肝细胞癌多组学分子分型及其在精准诊疗中的应用
DOI: 10.3969/j.issn.1001-5256.2022.03.004
利益冲突声明: 所有作者均声明不存在利益冲突。
作者贡献声明: 董良庆负责文献分析,论文撰写; 高强负责指导写作,最终定稿。
Multi-omics molecular subgrouping of hepatocellular carcinoma and its application in precision diagnosis and treatment
-
摘要: 肝细胞癌是我国第三大癌症死因。近年来,靶向和免疫治疗的应用使得肝癌患者生存率得到提高。但受限于肿瘤异质性及疗效预测生物标志物的缺乏,肝细胞癌患者对治疗应答存在显著差异,而以蛋白基因组为核心的多组学研究以及高通量药物筛选平台的发展,将有助于开发肝细胞癌新型临床治疗策略和精准用药疗效预测,从而逐步实现个体化的精准诊疗。
-
关键词:
- 癌,肝细胞 /
- 遗传异质性 /
- 药物筛选试验,抗肿瘤 /
- 治疗学
Abstract: Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality in China. In recent years, the application of targeted therapy and immunotherapy has improved the survival rate of HCC patients. However, a significant difference in treatment response is observed among HCC patients due to tumor heterogeneity and a lack of biomarkers to predict efficacy. The advance in proteogenomics-centered multi-omics studies and the development of high-throughput drug screening platforms will help to develop new clinical treatment strategies for HCC and new methods for predicting the efficacy of precision medication, thereby realizing personalized precision diagnosis and treatment. -
[1] SUNG H, FERLAY J, SIEGEL RL, et al. Global cancer statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660. [2] CHEN W, XIA C, ZHENG R, et al. Disparities by province, age, and sex in site-specific cancer burden attributable to 23 potentially modifiable risk factors in China: A comparative risk assessment[J]. Lancet Glob Health, 2019, 7(2): e257, e269. DOI: 10.1016/S2214-109X(18)30488-1. [3] EL-KHOUEIRY AB, SANGRO B, YAU T, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial[J]. Lancet, 2017, 389(10088): 2492-2502. DOI: 10.1016/S0140-6736(17)31046-2. [4] SINGAL AG, EL-SERAG HB. Hepatocellular carcinoma from epidemiology to prevention: Translating knowledge into practice[J]. Clin Gastroenterol Hepatol, 2015, 13(12): 2140-2151. DOI: 10.1016/j.cgh.2015.08.014. [5] MAZZAFERRO V, REGALIA E, DOCI R, et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis[J]. N Engl J Med, 1996, 334(11): 693-699. DOI: 10.1056/NEJM199603143341104. [6] LLOVET JM, REAL MI, MONTAÑA X, et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: A randomised controlled trial[J]. Lancet, 2002, 359(9319): 1734-1739. DOI: 10.1016/S0140-6736(02)08649-X. [7] LLOVET JM, RICCI S, MAZZAFERRO V, et al. Sorafenib in advanced hepatocellular carcinoma[J]. N Engl J Med, 2008, 359(4): 378-390. DOI: 10.1056/NEJMoa0708857. [8] CHENG AL, KANG YK, CHEN Z, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: A phase Ⅲ randomised, double-blind, placebo-controlled trial[J]. Lancet Oncol, 2009, 10(1): 25-34. DOI: 10.1016/S1470-2045(08)70285-7. [9] KUDO M, FINN RS, QIN S, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial[J]. Lancet, 2018, 391(10126): 1163-1173. DOI: 10.1016/S0140-6736(18)30207-1. [10] QIN S, BI F, GU S, et al. Donafenib versus sorafenib in first-line treatment of unresectable or metastatic hepatocellular carcinoma: A randomized, open-label, parallel-controlled phase Ⅱ-Ⅲ trial[J]. J Clin Oncol, 2021, 39(27): 3002-3011. DOI: 10.1200/JCO.21.00163. [11] BRUIX J, QIN S, MERLE P, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet, 2017, 389(10064): 56-66. DOI: 10.1016/S0140-6736(16)32453-9. [12] ABOU-ALFA GK, MEYER T, CHENG AL, et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma[J]. N Engl J Med, 2018, 379(1): 54-63. DOI: 10.1056/NEJMoa1717002. [13] QIN S, LI Q, GU S, et al. Apatinib as second-line or later therapy in patients with advanced hepatocellular carcinoma (AHELP): A multicentre, double-blind, randomised, placebo-controlled, phase 3 trial[J]. Lancet Gastroenterol Hepatol, 2021, 6(7): 559-568. DOI: 10.1016/S2468-1253(21)00109-6. [14] WILHELM SM, ADNANE L, NEWELL P, et al. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling[J]. Mol Cancer Ther, 2008, 7(10): 3129-3140. DOI: 10.1158/1535-7163.MCT-08-0013. [15] ZHU AX, FINN RS, EDELINE J, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): A non-randomised, open-label phase 2 trial[J]. Lancet Oncol, 2018, 19(7): 940-952. DOI: 10.1016/S1470-2045(18)30351-6. [16] QIN S, REN Z, MENG Z, et al. Camrelizumab in patients with previously treated advanced hepatocellular carcinoma: A multicentre, open-label, parallel-group, randomised, phase 2 trial[J]. Lancet Oncol, 2020, 21(4): 571-580. DOI: 10.1016/S1470-2045(20)30011-5. [17] EDELINE J, MERLE P, FANG W, et al. Clinical outcomes associated with tislelizumab in patients (pts) with advanced hepatocellular carcinoma (HCC) who have been previously treated with sorafenib (SOR) or lenvatinib (LEN) in RATIONALE-208. [J]. J Clin Oncol, 2022, 40(4_suppl): 420. DOI: 10.1200/JCO.2022.40.4_suppl.420. [18] LEE DW, CHO EJ, LEE JH, et al. Phase Ⅱ study of avelumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib[J]. Clin Cancer Res, 2021, 27(3): 713-718. DOI: 10.1158/1078-0432.CCR-20-3094. [19] BREDER VV, VOGEL A, MERLE P, et al. IMbrave150: Exploratory efficacy and safety results of hepatocellular carcinoma (HCC) patients (pts) with main trunk and/or contralateral portal vein invasion (Vp4) treated with atezolizumab (atezo)+bevacizumab (BEV) versus sorafenib (SOR) in a global Ph Ⅲ study[J]. J Clin Oncol, 2021, 39(15_suppl): 4073. DOI: 10.1200/JCO.2021.39.15_suppl.4073. [20] REN Z, XU J, BAI Y, et al. Sintilimab plus a bevacizumab biosimilar (IBI305) versus sorafenib in unresectable hepatocellular carcinoma (ORIENT-32): A randomised, open-label, phase 2-3 study[J]. Lancet Oncol, 2021, 22(7): 977-990. DOI: 10.1016/S1470-2045(21)00252-7. [21] ABOU-ALFA GK, CHAN S L, KUDO M, et al. Phase 3 randomized, open-label, multicenter study of tremelimumab (T) and durvalumab (D) as first-line therapy in patients (pts) with unresectable hepatocellular carcinoma (uHCC): HIMALAYA. [J]. J Clin Oncol, 2022, 40(4_suppl): 379. DOI: 10.1200/JCO.2022.40.4_suppl.379. [22] CHEN B, BUTTE AJ. Leveraging big data to transform target selection and drug discovery[J]. Clin Pharmacol Ther, 2016, 99(3): 285-297. DOI: 10.1002/cpt.318. [23] WOODEN B, GOOSSENS N, HOSHIDA Y, et al. Using big data to discover diagnostics and therapeutics for gastrointestinal and liver diseases[J]. Gastroenterology, 2017, 152(1): 53-67. e3. DOI: 10.1053/j.gastro.2016.09.065. [24] ZUCMAN-ROSSI J, VILLANUEVA A, NAULT JC, et al. Genetic landscape and biomarkers of hepatocellular carcinoma[J]. Gastroenterology, 2015, 149(5): 1226-1239. e4. DOI: 10.1053/j.gastro.2015.05.061. [25] XUE R, CHEN L, ZHANG C, et al. Genomic and transcriptomic profiling of combined hepatocellular and intrahepatic cholangiocarcinoma reveals distinct molecular subtypes[J]. Cancer Cell, 2019, 35(6): 932-947. e8. DOI: 10.1016/j.ccell.2019.04.007. [26] KAN Z, ZHENG H, LIU X, et al. Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma[J]. Genome Res, 2013, 23(9): 1422-1433. DOI: 10.1101/gr.154492.113. [27] FUJIMOTO A, FURUTA M, TOTOKI Y, et al. Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer[J]. Nat Genet, 2016, 48(5): 500-509. DOI: 10.1038/ng.3547. [28] FUJIMOTO A, TOTOKI Y, ABE T, et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators[J]. Nat Genet, 2012, 44(7): 760-764. DOI: 10.1038/ng.2291. [29] AHN SM, JANG SJ, SHIM JH, et al. Genomic portrait of resectable hepatocellular carcinomas: Implications of RB1 and FGF19 aberrations for patient stratification[J]. Hepatology, 2014, 60(6): 1972-1982. DOI: 10.1002/hep.27198. [30] ZHENG J, SADOT E, VIGIDAL JA, et al. Characterization of hepatocellular adenoma and carcinoma using microRNA profiling and targeted gene sequencing[J]. PLoS One, 2018, 13(7): e0200776. DOI: 10.1371/journal.pone.0200776. [31] SCHULZE K, IMBEAUD S, LETOUZÉ E, et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets[J]. Nat Genet, 2015, 47(5): 505-511. DOI: 10.1038/ng.3252. [32] HARDING JJ, NANDAKUMAR S, ARMENIA J, et al. Prospective genotyping of hepatocellular carcinoma: Clinical implications of next-generation sequencing for matching patients to targeted and immune therapies[J]. Clin Cancer Res, 2019, 25(7): 2116-2126. DOI: 10.1158/1078-0432.CCR-18-2293. [33] Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcinoma[J]. Cell, 2017, 169(7): 1327-1341. e23. DOI: 10.1016/j.cell.2017.05.046. [34] LLOVET JM, VILLANUEVA A, LACHENMAYER A, et al. Advances in targeted therapies for hepatocellular carcinoma in the genomic era[J]. Nat Rev Clin Oncol, 2015, 12(7): 408-424. DOI: 10.1038/nrclinonc.2015.103. [35] HOSHIDA Y, TOFFANIN S, LACHENMAYER A, et al. Molecular classification and novel targets in hepatocellular carcinoma: Recent advancements[J]. Semin Liver Dis, 2010, 30(1): 35-51. DOI: 10.1055/s-0030-1247131. [36] PIKARSKY E, PORAT RM, STEIN I, et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer[J]. Nature, 2004, 431(7007): 461-466. DOI: 10.1038/nature02924. [37] SIA D, JIAO Y, MARTINEZ-QUETGLAS I, et al. Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features[J]. Gastroenterology, 2017, 153(3): 812-826. DOI: 10.1053/j.gastro.2017.06.007. [38] DONG LQ, PENG LH, MA LJ, et al. Heterogeneous immunogenomic features and distinct escape mechanisms in multifocal hepatocellular carcinoma[J]. J Hepatol, 2020, 72(5): 896-908. DOI: 10.1016/j.jhep.2019.12.014. [39] GAO Q, WANG ZC, DUAN M, et al. Cell culture system for analysis of genetic heterogeneity within hepatocellular carcinomas and response to pharmacologic agents[J]. Gastroenterology, 2017, 152(1): 232-242. e4. DOI: 10.1053/j.gastro.2016.09.008. [40] JIANG Y, SUN A, ZHAO Y, et al. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma[J]. Nature, 2019, 567(7747): 257-261. DOI: 10.1038/s41586-019-0987-8. [41] GAO Q, ZHU H, DONG L, et al. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma[J]. Cell, 2019, 179(2): 561-577. e22. DOI: 10.1016/j.cell.2019.08.052. [42] TORRECILLA S, SIA D, HARRINGTON AN, et al. Trunk mutational events present minimal intra- and inter-tumoral heterogeneity in hepatocellular carcinoma[J]. J Hepatol, 2017, 67(6): 1222-1231. DOI: 10.1016/j.jhep.2017.08.013. [43] MEEK DW. Regulation of the p53 response and its relationship to cancer[J]. Biochem J, 2015, 469(3): 325-346. DOI: 10.1042/BJ20150517. [44] TOLEDO F, WAHL GM. MDM2 and MDM4: p53 regulators as targets in anticancer therapy[J]. Int J Biochem Cell Biol, 2007, 39(7-8): 1476-1482. DOI: 10.1016/j.biocel.2007.03.022. [45] RUDEN M, PURI N. Novel anticancer therapeutics targeting telomerase[J]. Cancer Treat Rev, 2013, 39(5): 444-456. DOI: 10.1016/j.ctrv.2012.06.007. [46] DUAN M, HAO J, CUI S, et al. Diverse modes of clonal evolution in HBV-related hepatocellular carcinoma revealed by single-cell genome sequencing[J]. Cell Res, 2018, 28(3): 359-373. DOI: 10.1038/cr.2018.11. [47] DONG LQ, SHI Y, MA LJ, et al. Spatial and temporal clonal evolution of intrahepatic cholangiocarcinoma[J]. J Hepatol, 2018, 69(1): 89-98. DOI: 10.1016/j.jhep.2018.02.029. [48] VASAIKAR S, HUANG C, WANG X, et al. Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities[J]. Cell, 2019, 177(4): 1035-1049. e19. DOI: 10.1016/j.cell.2019.03.030. [49] ZHANG B, WANG J, WANG X, et al. Proteogenomic characterization of human colon and rectal cancer[J]. Nature, 2014, 513(7518): 382-387. DOI: 10.1038/nature13438. [50] GILLETTE MA, SATPATHY S, CAO S, et al. Proteogenomic characterization reveals therapeutic vulnerabilities in lung adenocarcinoma[J]. Cell, 2020, 182(1): 200-225. e35. DOI: 10.1016/j.cell.2020.06.013. [51] XU JY, ZHANG C, WANG X, et al. Integrative proteomic characterization of human lung adenocarcinoma[J]. Cell, 2020, 182(1): 245-261. e17. DOI: 10.1016/j.cell.2020.05.043. [52] CLARK DJ, DHANASEKARAN SM, PETRALIA F, et al. Integrated proteogenomic characterization of clear cell renal cell carcinoma[J]. Cell, 2019, 179(4): 964-983. e31. DOI: 10.1016/j.cell.2019.10.007. [53] MCDERMOTT JE, ARSHAD OA, PETYUK VA, et al. Proteogenomic characterization of ovarian HGSC implicates mitotic kinases, replication stress in observed chromosomal instability[J]. Cell Rep Med, 2020, 1(1): 100004. DOI: 10.1016/j.xcrm.2020.100004. [54] MERTINS P, MANI DR, RUGGLES KV, et al. Proteogenomics connects somatic mutations to signalling in breast cancer[J]. Nature, 2016, 534(7605): 55-62. DOI: 10.1038/nature18003. [55] DOU Y, KAWALER EA, CUI ZHOU D, et al. Proteogenomic characterization of endometrial carcinoma[J]. Cell, 2020, 180(4): 729-748. e26. DOI: 10.1016/j.cell.2020.01.026. [56] DONG L, LU D, CHEN R, et al. Proteogenomic characterization identifies clinically relevant subgroups of intrahepatic cholangiocarcinoma[J]. Cancer Cell, 2022, 40(1): 70-87. e15. DOI: 10.1016/j.ccell.2021.12.006. [57] MUN DG, BHIN J, KIM S, et al. Proteogenomic characterization of human early-onset gastric cancer[J]. Cancer Cell, 2019, 35(1): 111-124. e10. DOI: 10.1016/j.ccell.2018.12.003. [58] GE S, XIA X, DING C, et al. A proteomic landscape of diffuse-type gastric cancer[J]. Nat Commun, 2018, 9(1): 1012. DOI: 10.1038/s41467-018-03121-2. [59] HUANG C, CHEN L, SAVAGE SR, et al. Proteogenomic insights into the biology and treatment of HPV-negative head and neck squamous cell carcinoma[J]. Cancer Cell, 2021, 39(3): 361-379. e16. DOI: 10.1016/j.ccell.2020.12.007. [60] GONÇALVES E, FRAGOULIS A, GARCIA-ALONSO L, et al. Widespread post-transcriptional attenuation of genomic copy-number variation in cancer[J]. Cell Syst, 2017, 5(4): 386-398. e4. DOI: 10.1016/j.cels.2017.08.013. [61] LIM HY, HEO J, CHOI HJ, et al. A phase Ⅱ study of the efficacy and safety of the combination therapy of the MEK inhibitor refametinib (BAY 86-9766) plus sorafenib for Asian patients with unresectable hepatocellular carcinoma[J]. Clin Cancer Res, 2014, 20(23): 5976-5985. DOI: 10.1158/1078-0432.CCR-13-3445. [62] SUN W, LI SC, XU L, et al. High FLT3 Levels May Predict Sorafenib Benefit in Hepatocellular Carcinoma[J]. Clin Cancer Res, 2020, 26(16): 4302-4312. DOI: 10.1158/1078-0432.CCR-19-1858. [63] MATTER MS, DECAENS T, ANDERSEN JB, et al. Targeting the mTOR pathway in hepatocellular carcinoma: Current state and future trends[J]. J Hepatol, 2014, 60(4): 855-865. DOI: 10.1016/j.jhep.2013.11.031. [64] HO D, CHAN LK, CHIU YT, et al. TSC1/2 mutations define a molecular subset of HCC with aggressive behaviour and treatment implication[J]. Gut, 2017, 66(8): 1496-1506. DOI: 10.1136/gutjnl-2016-312734. [65] ZARETSKY JM, GARCIA-DIAZ A, SHIN DS, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma[J]. N Engl J Med, 2016, 375(9): 819-829. DOI: 10.1056/NEJMoa1604958. [66] SADE-FELDMAN M, YIZHAK K, BJORGAARD SL, et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma[J]. Cell, 2018, 175(4): 998-1013. e20. DOI: 10.1016/j.cell.2018.10.038. [67] CHOWELL D, MORRIS L, GRIGG CM, et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy[J]. Science, 2018, 359(6375): 582-587. DOI: 10.1126/science.aao4572. [68] RIAZ N, HAVEL JJ, MAKAROV V, et al. Tumor and microenvironment evolution during immunotherapy with nivolumab[J]. Cell, 2017, 171(4): 934-949. e16. DOI: 10.1016/j.cell.2017.09.028. [69] GIDE TN, QUEK C, MENZIES AM, et al. Distinct immune cell populations define response to anti-PD-1 monotherapy and anti-PD-1/anti-CTLA-4 combined therapy[J]. Cancer Cell, 2019, 35(2): 238-255. e6. DOI: 10.1016/j.ccell.2019.01.003. [70] AU L, HATIPOGLU E, ROBERT DE MASSY M, et al. Determinants of anti-PD-1 response and resistance in clear cell renal cell carcinoma[J]. Cancer Cell, 2021, 39(11): 1497-1518. e11. DOI: 10.1016/j.ccell.2021.10.001. [71] TORRENS L, MONTIRONI C, PUIGVEHí M, et al. Immunomodulatory effects of lenvatinib plus anti-programmed cell death protein 1 in mice and rationale for patient enrichment in hepatocellular carcinoma[J]. Hepatology, 2021, 74(5): 2652-2669. DOI: 10.1002/hep.32023. [72] YI C, CHEN L, LIN Z, et al. Lenvatinib targets FGF receptor 4 to enhance antitumor immune response of anti-programmed cell death-1 in HCC[J]. Hepatology, 2021, 74(5): 2544-2560. DOI: 10.1002/hep.31921. [73] JIN H, SHI Y, LV Y, et al. EGFR activation limits the response of liver cancer to lenvatinib[J]. Nature, 2021, 595(7869): 730-734. DOI: 10.1038/s41586-021-03741-7. [74] QIU Z, LI H, ZHANG Z, et al. A pharmacogenomic landscape in human liver cancers[J]. Cancer Cell, 2019, 36(2): 179-193. e11. DOI: 10.1016/j.ccell.2019.07.001. [75] BARRETINA J, CAPONIGRO G, STRANSKY N, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity[J]. Nature, 2012, 483(7391): 603-607. DOI: 10.1038/nature11003. [76] GHANDI M, HUANG FW, JANÉ-VALBUENA J, et al. Next-generation characterization of the cancer cell line encyclopedia[J]. Nature, 2019, 569(7757): 503-508. DOI: 10.1038/s41586-019-1186-3. [77] NUSINOW DP, SZPYT J, GHANDI M, et al. Quantitative proteomics of the cancer cell line encyclopedia[J]. Cell, 2020, 180(2): 387-402. e16. DOI: 10.1016/j.cell.2019.12.023. [78] Cancer Cell Line Encyclopedia Consortium, Genomics of Drug Sensitivity in Cancer Consortium. Pharmacogenomic agreement between two cancer cell line data sets[J]. Nature, 2015, 528(7580): 84-87. DOI: 10.1038/nature15736. [79] KIMLIN LC, CASAGRANDE G, VIRADOR VM. In vitro three-dimensional (3D) models in cancer research: An update[J]. Mol Carcinog, 2013, 52(3): 167-182. DOI: 10.1002/mc.21844. [80] LEUNG M, KIEVIT FM, FLORCZYK SJ, et al. Chitosan-alginate scaffold culture system for hepatocellular carcinoma increases malignancy and drug resistance[J]. Pharm Res, 2010, 27(9): 1939-1948. DOI: 10.1007/s11095-010-0198-3. [81] BROUTIER L, MASTROGIOVANNI G, VERSTEGEN MM, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening[J]. Nat Med, 2017, 23(12): 1424-1435. DOI: 10.1038/nm.4438. [82] NUCIFORO S, FOFANA I, MATTER MS, et al. Organoid models of human liver cancers derived from tumor needle biopsies[J]. Cell Rep, 2018, 24(5): 1363-1376. DOI: 10.1016/j.celrep.2018.07.001. [83] van TIENDEREN GS, LI L, BROUTIER L, et al. Hepatobiliary tumor organoids for personalized medicine: A multicenter view on establishment, limitations, and future directions[J]. Cancer Cell, 2022. DOI: 10.1016/j.ccell.2022.02.001. [84] LACOSTE B, RAYMOND VA, CASSIM S, et al. Highly tumorigenic hepatocellular carcinoma cell line with cancer stem cell-like properties[J]. PLoS One, 2017, 12(2): e0171215. DOI: 10.1371/journal.pone.0171215. [85] NEWELL P, VILLANUEVA A, FRIEDMAN SL, et al. Experimental models of hepatocellular carcinoma[J]. J Hepatol, 2008, 48(5): 858-879. DOI: 10.1016/j.jhep.2008.01.008. [86] CHEN X, CALVISI DF. Hydrodynamic transfection for generation of novel mouse models for liver cancer research[J]. Am J Pathol, 2014, 184(4): 912-923. DOI: 10.1016/j.ajpath.2013.12.002. [87] LEE JS, CHU IS, MIKAELYAN A, et al. Application of comparative functional genomics to identify best-fit mouse models to study human cancer[J]. Nat Genet, 2004, 36(12): 1306-1311. DOI: 10.1038/ng1481. [88] JUNG J. Human tumor xenograft models for preclinical assessment of anticancer drug development[J]. Toxicol Res, 2014, 30(1): 1-5. DOI: 10.5487/TR.2014.30.1.001. [89] RIMASSA L, ASSENAT E, PECK-RADOSAVLJEVIC M, et al. Tivantinib for second-line treatment of MET-high, advanced hepatocellular carcinoma (METIV-HCC): A final analysis of a phase 3, randomised, placebo-controlled study[J]. Lancet Oncol, 2018, 19(5): 682-693. DOI: 10.1016/S1470-2045(18)30146-3. [90] RIMASSA L. Second-line tivantinib (ARQ 197) versus placebo in patients (Pts) with MET-high hepatocellular carcinoma (HCC): Results of the METIV-HCC phase Ⅲ trial[J]. J Clin Onco, 2017, 35(Suppl_15): 4000. DOI: 10.1200/JCO.2017.35.15_suppl.4000. [91] QIN S, CHAN SL, SUKEEPAISARNJAROEN W, et al. A phase Ⅱ study of the efficacy and safety of the MET inhibitor capmatinib (INC280) in patients with advanced hepatocellular carcinoma[J]. Ther Adv Med Oncol, 2019, 11: 1758835919889001. DOI: 10.1177/1758835919889001. [92] WU X, GE H, LEMON B, et al. FGF19-induced hepatocyte proliferation is mediated through FGFR4 activation[J]. J Biol Chem, 2010, 285(8): 5165-5170. DOI: 10.1074/jbc.M109.068783. [93] GAO L, WANG X, TANG Y, et al. FGF19/FGFR4 signaling contributes to the resistance of hepatocellular carcinoma to sorafenib[J]. J Exp Clin Cancer Res, 2017, 36(1): 8. DOI: 10.1186/s13046-016-0478-9. [94] KIM RD, SARKER D, MEYER T, et al. First-in-human phase I study of fisogatinib (BLU-554) validates aberrant FGF19 signaling as a driver event in hepatocellular carcinoma[J]. Cancer Discov, 2019, 9(12): 1696-1707. DOI: 10.1158/2159-8290.CD-19-0555. [95] JOSHI JJ, COFFEY H, CORCORAN E, et al. H3B-6527 is a potent and selective inhibitor of FGFR4 in FGF19-driven hepatocellular carcinoma[J]. Cancer Res, 2017, 77(24): 6999-7013. DOI: 10.1158/0008-5472.CAN-17-1865. [96] MERCADE TM, MORENO V, JOHN B, et al. A phase I study of H3B-6527 in hepatocellular carcinoma (HCC) or intrahepatic cholangiocarcinoma (ICC) patients (pts)[J]. J Clin Oncol, 2019, 37(15_suppl): 4095. DOI: 10.1200/JCO.2019.37.15_suppl.4095. [97] WEISS A, ADLER F, BUHLES A, et al. FGF401, a first-in-class highly selective and potent FGFR4 inhibitor for the treatment of FGF19-driven hepatocellular cancer[J]. Mol Cancer Ther, 2019, 18(12): 2194-2206. DOI: 10.1158/1535-7163.MCT-18-1291. [98] ZHU AX, KUDO M, ASSENAT E, et al. Effect of everolimus on survival in advanced hepatocellular carcinoma after failure of sorafenib: The EVOLVE-1 randomized clinical trial[J]. JAMA, 2014, 312(1): 57-67. DOI: 10.1001/jama.2014.7189. [99] SUN EJ, WANKELL M, PALAMUTHUSINGAM P, et al. Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma[J]. Biomedicines, 2021, 9(11): 1639. DOI: 10.3390/biomedicines9111639. [100] RODRIGUEZ H, ZENKLUSEN JC, STAUDT LM, et al. The next horizon in precision oncology: Proteogenomics to inform cancer diagnosis and treatment[J]. Cell, 2021, 184(7): 1661-1670. DOI: 10.1016/j.cell.2021.02.055. [101] SATPATHY S, JAEHNIG EJ, KRUG K, et al. Microscaled proteogenomic methods for precision oncology[J]. Nat Commun, 2020, 11(1): 532. DOI: 10.1038/s41467-020-14381-2. [102] GILLETTE MA, CARR SA. Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry[J]. Nat Methods, 2013, 10(1): 28-34. DOI: 10.1038/nmeth.2309. [103] WANG P, WHITEAKER JR, PAULOVICH AG. The evolving role of mass spectrometry in cancer biomarker discovery[J]. Cancer Biol Ther, 2009, 8(12): 1083-1094. DOI: 10.4161/cbt.8.12.8634. [104] ZHANG B, WHITEAKER JR, HOOFNAGLE AN, et al. Clinical potential of mass spectrometry-based proteogenomics[J]. Nat Rev Clin Oncol, 2019, 16(4): 256-268. DOI: 10.1038/s41571-018-0135-7. [105] WHITEAKER JR, HALUSA GN, HOOFNAGLE AN, et al. CPTAC Assay Portal: A repository of targeted proteomic assays[J]. Nat Methods, 2014, 11(7): 703-704. DOI: 10.1038/nmeth.3002. [106] LLOVET JM, MONTAL R, SIA D, et al. Molecular therapies and precision medicine for hepatocellular carcinoma[J]. Nat Rev Clin Oncol, 2018, 15(10): 599-616. DOI: 10.1038/s41571-018-0073-4.
本文二维码
计量
- 文章访问数: 1370
- HTML全文浏览量: 617
- PDF下载量: 341
- 被引次数: 0