.
    [5] BIENIAS K, FIEDOROWICZ A, SADOWSKA A, et al. Regulation of sphingomyelin metabolism[J]. Pharmacol Rep, 2016, 68(3): 570-581. DOI: 10.1016/j.pharep.2015.12.008.
    [6] PARK MH, JIN HK, BAE JS. Potential therapeutic target for aging and age-related neurodegenerative diseases: The role of acid sphingomyelinase[J]. Exp Mol Med, 2020, 52(3): 380-389. DOI: 10.1038/s12276-020-0399-8.
    [7] SIMONIS A, SCHUBERT-UNKMEIR A. The role of acid sphingomyelinase and modulation of sphingolipid metabolism in bacterial infection[J]. Biol Chem, 2018, 399(10): 1135-1146. DOI: 10.1515/hsz-2018-0200.
    [8] LIU SS, YANG JH, WANG A. Research progress in regulation of acid sphingomyelinase activity and its related drugs[J]. Chin J Pharmacol Toxicol, 2020, 34(3): 232-240. DOI: 10.3867/j.issn.1000-3002.2020.03.009.

    刘思思, 杨嘉辉, 王安. 酸性鞘磷脂酶活性调控及相关药物研究进展[J]. 中国药理学与毒理学杂志, 2020, 34(3): 232-240. DOI: 10.3867/j.issn.1000-3002.2020.03.009.
    [9] XIANG H, JIN S, TAN F, et al. Physiological functions and therapeutic applications of neutral sphingomyelinase and acid sphingomyelinase[J]. Biomed Pharmacother, 2021, 139: 111610. DOI: 10.1016/j.biopha.2021.111610.
    [10] THAYYULLATHIL F, CHERATTA AR, ALAKKAL A, et al. Acid sphingomyelinase-dependent autophagic degradation of GPX4 is critical for the execution of ferroptosis[J]. Cell Death Dis, 2021, 12(1): 26. DOI: 10.1038/s41419-020-03297-w.
    [11] AIROLA MV, HANNUN YA. Sphingolipid metabolism and neutral sphingomyelinases[J]. Handb Exp Pharmacol, 2013, (215): 57-76. DOI: 10.1007/978-3-7091-1368-4_3.
    [12] WU BX, CLARKE CJ, HANNUN YA. Mammalian neutral sphingomyelinases: Regulation and roles in cell signaling responses[J]. Neuromolecular Med, 2010, 12(4): 320-330. DOI: 10.1007/s12017-010-8120-z.
    [13] TANI M, HANNUN YA. Analysis of membrane topology of neutral sphingomyelinase 2[J]. FEBS Lett, 2007, 581(7): 1323-1328. DOI: 10.1016/j.febslet.2007.02.046.
    [14] de PALMA C, MEACCI E, PERROTTA C, et al. Endothelial nitric oxide synthase activation by tumor necrosis factor alpha through neutral sphingomyelinase 2, sphingosine kinase 1, and sphingosine 1 phosphate receptors: A novel pathway relevant to the pathophysiology of endothelium[J]. Arterioscler Thromb Vasc Biol, 2006, 26(1): 99-105. DOI: 10.1161/01.ATV.0000194074.59584.42.
    [15] DUAN RD. Alkaline sphingomyelinase (NPP7) in hepatobiliary diseases: A field that needs to be closely studied[J]. World J Hepatol, 2018, 10(2): 246-253. DOI: 10.4254/wjh.v10.i2.246.
    [16] WANG X, WANG LQ, ZHANG P. Inhibitory effect of basic sphingolipase on inflammatory bowel disease[J]. Chin J Gastroenterol Hepatol, 2020, 29(9): 975-978. DOI: 10.3969/j.issn.1006-5709.2020.09.004.

    王旭, 王凌琪, 张萍. 碱性鞘磷脂酶抑制炎症性肠病的研究[J]. 胃肠病学和肝病学杂志, 2020, 29(9): 975-978. DOI: 10.3969/j.issn.1006-5709.2020.09.004.
    [17] TONNETTI L, VERÍ MC, BONVINI E, et al. A role for neutral sphingomyelinase-mediated ceramide production in T cell receptor-induced apoptosis and mitogen-activated protein kinase-mediated signal transduction[J]. J Exp Med, 1999, 189(10): 1581-1589. DOI: 10.1084/jem.189.10.1581.
    [18] YABU T, IMAMURA S, YAMASHITA M, et al. Identification of Mg2+-dependent neutral sphingomyelinase 1 as a mediator of heat stress-induced ceramide generation and apoptosis[J]. J Biol Chem, 2008, 283(44): 29971-29982. DOI: 10.1074/jbc.M805402200.
    [19] FILOSTO S, FRY W, KNOWLTON AA, et al. Neutral sphingomyelinase 2 (nSMase2) is a phosphoprotein regulated by calcineurin (PP2B)[J]. J Biol Chem, 2010, 285(14): 10213-10222. DOI: 10.1074/jbc.M109.069963.
    [20] ITO H, MURAKAMI M, FURUHATA A, et al. Transcriptional regulation of neutral sphingomyelinase 2 gene expression of a human breast cancer cell line, MCF-7, induced by the anti-cancer drug, daunorubicin[J]. Biochim Biophys Acta, 2009, 1789(11-12): 681-690. DOI: 10.1016/j.bbagrm.2009.08.006.
    [21] MARCHESINI N, OSTA W, BIELAWSKI J, et al. Role for mammalian neutral sphingomyelinase 2 in confluence-induced growth arrest of MCF7 cells[J]. J Biol Chem, 2004, 279(24): 25101-25111. DOI: 10.1074/jbc.M313662200.
    [22] YANG YG, HU YH, ZHANG GH, et al. Analysis of knowledge graph of endoplasmic reticulum stress research based on VOSviewer and CiteSpace[J]. China Med Herald, 2021, 18 (7): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202107005.htm

    杨一格, 胡元会, 张广辉, 等. 基于VOSviewer与CiteSpace对内质网应激研究的知识图谱分析[J]. 中国医药导报, 2021, 18(7): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202107005.htm
    [23] MALHI H, KAUFMAN RJ. Endoplasmic reticulum stress in liver disease[J]. J Hepatol, 2011, 54(4): 795-809. DOI: 10.1016/j.jhep.2010.11.005.
    [24] HENKEL A, GREEN RM. The unfolded protein response in fatty liver disease[J]. Semin Liver Dis, 2013, 33(4): 321-329. DOI: 10.1055/s-0033-1358522.
    [25] FERNANDEZ A, MATIAS N, FUCHO R, et al. ASMase is required for chronic alcohol induced hepatic endoplasmic reticulum stress and mitochondrial cholesterol loading[J]. J Hepatol, 2013, 59(4): 805-813. DOI: 10.1016/j.jhep.2013.05.023.
    [26] CZAJA MJ, DING WX, DONOHUE TM Jr, et al. Functions of autophagy in normal and diseased liver[J]. Autophagy, 2013, 9(8): 1131-1158. DOI: 10.4161/auto.25063.
    [27] QUAN M, DUAN Y, XING HC. Research progress on alcoholic fatty liver disease and autophagy[J/CD]. Chin J Liver Dis: Electronic Edition, 2021, 13(3): 25-29. DOI: 10.3969/j.issn.1674-7380.2021.03.004.

    全敏, 段英, 邢卉春. 酒精性脂肪性肝病与细胞自噬研究进展[J/CD]. 中国肝脏病杂志(电子版), 2021, 13(3): 25-29. DOI: 10.3969/j.issn.1674-7380.2021.03.004.
    [28] FUCHO R, MARTÍNEZ L, BAULIES A, et al. ASMase regulates autophagy and lysosomal membrane permeabilization and its inhibition prevents early stage non-alcoholic steatohepatitis[J]. J Hepatol, 2014, 61(5): 1126-1134. DOI: 10.1016/j.jhep.2014.06.009.
    [29] BOYA P, KROEMER G. Lysosomal membrane permeabilization in cell death[J]. Oncogene, 2008, 27(50): 6434-6451. DOI: 10.1038/onc.2008.310.
    [30] WU YF, ZHANG JG, LI Q. Progress in pharmacokinetic mechanism of drug resistance in hepatocellular carcinoma[J]. Chin Pharmacol J, 2020, 55(19): 1578-1584. DOI: 10.11669/cpj.2020.19.005.

    吴亚菲, 张吉刚, 李琴. 肝细胞癌药物治疗耐药的药动学机制研究进展[J]. 中国药学杂志, 2020, 55(19): 1578-1584. DOI: 10.11669/cpj.2020.19.005.
    [31] CHEN GX, ZHOU M, CHEN S, et al. The role of non-coding RNA in drug resistance of hepatocellular carcinoma treated with sorafenib[J]. J Clin Hepatol, 2021, 37(3): 699-703. DOI: 10.3969/j.issn.1001-5256.2021.03.040.

    陈国想, 周茉, 陈圣, 等. 非编码RNA在索拉非尼治疗肝细胞癌耐药中的作用机制[J]. 临床肝胆病杂志, 2021, 37(3): 699-703. DOI: 10.3969/j.issn.1001-5256.2021.03.040.
    [32] KRAUTBAUER S, MEIER EM, REIN-FISCHBOECK L, et al. Ceramide and polyunsaturated phospholipids are strongly reduced in human hepatocellular carcinoma[J]. Biochim Biophys Acta, 2016, 1861(11): 1767-1774. DOI: 10.1016/j.bbalip.2016.08.014.
    [33] MAENG HJ, SONG JH, KIM GT, et al. Celecoxib-mediated activation of endoplasmic reticulum stress induces de novo ceramide biosynthesis and apoptosis in hepatoma HepG2 cells mobilization[J]. BMB Rep, 2017, 50(3): 144-149. DOI: 10.5483/bmbrep.2017.50.3.197.
    [34] LIN M, LIAO W, DONG M, et al. Exosomal neutral sphingomyelinase 1 suppresses hepatocellular carcinoma via decreasing the ratio of sphingomyelin/ceramide[J]. FEBS J, 2018, 285(20): 3835-3848. DOI: 10.1111/febs.14635.
    [35] REVILL K, WANG T, LACHENMAYER A, et al. Genome-wide methylation analysis and epigenetic unmasking identify tumor suppressor genes in hepatocellular carcinoma[J]. Gastroenterology, 2013, 145(6): 1424-1435. e1-25. DOI: 10.1053/j.gastro.2013.08.055.
    [36] ZHONG L, KONG JN, DINKINS MB, et al. Increased liver tumor formation in neutral sphingomyelinase-2-deficient mice[J]. J Lipid Res, 2018, 59(5): 795-804. DOI: 10.1194/jlr.M080879.
    [37] YOO SW, AGARWAL A, SMITH MD, et al. Inhibition of neutral sphingomyelinase 2 promotes remyelination[J]. Sci Adv, 2020, 6(40): eaba5210. DOI: 10.1126/sciadv.aba5210.
    [38] AL-RASHED F, AHMAD Z, THOMAS R, et al. Neutral sphingomyelinase 2 regulates inflammatory responses in monocytes/macrophages induced by TNF-α[J]. Sci Rep, 2020, 10(1): 16802. DOI: 10.1038/s41598-020-73912-5.
    [39] LEONETTI D, ESTÉPHAN H, RIPOCHE N, et al. Secretion of acid sphingomyelinase and ceramide by endothelial cells contributes to radiation-induced intestinal toxicity[J]. Cancer Res, 2020, 80(12): 2651-2662. DOI: 10.1158/0008-5472.CAN-19-1527.
    [40] van HELL AJ, HAIMOVITZ-FRIEDMAN A, FUKS Z, et al. Gemcitabine kills proliferating endothelial cells exclusively via acid sphingomyelinase activation[J]. Cell Signal, 2017, 34: 86-91. DOI: 10.1016/j.cellsig.2017.02.021.
    [41] GRAMMATIKOS G, TEICHGRÄBER V, CARPINTEIRO A, et al. Overexpression of acid sphingomyelinase sensitizes glioma cells to chemotherapy[J]. Antioxid Redox Signal, 2007, 9(9): 1449-1456. DOI: 10.1089/ars.2007.1673.
    [42] SMITH EL, SCHUCHMAN EH. Acid sphingomyelinase overexpression enhances the antineoplastic effects of irradiation in vitro and in vivo[J]. Mol Ther, 2008, 16(9): 1565-1571. DOI: 10.1038/mt.2008.145.
    [43] SAXTON RA, SABATINI DM. mTOR signaling in growth, metabolism, and disease[J]. Cell, 2017, 169(2): 361-371. DOI: 10.1016/j.cell.2017.03.035.
    [44] XU Z, XU M, LIU P, et al. The mTORC2-Akt1 Cascade is crucial for c-Myc to promote hepatocarcinogenesis in mice and humans[J]. Hepatology, 2019, 70(5): 1600-1613. DOI: 10.1002/hep.30697.
    [45] WU WK, COFFELT SB, CHO CH, et al. The autophagic paradox in cancer therapy[J]. Oncogene, 2012, 31(8): 939-953. DOI: 10.1038/onc.2011.295.
    [46] PAN H, WANG Z, JIANG L, et al. Autophagy inhibition sensitizes hepatocellular carcinoma to the multikinase inhibitor linifanib[J]. Sci Rep, 2014, 4: 6683. DOI: 10.1038/srep06683.
    [47] QIU DM, WANG GL, CHEN L, et al. The expression of beclin-1, an autophagic gene, in hepatocellular carcinoma associated with clinical pathological and prognostic significance[J]. BMC Cancer, 2014, 14: 327. DOI: 10.1186/1471-2407-14-327.
    [48] PARK MA, ZHANG G, MARTIN AP, et al. Vorinostat and sorafenib increase ER stress, autophagy and apoptosis via ceramide-dependent CD95 and PERK activation[J]. Cancer Biol Ther, 2008, 7(10): 1648-1662. DOI: 10.4161/cbt.7.10.6623.
    [49] SAVIĆ R, HE X, FIEL I, et al. Recombinant human acid sphingomyelinase as an adjuvant to sorafenib treatment of experimental liver cancer[J]. PLoS One, 2013, 8(5): e65620. DOI: 10.1371/journal.pone.0065620.
  • 加载中
计量
  • 文章访问数:  579
  • HTML全文浏览量:  365
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-29
  • 录用日期:  2021-07-30
  • 出版日期:  2022-02-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回